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Abstract

Background: A common observation in the analysis of gene expression data is that many genes display similarity
in their expression patterns and therefore appear to be co-regulated. However, the variation associated with
microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a
challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-
expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to
extract patterns and identify co-expressed genes that are responsive to experimental conditions.

Results: Through evaluation of the correlations among profiles, the magnitude of variation in gene expression
profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The
method is shown to work well with a simulated data set and microarray data obtained from time-series studies
of dauer recovery and LI starvation in C. elegans and after ultraviolet (UV) or ionizing radiation (IR)-induced
DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number
of patterns which were more stable and homogeneous than the set of patterns that were determined using the
CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to
the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted
more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns
and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the
patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV
treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed
underlying biological processes affected by IR- and/or UV- induced DNA damage.

Conclusion: EPIG competed with CLICK and performed better than CAST in extracting patterns from
simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans
and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by
EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV
data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and Gg-like status
transition. EPIG can be applied to data sets from a variety of experimental designs.
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Background

A common observation in the analysis of gene expression
is that many genes are co-regulated[1,2]. When genes are
co-regulated under various biological conditions, the cor-
responding expression profiles may display relative simi-
larity, or co-expression. To identify these co-expressed
genes, various cluster and factor analysis methods have
been applied to microarray datasets. Among the most
popular unsupervised clustering methods used for the
analysis of gene expression data are hierarchical clustering
[2], K-means [3], self-organizing maps (SOM) [4], Clus-
tering Affinity Search Technique (CAST) [5], partitioning
around medoids (PAM) [6] and CLICK[7,8]. These clus-
tering methods, e.g. SOM and K-means, provide a number
of cluster centroids to which genes with similar expression
profiles are closely situated. However, it is well-known
that the number of clusters or varying the starting seed in
these cluster methods can produce very different results.
In addition, these clustering methods are vulnerable to
the presence of "scattered" genes [9] and can lack robust-
ness when there is little spatial separation between the
clusters [10]. Numerous alternative methods have been
developed to improve the utility of K-means and SOM for
clustering gene expression data, such as clustering based
on pre-defined sets of gene expression profiles [11,12].
Supervised clustering methods such as those utilizing pre-
defined patterns [11,12], require a priori knowledge of the
underlying pattern(s) in the data and may allow exclusion
of unknown but biologically meaningful patterns.

CLICK, a clustering algorithm based on graph theory con-
nectivity, a probabilistic framework and fundamental sta-
tistics, does not rely on assumptions or prior knowledge
about the clusters or their structure, yet identifies tight and
highly similar groups (kernels) that are likely to belong to
the same true cluster [7]. Overall homogeneity (the degree
of similarity of elements in the same cluster), and separa-
tion of elements in clusters from each other, are two crite-
ria that CLICK relies on to evaluate the quality of the
cluster structure. These measures are similar to the intra-
compactness and inter-separation distances indices that
are used to evaluate the validity of clustering solutions
[13].

Among factor analysis methods are independent compo-
nent analysis (ICA) [14,15] and partial least squares (PLS)
[16]. ICA and PLS approaches for analysis of gene expres-
sion data generally provide biologically meaningful pat-
terns among the top listed components which consist of a
large number of co-expressed genes. However, if a pertur-
bation to a biological system stimulates a relatively large
number of co-expressed patterns or when a pattern con-
tains only a small number of co-expressed genes, many of
them may not be revealed by these methods. We present
a novel profile-based method for Extracting microarray
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gene expression Patterns and Identifying co-expressed
Genes, designated as EPIG. Through analysis of correla-
tions among profiles, the magnitude of variation in gene
expression within profiles, and evaluation of the profile
signal-to-noise ratios, EPIG extracts a set of patterns repre-
senting co-expressed genes. Using a simulated data set, we
compared EPIG to CLICK and CAST to evaluate the gener-
ation of the appropriate number of patterns. In addition,
we applied EPIG and CLICK to a C. elegans dauer recovery
and L1 starvation time course gene expression data set
[17] to compare the ability of the algorithms to extract
patterns related to either dauer-specific recovery or L1 star-
vation. Finally, we applied EPIG to a combined UV and IR
treated time-series data set. Through Gene Ontology anal-
ysis of the co-expressed genes, enriched categories pro-
vided hints to underlying co-expression, biological
processes, and the molecular function of the genes.

Results

To evaluate the ability of EPIG to extract patterns from
gene expression data, we used both EPIG and CLICK to
analyze a simulated data set, a publicly available dauer
recovery and L1 starvation gene expression data set from
Caenorhaditis elegans [17,18] and the UV and IR treated
fibroblast lines gene expression data. CLICK was selected
as the comparator because, as similar to EPIG, the method
does not rely on any assumptions or prior knowledge
about the clusters or their structure unlike that of SOMs or
K-means. The extraction of patterns and categorization of
co-expressed genes by EPIG is analogous to clustering the
genes (all or the differentially expressed ones) by CLICK.
In other words, a pattern in EPIG is equivalent to the pat-
tern extracted from the centroid of a cluster generated by
CLICK.

