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Abstract

Background: The majority of common diseases are multi-factorial and modified by genetically and
mechanistically complex polygenic interactions and environmental factors. High-throughput
genome-wide studies like linkage analysis and gene expression profiling, tend to be most useful for
classification and characterization but do not provide sufficient information to identify or prioritize
specific disease causal genes.

Results: Extending on an earlier hypothesis that the majority of genes that impact or cause disease
share membership in any of several functional relationships we, for the first time, show the utility
of mouse phenotype data in human disease gene prioritization. We study the effect of different data
integration methods, and based on the validation studies, we show that our approach, ToppGene
http://toppgene.cchmc.org, outperforms two of the existing candidate gene prioritization methods,
SUSPECTS and ENDEAVOUR.

Conclusion: The incorporation of phenotype information for mouse orthologs of human genes
greatly improves the human disease candidate gene analysis and prioritization.

Background

Although the availability of complete genome sequences
and the wealth of large-scale biological data sets opened
up unprecedented opportunities to elucidate the genetic
basis of rare and common human diseases [1], compre-
hending the underlying pathophysiological mechanisms
continues to be challenging. Majority of the common dis-
eases are genetically intricate, polygenic and multifacto-
rial, and frequently manifest as different clinical
phenotypes. Additionally, these complex conditions are
often triggered by an interaction of genetic, environmen-
tal, and physiological factors, making it difficult for

researchers to narrow their focus to a single or few genes.
High-throughput genome-wide studies like linkage analy-
sis and gene expression profiling although useful for clas-
sification and characterization do not provide sufficient
information to identify specific disease causal genes. Both
of these approaches typically result in hundreds of poten-
tial candidate genes, failing to help the researchers in
reducing the target genes to a manageable number for fur-
ther validation.

Functional enrichment approaches [2-4] focusing on gene

sets that share common biological function, chromo-
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somal location, or regulation although successful in iden-
tifying enriched biological themes are not suitable for
gene prioritization. To overcome this, several gene priori-
tization methods have been developed [5-9] (see Tiffin et
al [10] and Oti and Brunner [11] for a complete list of
existing approaches and web tools for the prediction or
prioritization of disease candidate genes). POCUS [6], for
instance, finds candidate genes by identifying an enrich-
ment of keywords associated with gene ontology (GO),
shared protein domains and expression profiles among a
given set of susceptibility loci relative to the genome at
large. Similarly, PROSPECTR [8] and SUSPECTS [12],
focusing on Mendelian and oligogenic disorders, compare
GO, protein domains and expression libraries of putative
disease genes with those known to be involved with the
same disease. Integrating genomic and proteomic data,
Mootha et al [13] identified LSFC (Leigh syndrome,
French-Canadian type) causal gene. The recent method,
ENDEAVOUR [9], uses several data sources to prioritize
candidate genes. None of these approaches however uti-
lize the mouse phenotype data in their prioritization
approaches although mouse is the key model organism
for the analysis of mammalian developmental, physiolog-
ical and disease processes [14]. Additionally, there have
been several reports [15,16] wherein a direct comparison
of human and mouse phenotypes allowed for the rapid
recognition of disease causal genes.

Extending on the above mentioned approaches, and an
earlier hypothesis, that the majority of disease causal
genes are functionally closely related [6], we reasoned that
an integrative genomics-transcriptomics-phenomics-bib-
liomics approach utilizing the available human gene
annotations, mouse phenotype data and literature co-cita-
tions of genes will expedite human complex disease can-
didate gene identification and prioritization. We call our
prioritization method ToppGene (acronym for Transcrip-
tome Ontology Pathway PubMed based prioritization of
Genes). For the first time, we incorporated the mouse phe-
notype data as one of the feature parameters apart from
GO, pathways, biomedical literature, protein domains,
protein interactions and gene expression of genes to prior-
itize human disease candidate genes and demonstrate its
utility.