Comparison of CLICK and EPIG using simulated data

Table 1 lists the mean value distributions used in a simu-
lation of data where the standard deviation was set to be
constant at 0.4. Figure 1 displays the mean values of the
six probability distributions for generating the data, where
Figure 1(A) and 1(B) are monotonically up and down,
respectively. Figure 1(C) and 1(D) start and end at zero
but peak at the third and second data points respectively.
Figure 1(E) and 1(F) are flat at 3 and 0, respectively. The
mean values equal to zero in Figure 1(F) reflect a flat
response analogous to real gene expression data in which
a number of genes may be not responsive to a given series
of treatments. Normal deviates were drawn at random to
generate 15 profiles for each of the six distributions. Fig-
ure 2 is a principal component analysis (PCA) of the sim-
ulated data, where the six distinct clusters of the profiles
are distributed in 3-dimensional space. When the simu-
lated data was analyzed by EPIG and CLICK for compari-
son, EPIG extracted 5 patterns from the data (see Figure
3A) corresponding to profile probability distributions
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Six probability distribution profiles. Plot of the six probability distribution profiles in terms of mean values and standard
deviations given in Table I. In each of the figures from (A) to (F), there are four data points marked as crosses. The four data
points from left to right correspond to inter-group | to 4, respectively. The labels of the vertical axis indicate the mean values
of the data points. The vertical bars are the standard deviation of 0.4 to each of the mean values.

depicted in Figures 1(A) to 1(E) and assigned all of the
profiles to their proper patterns (15 profiles each) with
100% accuracy, except for the pattern from the distribu-
tion of the data shown in Figure 1(F) and its correspond-
ing and uncategorized profiles (the ones generated to best
represent a nonresponsive gene expression pattern). On
the other hand, CLICK with the default homogeneity set-
ting, only returned 3 clusters with the patterns of the cen-

troids as shown in Figure 3B from the data omitting the
clusters from the distribution of the data shown in Figure
1(E) which had all inter-group mean values at 3. CLICK
merged the profiles from the patterns of the distributions
of the data of Figure 1(C) and 1(D) together, despite the
peaks at the distinct data points in the patterns. In addi-
tion, CLICK assigned 32 profiles (two of them from the
distribution E in Table 1 or Figure 1(E)) to its Cluster 1

Table I: Intra-group means of simulated profiles where the standard deviation was set at 0.4.

Intra-group means Inter- group | Inter- group 2 Inter- group 3 Inter- group 4 Number of profiles
generated
Distribution A 0 | 2 3 15
Distribution B 3 2 | 0 15
Distribution C 0 1.5 3 0 15
Distribution D 0 3 1.5 0 15
Distribution E 3 3 3 3 15
Distribution F 0 0 0 0 15
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Plot of first three components of a PCA using 90 simulated profiles. The six clusters, from A to F, labelled in different
colors correspond to the distributions from A to F in table I. Each of the clusters consists of |5 profiles generated. 84.3% of
the variability in the data was captured by the first 3 principal components (PCs). The x-axis is PCI, the y-axis PC2 and the z-

axis PC3.

and 16 profiles (one of them also from the distribution E)
to its Cluster 2. We also varied the homogeneity setting.
With homogeneity settings at 0.83 or 0.84, CLICK gener-
ated the highest overall average homogeneity within the
patterns and produced essentially the same three clusters
as were produced using the default setting (data not
shown).

Analysis of dauer recovery and LI starvation gene
expression from Caenorhabditis elegans

A data set consisting of gene expression profiles from a C.
elegans dauer recovery and L1 starvation time course
study was obtained to compare EPIG's and CLICK's ability
to extract patterns/clusters the data for identification of
co-expressed genes from a publicly available microarray
data set. The experimental design and other details of the

study can be obtained from Wang et al [17]. Applied to
the data which included all the genes, EPIG extracted 18
patterns of gene expression and identified 1597 co-
expressed genes (see extracted patterns in Figure S1 and
heat map of the 1597 genes in Figure S2 in Additional file
1). The numbers of genes categorized to each of the pat-
terns varied from 15 to 263 (see Table S1 in Additional file
1). On the other hand, CLICK generated only 6 clusters of
genes from the data (1644 selected genes, based on SNR
(>3) and magnitude of expression (>0.5), including all
1597 genes identified by EPIG) as shown by the patterns
of the centroids in Figure S3 in Additional file 1. If we
applied CLICK to the whole gene data set as what was
done for EPIG, CLICK produced over 60 clusters (data not
shown).
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Patterns of the simulated data extracted by EPIG and CLICK. The four inter-groups (red, green, blue and black) from
left to right in each pattern correspond to the inter-groups from | to 4 shown in Table |. A) The patterns extracted by EPIG
are labelled from | to 5 correspond to the distributions A to E, respectively. All profiles were categorized to their respective
pattern. B) The pattern extracted by CLICK from Cluster | with 32 profiles assigned to it appears to have emerged from both
distributions C and D in Table |. The patterns for Clusters 2 and 3 correspond to distributions A and B in Table I. The two