Results

Mouse phenotype as a feature for candidate gene
prioritization

The Mammalian Phenotype (MP) Ontology enables
robust annotation of mammalian phenotypes in the con-
text of mutations, quantitative trait loci and strains that
are used as models of human biology and disease. The MP
Ontology (MPO) supports different levels and richness of
phenotypic knowledge and flexible annotations to indi-
vidual genotypes [17]. Each node in MPO represents a cat-
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egory of phenotypes and each MP ontology term has a
unique identifier, a definition, synonyms, and is associ-
ated with gene variants causing these phenotypes in genet-
ically engineered or mutagenesis experiments. In the
current study, we retrieved mouse genes associated with
each of the MP term and extracted the corresponding
human orthologous genes. In the current version of MPO,
there are 4280 terms associated to 4329 unique Entrez
mouse genes (extrapolated to 4329 orthologous human
genes). We do not check whether the human orthologous
gene of a mouse gene causes similar phenotype. Rather,
we assume that orthologous genes cause "orthologous"
phenotype and test the potential of the extrapolated
mouse phenotype terms as a similarity measure between
the training and test group of genes in candidate gene
analysis.

Document identifier as a feature for candidate gene
prioritization

We use biomedical literature abstract identifiers (PubMed
identifiers, PMIDs) as a feature for classification, where
the dimensionality of the feature space was equal to the
number of documents in the document set. We hypothe-
sized that if a PMID is cross-referenced in two genes, the
two genes are likely to have a direct or indirect association.
A large number of co-citations for a pair of genes (i.e.
same PMIDs associated with two different genes) proba-
bly represents a relationship (direct or indirect associa-
tion) between the two genes. For each gene, ToppGene
considers all associated articles (represented as PMIDs) as
literature annotation of this gene. The gene to PMID asso-
ciation file ("gene2pubmed.gz") was downloaded from
NCBI Entrez Gene ftp site [18]. 44806 PMIDs were associ-
ated with more than one gene and 25294 genes had at
least one PMID association. 24273 genes shared at least
one PMID with another gene. For the current study, we do
not look into the details of the relationship type between
the genes but consider only co-citation. In other words,
the PMIDs are used only as a feature of similarity measure
in the candidate gene analysis.

Comparison of ToppGene with other gene prioritization
approaches

To evaluate the performance of our approach and also
compare it with other similar gene prioritization
approaches [8,9,12], we performed two types of compari-
sons: large-scale cross-validations and small-scale test
cases (See Additional file 1 for the workflow, and Tables 1
and 2 for a comparison of features and methods used in
the 3 applications, namely, SUSPECTS, ENDEAVOUR and
ToppGene). For large-scale cross-validations, we used the
same or similar training sets as mentioned in the previous
methods. Specifically we compared ToppGene's perform-
ance with ENDEAVOUR [9] using random-gene cross-val-
idation; and for comparison with PROSPECTR [8] and
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Table I: Comparison of features used in the three gene prioritization applications

Feature type SUSPECTS ENDEAVOUR ToppGene
Sequence Features & Annotations Blast Not used
Gene length cis-element Transcriptional motifs

Homology Base composition
Gene Ontology
Gene expression

Gene Annotations
Transcript Features

Protein Features Protein domains

Literature Not used

Gene Ontology

Gene expression

EST expression
Protein domains
Protein interactions
Pathways

Keywords in abstracts

Gene Ontology Mouse Phenotype
Gene expression

Protein domains
Protein interactions
Pathways
Co-citation (PMIDs)

SUSPECTS [12], we used locus-region cross-validation.
Additionally, as test cases, we selected two diseases, con-
genital heart defects (CHD) and diabetic retinopathy
(DR), and compared the prioritization performance of
ToppGene with SUSPECTS [12] and ENDEAVOUR [9].

Comparison of ToppGene with ENDEAVOUR: Random-
gene cross-validation

In the current study we used our own disease training sets
because the complete data sets used by ENDEAVOUR are
not available for public access. We, therefore, randomly
selected 19 diseases along with their associated genes
from Online Mendelian Inheritance in Man (OMIM) and
the Genetic Association Database (GAD). Each disease
gene set contained 30 to 44 genes. The total number of
genes across 19 selected diseases was 693 (See Additional
file 2 for the complete list of the datasets). For negative
controls, 20 sets, each containing 35 random genes, were
created as training data. We followed the same methodol-
ogy as ENDEAVOUR to evaluate the performance of our
prioritization method and also compare the results with
ENDEAVOUR. In each validation run, the gene group of a
particular disease (with one gene removed as the "target")
was used as the training set. The "target" gene was then
mixed with 99 random genes to make a test set of 100
genes. The rank of the "target" gene in the resulting list,
following prioritization, was recorded. This process was
repeated for each gene in the list. Sensitivity was defined
as the frequency of "target" genes that are ranked above a
particular threshold position, and specificity as the per-
centage of genes ranked below the threshold. For instance,
a sensitivity/specificity value of 70/90 indicates that the

correct disease gene (the "target") is ranked among the
best-scoring 10% of genes in 70% of the prioritizations.
Receiver operating characteristic (ROC) curves were plot-
ted based on the sensitivity/specificity values and area
under curve (AUC) was computed as the standard meas-
ure of the performance of the method. ENDEAVOUR
reported 90/74 sensitivity/specificity value and an AUC
score of 0.866 [9].

Using ToppGene, we first created the overall ROC curves.
In order to compare with ENDEAVOUR directly, we fol-
lowed the same definitions for sensitivity and specificity
as described by Aerts et al [9]. Figure 1 shows the overall
ROC curves using ToppGene. The AUC score of the 19 dis-
ease training sets was 0.916, and the sensitivity/specificity
was 90/77, i.e. the "target" gene was ranked among the
top 23% in 90% of the cases. In case of the control, the
AUC score of the 20 random training sets was 0.503 (see
section A of Table 3).

Second, we studied the ROC curves based on p-value based
scores. ENDEAVOUR provides ranking of the "target"
gene based on p-values from order statistics, which are
local p-values. In contrast, ToppGene provides p-values
based on random sampling of the whole genome. Topp-
Gene p-value based scores are therefore global measures of
the similarity of the test genes to the training genes. As a
result, sensitivity and specificity can also be defined based
on the p-value based scores; specifically, sensitivity is the
true positive rate (the proportion of detected "target"
genes among all "target" genes) at a cutoff score, and spe-
cificity is the true negative rate (the proportion of

Table 2: Comparison of methods used in the three gene prioritization applications

Data type SUSPECTS

ENDEAVOUR ToppGene

Attribute-based data
Vector-based data
Combination of scores

Semantic similarity
Pearson correlation
Weighted mean

p-value from meta-analysis
Pearson correlation
p-value from order statistics

Fuzzy measure based similarity
Pearson correlation
p-value from meta-analysis
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Figure |

ROC curves of random-gene cross-validation based on score
ranks. Blue curve was generated from the |9 disease gene
training sets. Black curve, negative control, was generated
from 20 random training sets. See text for the definitions of
sensitivity and specificity.

"rejected" genes among all "non-target" genes) at the
same cut-off level. For example, a sensitivity/specificity of
70/90 indicates that 70% of the "target" genes and 10% of
the "non-target" genes have scores higher than a particular
cut-off value.

Evaluation of features used for gene prioritization in
ToppGene

To study the efficiency of different features (GO-Gene
Ontology, MP-Mouse Phenotype, Pathways, PubMed,
Protein Domains, Gene Expression and Protein Interac-
tions), ROC curve of each of the feature sets was gener-
ated. Figure 2 shows the corresponding AUC scores of the
ROC curves, depicting the relative performance of each
feature set in the prioritization method. The mouse phe-
notype and PubMed showed the best performance while
protein interactions and gene expression features per-
formed poorly. In terms of coverage (the percentage of
genes annotated with each of these features in the whole
genome), PubMed was the best while MP had least cover-
age (only about 19% of known genes have at least one MP
term association).

To understand better the relative performance and the
power of each of the features in gene prioritization, we
tested ToppGene by performing cross-validations with
one of the features left out. The performance decreased
significantly only when MP was removed (see ROC curve
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in Figure 3). As expected, the best performance was
recorded when all the features were considered for priori-
tization, with an AUC of 0.913 (see ROC curve in Figure
3) and a coverage of ~89%. For a cutoff score of 0.93, the
sensitivity/specificity was 74/90. In other words, 74% of
the "target" genes were included in the candidate list
(about 9-fold reduction from the original test set).