clusters have 16 and |5 profiles assigned respectively.
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Table 2: Dauer recovery-specific gene expression profiles.
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EPIG CLICK
pattern  Dauer recovery LI starvation pattern  Dauer recovery LI starvation
number number
Transient 2 No change at start, Down regulated at all time | From up regulated to no  Down regulated
gradually decrease, to points change
significantly down regulated
at end
3 Up regulated at start, No change at all time points
gradually decrease to no
change at end
10 No change at start, No change at start, then, 6 No change at start, Down regulated
gradually decrease, to stay minimally down gradually decrease, to
significantly down regulated  regulated significantly down
at end regulated at end
Il No change at start, jump to  No change at all time points
significantly up regulated
after the start, gradually
decrease to no change at
end
Early 6 Down regulated at 0 h. No or minimal change
from up regulated to
minimally up regulated
7 Up regulated at O h, peak at  Minimally down regulated
5 h, then to minimally up
regulated
9 From no change to down No change or Minimally
regulated down regulated
Climbing 14 Down regulated at 0 h, No or minimal change
climbing to peak at 3to 5 h
Late 12 Up regulated at late time Up regulated at late time 4 Up regulated at late time ~ Up regulated at
points points points late time points
Dauer enriched 4 Down regulated From up regulated to no 2 Down regulated From up regulated

change

to no change

Those patterns not listed below possess similar responses between dauer recovery and L| starvation except the late responses.

In dauer-specific processes, there were four groups of
genes corresponding to the dauer recovery: transient,
early, climbing and late [17]. Table 2 lists the dauer recov-
ery-specific gene expression patterns from both EPIG and
CLICK corresponding to the four groups of co-expressed
genes along with the dauer enriched state. There were no
clusters generated by CLICK which contained genes with
expression patterns related to either early or climbing
states. However, there were four patterns which corre-
sponded to the transient, late and dauer enriched states.
On the other hand, the patterns of the genes extracted by
EPIG corresponded to each of these dauer recovery
response groups. For example, there were four patterns
(Patterns 2, 3, 10 and 11 in Figure S1 in Additional file 1)
in which expression levels of all of the genes decreased
from early to late corresponding to the dauer transient
state. However, these four patterns differed slightly from
one another. For instance, Patterns 2 and 10 have no
change at the start, then the expression of the genes grad-
ually decreases to be substantially down-regulated at the
end. However, their corresponding L1 starvation expres-
sion levels were either down-regulated (in the case of Pat-

tern 2) or not changed (in the case of Pattern 10) across
all the time points. Conversely, Patterns 3 and 11 reflect
no change at all time points in L1 starvation, but the
response of the genes to dauer recovery were either up-reg-
ulated at the start, then gradually decreased to no change
at end (in the case of Pattern 3) or had no change at the
start, were up-regulated early, then gradually decreased to
no change at end (in the case of Pattern 11). Similarly, one
may relate EPIG's Patterns 6, 7 and 9 to the dauer recovery
early state and Pattern 14 to the climbing state. There were
no clusters generated from CLICK that contained patterns
of the centroids corresponding to these two dauer-specific
states (see Figure S3 in Additional file 1). The patterns
from EPIG and CLICK showing similar responses between
dauer recovery and L1 starvation were not listed in Table
2.

Expression patterns and co-expressed genes in response to
UV- andlor IR-induced DNA damage

We next applied EPIG to a microarray data set that com-
bined gene expression profiles of both ionizing radiation
(IR)- and ultraviolet (UV)-treated human fibroblast cells
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Figure 4

The patterns extracted by EPIG from the combined UV- and IR- treated data. In each of these patterns, | to I8,
the first half with open circles were UV-treated and the second half with solid circles were IR-treated. For each treatment,
there were three individual cell lines, FI-HTERT, F3-HTERT and FI0-HTERT, positioned from left to right. Each cell line con-
sisted of eight data points with four different treatment conditions, i.e., sham-treatment and 2, 6, and 24 h post-treatment
colored red, green, blue and magenta, respectively. The vertical axes with zero at the middle are the changes in gene expres-

sion (log2 intensity) relative to the sham-treated controls.

with two goals in mind: 1) to find similar and dissimilar
responses between treatments and 2) to reveal differences
in gene regulation upon DNA damage caused by IR or UV.
In each of the two treatments, the data consisted of four
biological states, i.e. sham-treated, 2 h-, 6 h-, and 24 h
post UV- or IR-treatment. A gene expression profile con-
sists of eight inter-groups, corresponding to four states
from the two treatments. Each of the intra-groups con-
tains six data points from three biological replicates and
two technical replicates (dye-swap pairs) for a given treat-
ment at a given time point. As such, each gene expression
profile consisted of 48 data points. EPIG analysis using

the whole data as its input resulted in total of 18 patterns
as shown in Figure 4 with a total of 2661 co-expressed
genes being identified. Each of the co-expressed genes was
categorized to a particular pattern. Figure 5 is a heat map
of the 2661 genes that are arranged in the order of pattern
number from top to bottom. Table 3 lists the number of
genes in each of the patterns and denotes their over-repre-
sented Gene Ontology biological processes[19].

Each pattern shown in Figure 4 includes both UV (the first
half of the profile from left to right) and IR (the second
half) treatments. For each treatment there are three indi-
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Heat Map of the 2661 genes selected by EPIG. From top to bottom are the 2661 genes selected by EPIG listed in an
order from Pattern | to 8. The left half is UV-treated and the right half is IR-treated. For each treatment, three individual cell
lines, FI-HTERT, F3-HTERT and FI0-HTERT, are positioned from left to right. Each cell line consisted of four different treat-
ment conditions, sham-treatment, 2, 6, and 24 h post-treatment from left to right. Red and green colors correspond to up and
down regulation, respectively, with a darker color denoting less differential expression.
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Table 3: Pattern response trends and selected over represented Gene Ontology categories.