Comparison of ToppGene with SUSPECTS and
PROSPECTR: Locus-region cross-validation

In this cross-validation we compared the performance of
ToppGene with two other gene prioritization methods,
namely, SUSPECTS [12] and PROSPECTR [8]. We used
the same data set [6] that was used in SUSPECTS and
PROSPECTR study (See Additional file 3 for a complete
list of the data set). This data set contains a list of 29
OMIM diseases (each disease had at least known gene
associations). For each cross-validation run, the training
set was composed of all the genes related to a disease
except the "target" gene. The test set was created by includ-
ing all the genes in the 15 Mb locus region i.e. genes occur-
ring in the 7.5 Mb flanking regions (5' and 3') of the
"target" gene's chromosomal location along with the "tar-
get" gene itself.

PROSPECTR, which uses sequence features alone for gene
prioritization, ranked the "target" gene in an average of
top 31.23% in the prioritized test lists and among the top
5% about 20 times out of 155 (i.e. about 13%). On the
other hand, SUSPECTS, which uses GO, protein domains,
gene expression, and sequence features for gene prioritiza-
tion, ranked the "target" genes in the top 5% of the prior-
itized lists 87 times out of 155 (~56%), and on average the
"target" genes were ranked at top 12.93% in the prioritiza-
tion results.

In comparison, ToppGene was able to rank the "target"
gene among the top 5% of the prioritized lists for 118
times out of 150 (79%). Five genes in the original list were
not present in the current NCBI Entrez Gene database and
were therefore excluded. Thus, instead of 155 genes, 150
genes were used for this cross-validation test. On average,
the "target" genes were ranked at top 7.39% in the priori-
tized lists using our approach (see section B of Table 3).

To evaluate the performance of the individual feature, we
repeated the same locus-region cross-validation with one
feature removed at a time (as described earlier under com-
parison of ToppGene with ENDEAVOUR). The perform-
ance did not change significantly if only GO, pathway,
protein domains, protein interactions or gene expression
features were excluded during gene prioritization. The
performance however declined significantly when MP or
PubMed was not included as one of the features in gene
prioritization (see Table 4 and Figure 4).
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Table 3: Summary of comparison of results from ToppGene with other gene prioritization applications
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A. Random cross-validation

ENDEAVOUR ToppGene
AUC (area under curve) 86.6 91.6
True positive rate/false positive rate 74/90 77190
B. Locus region cross-validation

PROSPECTR SUSPECTS ToppGene

Percentage of top 5% ranked target genes
Average rank ratio of target gene

13% (20/155)
31.23%

56% (87/155)
12.93%

79% (118/150)
7.39%

C. Congenital Heart Disease (CHD) test case

SUSPECTS ENDEAVOUR ToppGene

Percentage of top 10% ranked target genes

32% (9/28) 50% (14/28) 64% (18/28)

Percentage of top 5% ranked target genes 18% (5/28) 14%(4/28) 25% (7/28)
Average rank ratio 25.03% 17.29% 17.35%
D. Diabetic Retinopathy (DR) test case

SUSPECTS ENDEAVOUR ToppGene

Percentage of top 10% ranked target genes
Percentage of top 5% ranked target genes
Average rank ratio

63% (17/27)
44% (12/27)
17.04%

56% (15/27) 70% (19/27)
44% (12/27) 63% (17/27)
13.31% 8.60%

Comparison of ToppGene with ENDEAVOUR and
SUSPECTS

Test case |: Congenital heart disease (CHD)

We used 28 genes implicated in congenital heart disease
(CHD) (see Additional file 4 for the complete list and
comparison of relative rankings of "target" genes using
different gene prioritization approaches) as the test case
and prioritized the genes using the random-gene cross-
validation method as described in the earlier sections. In
each run, same training and test sets were submitted to
SUSPECTS, ENDEAVOUR and ToppGene manually.
Twenty-eight prioritizations were performed by each of
the three methods and the average size of the test sets was
20 genes.

Following the prioritization, the "target" genes were
ranked among the top 5% in the resulting lists 5, 4, and 7
times out of 28 (i.e., about 18%, 14%, and 25%), and in
the top 10% 9, 14 and 18 times (about 32%, 50% and
64%) with SUSPECTS, ENDEAVOUR and ToppGene
respectively. The average rank ratios of the "target" genes
were 25.03%, 17.29% and 17.35% for SUSPECTS,
ENDEAVOUR and our approach respectively (see section
C of Table 3).