Pattern No. of genes UV Response trends IR Response trends Selected over represented Gene
Ontology categories™
| 21 Up regulated at 2 h post UV Insignificant response Transcription factor complex,
development, nucleoplasm, regulation
of transcription from Pol Il promoter,
morphogenesis
2 57 Up regulated at 2 h and 6 h post UV Insignificant response Nucleus, nucleic acid binding
3 173 Moderately up regulated at 2 h and Insignificant response RNA metabolism, RNA processing,
peak 6 h post UV methyltransferase activity, nucleolus
4 73 Moderately down regulated at 2 h and  Insignificant response Metabolism, nucleobase\, nucleoside\,
up regulated at 6 h post UV nucleotide and nucleic acid
metabolism, regulation of transcription,
DNA-dependent
5 100 Down regulated at 2 h post UV Insignificant response Regulation of transcription,
transcription\DNA-dependent, nucleic
acid binding, nucleus
6 79 Down regulated at 2 h and 6 h post UV  Insignificant response Protein serine/threonine kinase
activity, nucleus
7 52 Down regulated at 2 h and Moderately Insignificant response Transcription regulator activity
up regulated 6 h post UV
8 616 Down regulated at 6 h post UV Insignificant response Purine nucleotide binding, protein
modification, protein amino acid
phosphorylation, ubiquitin cycle, kinase
activity, cell growth and/or
maintenance
9 172 Moderately up regulated at 2 h and Moderately up regulated at 2 h and Nucleolus, ribosome biogenesis and
peak 6 h post UV down regulated at 24 h post IR assembly, mitotic cell cycle, rRNA
processing, DNA replication, S phase
of mitotic cell cycle
10 23 Moderately up regulated at 2 h and Up regulated at 2 h post IR, then cell proliferation
peak 6 h post UV decrease at 6 h and remained stable
through 24 h post IR.
I 19 Moderately up regulated at 2 h and Progressively up regulated from 2 h to
peak 6 h post UV 24 h post IR
12 47 Down regulated at 2 h and Moderately Down regulated at 2 h post IR protein binding
down regulated 6 h post UV
13 385 Moderately up regulated at 24 h post Up regulated at 24 h post IR Lysosome, lytic vacuole, complement
uv activation
14 563 Moderately down regulated at 24 h Down regulated at 24 h post IR Mitotic cell cycle, DNA replication and
post UV chromosome cycle, M phase, nuclear
division, cell growth and/or
maintenance, RNA processing, RNA
metabolism, response to DNA damage
stimulus, DNA repair, cell cycle
checkpoint, cell growth and/or
maintenance, G /S transition of mitotic
cell cycle, G2/M transition of mitotic
cell cycle,
15 49 Insignificant response Up regulated at 24 h post IR cell adhesion
16 115 Down regulated at 6 h post UV Up regulated at 24 h post IR catalytic activity
17 6l Up regulated at 6 h post UV Moderately down regulated at 2 h post  DNA binding
IR
18 56 Down regulated at 6 h and 24 h post plasma membrane, morphogenesis

uv

Moderately up regulated at 24 h post
I

*Includes biological processes, molecular function and cellular component.
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vidual cell lines (F1-hTERT, F3-hTERT and F10-hTERT).
Each one consists of four time-series points, i.e. sham-
treated controls (red), 2 h- (green), 6 h- (blue), and 24 h-
(magenta) post UV or IR treatments. Patterns 1 through 8
show UV-specific expression (either up- or down-regu-
lated) with little or no changes in gene expression in IR-
treated cells. UV-specific up-regulation of gene expression
(Pattern 1 to 4) happened only at early time points, 2 and/
or 6 h after UV irradiation, and fully recovered to baseline
levels at 24 h. As shown in Table 3, the 324 genes in Pat-
terns 1-4 were related to transcriptional regulation, RNA
processing and nucleic acid binding. UV-specific down-
regulation of gene expression (Patterns 5 to 8) also
occurred at early time points (2 h and/or 6 h post UV).
Biological processes related to regulation of transcription
were also over-represented by these genes. In addition,
over 600 genes in Pattern 8, which were substantially
repressed at 6 h post UV, contained about 30 biological
processes over-represented including purine nucleotide
binding, protein modification, ubiquitin cycle, kinase
activity, and cell growth.

Genes in Patterns 9 to 15 responded to both UV- and IR-
treatment but with different time dependencies. In Pat-
tern 9 expression was up-regulated at 2 and 6 h post UV-
treatment and then recovered to near baseline levels at 24
h. Genes in this pattern were minimally up-regulated at 2
h post IR but showed substantial down-regulation at 6 h
and even greater down-regulation at 24 h. Many genes
that are maximally expressed in S phase were in this pat-
tern, including CDC6, FEN1, MSH6, ORCG6L, PCNA,
POLG, RBM14, CCNE2 and TOP3A. The changes in
expression of these genes were coincidental with changes
in the S phase compartment of the cell cycle. S phase cells
were increased over control at 2 and 6 h post-UV (data not
shown), but were moderately reduced relative to control
at 6 h and markedly reduced at 24 h post-IR [20].

Patterns 10 and 11 contained 42 genes including the p53-
target genes GDF15, BTG2, PLK2, BAK1l, PLK3 and
CDKNI1A (Pattern 10) and TP53INP1, SESN1, DDB2 and
FDXR (Pattern 11). All of these genes were up-regulated at
2 h after UV treatment, they peaked at 6 h and then
returned to baseline at 24 h. However, they responded dif-
ferently to IR. In Pattern 10, the genes peaked at 2 h post
IR then decreased to a stable level at 6 h and 24 h. The
genes in Pattern 11 displayed continuous increases in
expression until 24 h after IR.

Patterns 13 to 15 contained 997 genes in total that were
mainly regulated at the late time point after treatment (24
h). More than 500 genes in Pattern 14 were down-regu-
lated at 24 h post IR or UV treatment. This pattern
included many cell cycle-regulated genes functioning in
the G1/S and G2/M transitions, such as CDK2, CDC2 and

http://www.biomedcentral.com/1471-2105/8/427

MCM2. These genes were strongly down-regulated in IR-
treated cells, but had substantially less change in UV-
treated cells. Both Patterns 13 and 15 show late up-regu-
lated responses, but genes in former were up-regulated
after treatment with both UV and IR while those in the lat-
ter only responded to IR. The top biological process in
Pattern 13 was complement activation with lysosome and
lytic vacuole being the main cellular components that the
products of the genes in the patterns might be associated
with or located in. Finally, many genes exhibited co-
expression in Patterns 16 (115 genes), 17 (61 genes) and
18 (56 genes) but UV and IR treatments induced opposite
changes in their gene expression.

As a comparison, we also applied CLICK to the 2726
genes identified as differentially expressed using the SNR
(> 3) and magnitude of expression (> 0.5) criteria. This set
of genes included all 2661 co-expressed genes identified
by EPIG. In this case, CLICK clustered the gene expression
data into 11 groups (in Figure S4 in Additional file 1).
Similar patterns from the centroids of the clusters were
revealed in comparison to the ones extracted by EPIG.
However, CLICK was unable to reveal some patterns
extracted by EPIG which we consider to have biological
importance related to DNA repair in responding to UV
and IR treatments. Among them are EPIG's Patterns 9, 10
and 11 (see Figure 4). As presented above, many of the
genes in Pattern 9 were S phase-related and the majority
of genes in Patterns 10 and 11 were known to be related
to p53-dependent cell cycle control.

Homogeneity evaluation of the patterns/clusters of gene
expression profiles

It is vital that the extracted patterns and their associated
genes can be inspected for their biological meaningfulness
as presented above. On the other hand, it is also essential
that that the extracted patterns or clusters of genes formed
be validated objectively using some evaluation indicies.
Although there were a number of methods developed to
validate clusters, each of them is suitable to some specific
applications. For example, one may use the General Sil-
houette (GS) to measure the stability of the clustering
structure [6]. The higher GS score indicates better formed
clusters. But the GS measure seems to work best for cases
where the number of clusters are small [21,22]. Given the
above simulated data, we obtained GS scores of 0.77 and
0.71 for the pattern from EPIG and the clusters from
CLICK, respectively. However, when we applied the GS
measure to either of the above dauer recovery and L1 star-
vation or UV and IR DNA damage data sets, the GS scores
was deemed inappropriate to judge cluster validity due to
the higher numbers of extracted clusters. Other methods,
for example, the Gap statistic [22], validate clusters
depending on the number of groups in the data as deter-
mined a priori. However, both EPIG and CLICK are unsu-
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pervised approaches. Therefore, to objectively and
appropriately compare the two methods, we calculated
the overall average homogeneity [7] within clusters (i.e.
the pattern-categorized gene expression profiles in the
case of EPIG) and the averaged correlations between clus-
ters/extracted patterns. The overall average homogeneity
measures the amount of cohesion within a cluster/pattern
whereas the averaged correlation measures the amount of
separation between clusters/patterns [23]. The results are
listed in Table 4. As can be seen, in each of the cases of the
three data sets, the overall average homogeneities from
EPIG are consistently higher than those from CLICK and
CAST (with affinity threshold set to 0.7, 0.8, or 0.85) sug-
gesting that EPIG has better compactness of the profiles in
the patterns than the clusters of the genes generated by the
other clustering algorithms. The averaged correlations for
all the methods were low (<= +/- 0.35), indicating that the
expression of the genes in the patterns were quite dissim-
ilar each other. However, it is clear from this result that
CLICK performed better than EPIG and CAST with respect
to the between cluster correlations (i.e., CLICK had a
lower average correlation between clusters/extracted pat-
terns than EPIG and CAST did).