Test case 2: Diabetic retinopathy (DR)

A similar comparative analysis was repeated with diabetic
retinopathy (DR) as a test case using locus-region cross-
validation as described in previous section. The training
set comprised 27 known genes implicated in DR (see
Additional file 5 for the complete list and comparison of
the relative rankings of the "target" genes using SUS-
PECTS, ENDEAVOUR and ToppGene) while the test sets
comprised genes in the locus regions of the "target" genes.

The "target" genes were ranked among top 5% in the
resulting lists 12 times out of 27 (~44%) with both SUS-
PECTS and ENDEAVOUR based gene prioritization. As
witnessed in earlier comparisons, ToppGene again out-
performed both SUSPECTS and ENDEAVOUR by ranking
the "target" genes among top 5% in 17 times out of 27
(~63%). If we considered the top 10%, surprisingly SUS-
PECTS fared better than ENDEAVOUR and was close to
ToppGene's performance. Thus, the "target" genes were
ranked among the top 10% of the prioritized gene lists 17,
15 and 19 times (63%, 56% and 70%) respectively with
SUSPECTS, ENDEAVOUR and ToppGene. The average
rank ratios of the "target" genes were 17.04%, 13.31% and
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AUC of different feature sets
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Figure 2

AUC of different feature sets. Red bars indicate the AUC scores based on each feature set, and blue bars are the correspond-
ing random controls. Yellow bars indicate the coverage of each feature set in the whole genome. For example, mouse pheno-
type (MP) has AUC score 0.78 and covers 19% of genes in the whole genome. For each feature set, the ROC curve was

generated using genes with annotations only.

8.49% for SUSPECTS, ENDEAVOUR and our approach
respectively (see section D of Table 3).

ToppGene implementation and access

The programs of our prioritization method are imple-
mented purely in JAVA. Open source JAVA package Ftp-
Bean by Calvin Tai [19] is used to automatically
download data and annotation files from Ftp servers. Bio-
Java packages [20] are used to process UniProt records
[21] and extract related protein domain information.
GOLEM [22] source code was adapted and modified for
dealing with ontology annotations. Colt [23] and Jakarta
Commons-Math libraries [24] are used for statistical anal-
ysis. The fuzzy similarity measure and related functions
are implemented locally.

Our prioritization method is available as a standalone
web application [25]. The user interface is written in JAVA
script, JSP and servlets, and integrated with the Tomcat
web server. Users can enter the training and test sets of
genes of interest as queries from the interface, and the
application will display enriched themes (based on the

GO, Pathways, Phenotype, Protein Domains, PubMed
and Protein Interactions) in the training set genes along
with annotated prioritized test genes. All the gene infor-
mation and annotation data will be updated automati-
cally except for pathways.

Discussion

Traditionally there are two categories of approaches to
compute the similarity between any two genes based on
semantic annotations: pair-based and set-based [26]. In
pair-based methods, an average or maximum of pairwise
term information content is calculated as the similarity
between the two genes. This will however cause inconsist-
ency problems. Specifically, an average of pairwise term
information content tends to underestimate the similari-
ties (e.g. two identical genes have a similarity of less than
1) while a maximum of pairwise term information con-
tent tends to overestimate the similarity (e.g. two genes
sharing one annotation term have similarity equal to 1).
On the other hand, set-based similarity measures, such as
Jaccard and Dice similarity [26], will generate O if the two
genes do not share a common annotation term. This
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ROC curves of random-gene cross-validation based on
scores. The red curve was generated using all features sets
(AUC score 0.913). The blue curve was generated without
Mouse Phenotype annotations (AUC score 0.893). The
orange curve was generated without Mouse Phenotype and
Pubmed annotations (AUC score 0.888). See text for the
definitions of sensitivity and specificity.

behavior is especially undesirable for annotation terms
from ontologies. The fuzzy-based similarity measure
adopted and applied in our approach can overcome these
problems and therefore could generate a better similarity
measure than the traditional methods.