Another observation is that the numbers of clusters gener-
ated by CLICK were always lower than the number of pat-
terns extracted by EPIG and the number of clusters
generated by CAST was about 8 (on average and not
including singletons) when different affinity threshold
values were used for analysis. However, if we use the
whole data set as the input data for CLICK, as what was
done for the analysis of the data with EPIG, CLICK pro-
duces over 60 clusters in both dauer recovery/L1 starva-
tion and UV/IR DNA damage data sets. A Figure of merit
(FOM) [24] analysis of the either data set showed that for
cases when the number of clusters were larger than 20, the
adjusted FOM values slowly decreased. This suggests that
the number of clusters of genes in the data set could be
between 5 and 20, well below the 60 clusters produced by
CLICK when using the entire gene expression data set (Fig-
ure S5 in Additional file 1).
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Discussion

With a pair-wise calculation of the Pearson's correlation
coefficient r, co-expressed profiles form discrete local clus-
ters or mountains in a correlation topomap [18]. The
probability is less than 10-12 that two arbitrary and inde-
pendently generated data sets of size 48, e.g. the joined UV
and IR data set shown in Figure 4, are correlated with an
r-value greater than 0.8 [25]. When there exist tens of
thousands of gene expression profiles, many of them,
which are inconsistently expressed among replicate
groups or intra-groups, may appear to be similar by
chance and form a correlation local cluster due to stochas-
tic noise. Unlike factor analysis methods, such as ICA, or
clustering methods, such as CLICK, K-means or SOM, our
approach called Extracting Patterns and Identifying co-
expressed Genes (EPIG) not only calculates the similarity
among the profiles, but also evaluates each profile via sig-
nal-to-noise (S/N) ratio measurements (Equations 1 and
3). Through a filtering procedure, EPIG removes profiles
that don't fit into a pattern. Only the profiles with high S/
N ratios and desirable magnitudes of expression change
are included in the formation of patterns representing co-
expressed genes. With such a profile evaluation strategy,
EPIG is able to extract patterns of co-expressed genes with-
out predefined seeding.

In a head-to-head comparison, EPIG competed with
CLICK and CAST in the analysis of a simulated data set by
1) extracting all of the designated patterns, 2) accurately
categorizing the profiles to their appropriate patterns, and
3) generating patterns of profiles with higher homogene-
ity and more stability (Table 4). However, it is clear that
CLICK outperformed EPIG and CAST in terms of generat-
ing clusters/extracted patterns that are more dissimilar to
each other (i.e., they have a lower average correlation
between clusters/patterns). Furthermore, given the two
experimental data sets presented above (one from the
public domain), EPIG extracted more patterns of gene
expression than CLICK (Tables 2 and 4). The patterns
extracted by EPIG which were not represented by any of
the cluster centroids generated by CLICK contained genes

Table 4: Homogeneity of gene expression profiles within patterns and correlations between patterns

Data Algorithm  Number of patterns Overall average homogeneity ~ Averaged correlation
within patterns between patterns
The simulated data EPIG 5 0.95 0.29
CLICK 3 0.72 -0.35
CAST* 8 0.30 -0.08
Dauer recovery and LI starvation data EPIG 18 0.83 -0.03
CLICK 5 0.74 -0.15
UV and IR DNA damage data EPIG 18 0.84 -0.02
CLICK I 0.78 -0.08

* Results generated with an affinity threshold value of 0.8. Two singleton profiles were not reported or included in the analysis of the homogeneity

and correlation measures.
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which related to key biological responses coupled to the
experimental treatments. For example, in the case of UV
and IR DNA damage, the patterns extracted by EPIG con-
tained p53 cell cycle control target genes (in Patterns 10
and 11) and many S phase genes (in Pattern 9) of the
mitotic cell cycle (Figure 4).

There are two main thresholds used in EPIG pattern
extraction: the local cluster size threshold M, and the cor-
relation threshold R,. R, determines the closeness in simi-
larity that is allowed among the extracted patterns.
Depending on the sample size, one may determine R, such
that the most similar patterns possess clear response dif-
ferences. For example, in Figure 4, Patterns 5 and 6 have a
correlation r-value of 0.77. But the two contain genes with
expression patterns that display a clear difference in the
response to UV-induced DNA damage. In Pattern 5, gene
expression was repressed only at 2 h post-UV while in Pat-
tern 6, gene expression was repressed at both 2 and 6 h
post-UV. M, is the minimum number of the genes in a
local cluster needed to have a profile candidate deemed as
a pattern. The value of M, affects the pattern extraction
outcome. Higher M, values may cause a meaningful pat-
tern with a lower number of co-expressed genes to be con-
cealed. On the other hand, lower M, values may lead to
the extraction of some patterns lacking biological mean-
ingfulness. To test for an optimal M, setting, we varied its
values from 2 to 19 and performed EPIG analysis on the
IR-treated gene expression data. Figure 6 shows that the
average Pattern SNR increased with the increase of M,
while the number of extracted patterns decreased. This
result is seems plausible considering the observation that
as M, increases, more correlation local clusters are filtered-
out since their cluster sizes are less than M,. The fewer
extracted patterns then have higher averaged SNRs. How-
ever, when M, > 6, the SNR had an up-shift and the
number of extracted patterns had a down-shift. This result
prompted us to set M, to 6 in the given data set. To be pre-
cise, one should vary these thresholds empirically for a
given data set to examine the outcomes. We have done
just that and have concluded that, upon many sets of the
gene expression data analyzed by using EPIG, selections of
M, at 6 and R, at 0.8 have worked reasonably well (data
not shown). Incidentally, there may be some genes with
profiles not similar to any other gene(s) or their related
local cluster had a size less than M,. Then these "orphan”
genes (singletons) will not be considered as a pattern can-
didate nor will they be categorized to any extracted pat-
terns. Attention certainly needs to be paid to these orphan
genes, as a part of the EPIG analysis result, to determine if
they have a unique role in the treatment response.