Most of the current tools to enrich lists of genes or candi-
date gene prioritization are based on GO, gene expression
or pathways [2,4,27,28]. Previous studies have also
shown that integrating multiple lines of evidence is good
for candidate gene analysis. However, to the best of our
knowledge none of the previous candidate gene prioriti-
zation approaches used mouse phenotype features
although the mouse is a key model organism for the anal-
ysis of mammalian developmental, physiological, and
disease processes [14]. Additionally, there have been
reports wherein a direct comparison of human and mouse
phenotypes allowed for the rapid recognition of disease
causal genes (for example, ROR2 as the Robinow syn-
drome gene [16]; the phenotype of the Abcc6-/- mouse
shares calcification of elastic fibers with human Pseudox-
anthoma elasticum, PXE, pathology, caused by mutations
in human ABCC6 gene [15]). In this paper, for the first
time, we use phenotype annotations for mouse orthologs
of human genes as one line of evidence for candidate gene

http://www.biomedcentral.com/1471-2105/8/392

analysis. We are aware that comparing phenotypes
between two different organisms may involve considera-
tion of several issues. For instance, the mouse genotype
may involve mutations to orthologs of one or more of the
genes associated with a phenotype, but the mouse pheno-
type may not resemble the disease in human. Neverthe-
less, finding, for instance that targeted disruption of the
mouse ortholog of human CFC1 gene (associated with
visceral heterotaxy which is characterized by congenital
anomalies that include complex cardiac malformations
and situs inversus or situs ambiguous [29]) results in L-R lat-
erality defects including cardiac malformations [30] can
lead to novel and interesting hypotheses. Although, our
results have conclusively demonstrated the utility of
mouse phenotype data in human candidate gene analysis,
there are some inherent limitations in using mouse phe-
notype annotations. For instance, MP is not a disease-cen-
tric ontology and the phenotype of a same gene mutation
can vary depending on specific mouse strains or their
genetic backgrounds. Most importantly, orthologous
genes need not necessarily result in orthologous pheno-
types. We are currently working on a more efficient cross-
species phenome extrapolation where in the mouse phe-
notype terms are mapped to human phenotype concepts
(from UMLS [31]) semantically ("orthologous pheno-
type") and the resultant orthologous genes associated
with an orthologous phenotype are identified. How to
efficiently utilize this kind of information in human dis-
ease candidate gene prioritization is a topic of future
research.

Apart from the contribution of MP, improved perform-
ance of ToppGene over other methods can be attributed
partially to the usage of more comprehensive data
resources. For instance, unlike ENDEAVOUR, the path-
way data set in ToppGene is not limited to KEGG
resource. We compiled more than 700 additional path-
ways (associated with about 4800 human genes) from
various sources (see Methods) and used for gene prioriti-
zation.

Our approach however has some limitations. First, by
using a training set we assume that the disease genes we
have yet to discover will be consistent with what is already
known about a disease and/or its genetic basis which may
not always be the case. Second, it is important to note that
the annotations and analyses provided and the prioritiza-
tion by our approach can only be as accurate as the under-
lying online sources from which the annotations are
retrieved. Only one-fifth of the known human genes have
pathway or phenotype annotations and there are still
more than 40% genes whose functions are not defined
(see Methods). Third, using an appropriate training set -
although the difference was not significant, while cross-
validating, we noted that using larger training sets (> 100
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Table 4: Performance summary of locus-region cross-validation using different feature sets. When either MP or PubMed, or both (MP

+ PubMed) were left out, the performance dropped significantly

Features Average rank ratio Number of times "target” Number of times "target”
of "target" genes genes were ranked top 5% genes were ranked top 10%

All 7.39% 118 125

GO + MP + PubMed 7.50% 118 126

MP + PubMed 7.08% 121 126

Without GO 6.84% 117 123

Without Pathway 7.66% 118 124

Without Domain 6.71% 118 124

Without Interaction 7.17% 120 124

Without Expression 7.28% 118 128

Without MP 9.77% 110 117

Without Pubmed 9.91% 100 11

Without MP & Pubmed 22.61% 71 80

genes) would decrease the sensitivity and specificity of the
prioritization when compared to using smaller training
sets (7 to 21 genes).