EPIG is a general method for gene expression analysis
when the data consists of profiles with multiple inter-
groups and multiple samples intra-groups. Each intra-
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group has a specific biologically relevant factor. The inter
groups account for the factor variations. For example, in
the IR time- series data set, since the intra-group included
both biological and technical replicates, the common
response features among different cell lines were identi-
fied. On the other hand, if the intra-group included only
the technical replicates, then one would reasonably expect
to extract patterns representing idiosyncratic responses in
individual cell lines. The responses to DNA damage that
are common among biological individuals are intriguing
because they are conserved, but individual-specific
responses also are of interest as they point to inter-indi-
vidual variations in response to external perturbations.

The application to the joined IR and UV data set had eight
inter-groups, four each (i.e. sham, 2 h, 6 h and 24 h post-
treatment) to IR and UV respectively. In this case, similar
and dissimilar responses between IR- and UV- induced
DNA damage can be clearly observed (Figure 4). For
example, UV-specific response patterns included genes
functioning in transcription regulation, RNA processing,
nucleotide binding, and cell growth (Patterns 1 through 8
in Figure 4 and Table 3). The over-represented categories
of Gene Ontology from the 616 genes in Pattern 8
included purine nucleotide binding, protein modifica-
tion, ubiquitin cycle, kinase activity, and cell growth. It
appears that protein kinases may be generally down-regu-
lated specifically via phosphorylation in response to UV-
induced DNA damage [26,27]. Two early response Pat-
terns 10 and 11 in Figure 4 showed that both UV and IR
caused these genes to be up-regulated, but in different
ways. Many of the genes in these two patterns have been
widely studied and known to be related to p53-dependent
cell cycle control. The two different patterns of response to
IR imply that factors other than p53 also influence the
expression of p53-target genes. Pattern 14 in Figure 4
showed similar late down-regulation responses to both
UV and IR treatments. There were 563 genes in Pattern 14
participating in a number of important biological proc-
esses among them were mitotic cell cycle, DNA replica-
tion, DNA repair, cell cycle checkpoint, and G-like status
transition [20].

In general, the inter-group-related factors are not limited
to the time variable only. As a matter of fact, EPIG has
been applied to many different data sets, where the varia-
ble factors include time, treatments (such as chemicals,
radiation, knock-out), doses, organs (such as blood, liver,
kidney), or organ sections (such as left or right lobe in
liver). As such, EPIG is a robust, flexible and new pattern
extraction method which is generally applicable to a vari-
ety of microarray data sets.
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Figure 6

Optimization of the M, value. Cluster size threshold M, (the horizontal axis) verses average of patterns' SNR (A) and

number of extracted patterns (B).

Conclusion

EPIG competed with CLICK and performed better than
CAST in extracting patterns from simulated data. How-
ever, EPIG extracted more biological informative patterns
and co-expressed genes from real biological data: both C.
elegans and IR/UV-treated human fibroblasts. Using Gene
Ontology analysis of the genes in the patterns extracted by
EPIG, several key biological categories related to p53-
dependent cell cycle control were revealed from the IR/UV
data. Among them were mitotic cell cycle, DNA replica-
tion, DNA repair, cell cycle checkpoint, and G-like status
transition. The extraction of these biologically responsive
processes by EPIG provides a deeper understanding of the

underlying biological mechanism(s) in the perturbed sys-
tem.

Methods

Simulated data

A data set comprised of numeric data with 90 profiles and
24 objects (four inter- groups i (i = 1,...,4) and six intra-
groupsj (j = 1,...,6)) was simulated from six distinct prob-
ability distributions. Normal deviates were drawn at ran-
dom to generate 15 profiles for each of the six
distributions. Table 1 lists the mean value distributions
used in the simulation of the data where the standard
deviation was set to be constant at 0.4.
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Microarray data

Microarray gene expression data was acquired from three
telomerized normal human fibroblast lines (logarithmi-
cally growing), F1-hTERT, F3-hTERT and F10-
hTERT[28,29] that were sham-treated or treated with 1.5
Gy ionizing radiation (IR) or 6 J/m2 ultraviolet (UV [from
a 254 nm radiation source]) and harvested at 2, 6 or 24 h
after the treatment. Briefly, total RNA isolated from cells
harvested at each time point was subjected to microarray
analysis by using Agilent 22,000 element human 1A
arrays. The labelled cRNA from sham- or radiation-treated
samples was hybridized to the microarray along with a
labelled global reference cRNA. Hybridization of sample
RNA against reference RNA was performed with a dye
swap (cytofluor reversal).

Microarray data pre-processing

The extracted intensity data were pre-processed by array-
based Systematic Variation Normalization (SVN) [30],
profile-based dye-swap correction to remove dye labelling
affects, and to align biological reference states. The latter
was done in such a way that the sham-treated samples
were used as a reference state and the averaged sham-
treated state of the dye-swapped pair was aligned to zero
as a baseline. All other treated states were then adjusted by
the same amount accordingly. It is plausible that each of
the three human cell lines used for analysis may not have
the same sham state. The alignment of the sham states
aims at eliminating the biological variability and focuses
the analysis on the relative changes upon IR or UV treat-
ments. In this case, the 2-dimensional matrix of compiled
gene expression data consisted of 16,757 rows of unique
genes (grouped by UniGene) and 48 columns consisting
of, for each of the three cell lines, dye-swapped replicates
of IR-sham-treatment and 2 h, 6 h and 24 h after IR, UV-
sham-treatment and 2 h, 6 h and 24 h after UV.

EPIG

A compiled microarray gene expression data set (in this
study, as conventionally presented, the log, pixel intensity
ratio values) consists of a 2-dimensional matrix, in which
each row represents a gene expression profile and each
column represents an array. Upon sample perturbation or
variation in biological factors, such as agent, dose, time or
tissue, a gene expression profile can be made up of inter-
group and intra-group samples. The arrays in an intra-
group sample have a factor in common, e.g. biological
replicates. The arrays in inter-group samples possess dif-
ferent factors, e.g., sham-treatment and time points post-
UV or IR treatment. We denote each datum of log, ratio as
g; in a gene expression profile, where i refers to a inter-

group index from 1 to m, j is the intra-group index from 1
to n;, m is the number of inter-groups and n; is the number

http://www.biomedcentral.com/1471-2105/8/427

of arrays in ith inter-group. To evaluate such a profile, we
calculate each intra-group average g; and sample variance

s? . We define a gene expression profile's signal as

max{g; },if min{g; } >0
S=1{-min{g, } elseif max{g;} <O )]

max{g; } - min{g; } otherwise

where 1 <i<m. We define a profile's noise estimate as the
square-root of the pooled variance, i.e.

m
S| (D57 |
o eile
Sni-ny T

1

where the sample variance

.
> (ij-81)°

2_ ]
S

nj—1

From Equations 1 and 2, we define a profile's signal-to-
noise ratio as

SNR = %] (3)

As can be seen, when m = 1, Equation 3 is equivalent to a
two sample t-test, since by default the log, pixel intensity
ratio is the treated against its control. Equation 3 includes
the case for m > 1, i.e. multiple inter-groups.

In extracting gene expression patterns, EPIG uses a filter-
ing process where all profiles initially are considered as
pattern candidates. The pseudo code for the algorithm can
be found in the Appendix. Briefly, using all pair-wise cor-
relations, any candidate profile, whose local cluster size is
less than a predefined size M, or its correlation with
another profile is higher (> R,) but has a lower local clus-
ter size M, is removed from pattern construction consider-
ation. Among the remaining profiles, EPIG then creates
representative profiles for the corresponding local clusters
and removes those profiles with a SNR in Equation 3 less
than 3 or magnitude S in Equation 1 less than 0.5. After
this filtering processing, the remaining profiles consist of
the extracted patterns, which are used to be the represent-
atives to each of the local clusters. Each of the patterns has
the highest local cluster size in comparison with other
highly similar profiles (e.g. correlation larger than 0.8) in
the same local cluster.
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Subsequently, EPIG categorizes each gene to the pattern,
for which it has the highest correlation with the gene pro-
file. A gene not assigned to any extracted patterns is con-
sidered an "orphan" if its highest correlation r-value is
lower that a given threshold R.. Typically R, is set to a
value which corresponds to a correlation p-value of 10-4to
assure the significance of the co-expression. A Java-based
software tool and the source code for EPIG are publicly
available [31].

CLICK

CLuster Identification via Connectivity Kernels (CLICK)
analysis of the gene expression data was performed using
version 2 of the EXpression ANalyzer and DisplayER
(EXPANDER) analysis and visualization tool [7]. The
default settings for CLICK were used for all analyses.

CAST

The Cluster Affinity Search Technique (CAST) for cluster-
ing data uses average similarity (affinity) between gene
expression patterns and cluster cores (the current ones in
the recursive portion of the algorithm) and then adds
(and removes) elements from the current core one at a
time [5]. An affinity threshold is used to specify the cluster
quality - it influences the number and the size of the clus-
ters that are produced. The CAST implementation used for
analysis of the data in this paper was based on a Java
applet source code [32].

Appendix
EPIG algorithm

Set thresholds R, to 0.8, M, to 6, SNR,to 3, and S, to 0.5
FOR each profile i
M;=0
FOR each profilej, j <i
M;=0

IF correlation r-value r; > R, THEN M;

i My,
END FOR
END FOR
REMOVE profile i IF M; < M,
SORTING profiles DESCENDING ACCORDING TO M;
FOR each profile i

SORTING profiles j DESCENDING ACCORDING TO r;;

http://www.biomedcentral.com/1471-2105/8/427

REMOVE profile j IF r; > R,
END FOR
FOR each remaining profile i

REPLACE profile i WITH a profile which is an average of
its top 5 profiles (out of all profiles) having the highest r
value

REMOVE profile i IF its SNR < SNR, OR S < §,
END FOR
RETURN remaining profiles as the extracted patterns
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