Conclusion

Existing disease candidate gene prioritization methodolo-
gies mine biological and functional information about
candidate genes, and we believe that our system, Topp-
Gene, can complement these existing approaches by using
a novel method that mines mouse phenotype data. The
aim of ToppGene is to generate likely candidates by exten-
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Figure 4

The performance of locus-region cross-validation using dif-
ferent feature sets. The average rank ratio (y-axis on the left)
indicates the average rank ratio of the "target" genes in the
resulting list, thus lower value corresponding to a better per-
formance. At the same time, the higher the number of top
5% ranked "target" genes among total of 150 prioritizations
(y-axis on the right), the better the performance. As a result,
it's very clear that removing MP, PubMed or both resulted in
significant drop of performance.

sive analysis of all known characteristics of genes, and is
inevitably restricted by existing information be it GO
annotation, pathways, phenotype or gene expression
data. Through various examples, we demonstrate that
ToppGene performs better than SUSPECTS, PROSEPCTR
and ENDEAVOUR in candidate gene prioritization. How-
ever, it needs to be emphasized that our aim is not to
prove that ToppGene prioritized genes are true disease
genes but to aid in selection of a subset of most likely dis-
ease gene candidates from larger sets of disease-implicated
genes identified by high throughput genome-wide tech-
niques like linkage analysis and microarray analysis. For
the first time, we have used the mouse phenotype data in
human disease candidate gene analysis. Our results dem-
onstrate that employing the mouse phenotype data
improves candidate gene prioritization significantly and
can therefore aid in the process of focusing the search for
the most likely human disease gene candidates. Lastly, as
the functional annotations of human and mouse genes
improve, especially the mouse phenotype annotations,
we envisage a proportional increase in the performance of
ToppGene and strongly believe that it will be a valuable
adjunct to wet lab experiments in human genetics and dis-
ease research.

Methods

Data sources

We used seven data sources (6 human-related and 1
mouse-related) to prioritize the gene candidates (see Fig-
ure 5).

1. Gene Ontology (GO): Gene Ontology [32] was down-
loaded from GO web site [33]. Corresponding human
GO-gene annotations were downloaded from NCBI Ent-
rez Gene ftp site [18]. This data set contained 15,068
human genes annotated with 7,124 unique GO terms. GO
Molecular Function (GO:MF) and GO Biological Process
(GO:BP) were considered as separate features since
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On Pearson’s Correlation

Schematic representation of gene prioritization. (A) Genes in the training set are selected based on their attributes or current
gene annotations (genes associated with a disease, phenotype, pathway or a GO term). (B) Test gene source can be candidate
genes from linkage analysis studies or genes differentially expressed in a particular disease or phenotype. (C) Enriched terms of
the eight gene annotations, namely, GO: Molecular Function, GO: Biological Process, Mouse Phenotype, Pathways, Protein
Interactions, Protein Domains and Gene Expression, compiled from various data sources, are obtained for the training set of
genes. (D) A similarity score is generated for each annotation of each test gene by comparing to the enriched terms in the
training set of genes. The final prioritized gene list is then computed based on the aggregated values of the eight similarity

scores.

although they belong to the same annotation family
(GO), they have separate roots and term spaces.

2. Mammalian Phenotype (MP): MP ontology [17],
mouse gene phenotype annotations, and the correspond-
ing orthologous genes from human were downloaded
from Mouse Genome Informatics (MGI) website [34].
This data set contained 4329 human genes compiled by
extrapolating the mouse genes annotated with 4280
mouse phenotype terms.

3. Pathway: Gene-pathway annotations were compiled by
combining data from KEGG [35], BioCarta [36], BioCyc
[37], Reactome [38], GenMAPP [39], and MSigDb [40,3].
4,860 human genes had at least one pathway association
(a total of 780 pathways).

4. Protein Domains: Domain information of all gene
products was collected by parsing the UniProt human
records. This compiled gene-domain annotation data set
contains 12,454 distinct genes annotated by 10,223 dis-
tinct domains from 6 protein domain databases: InterPro
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[41], Pfam [42], SMART [43], PROSITE [44], Gene3D [45]
and ProDom [46].

5. PubMed: Gene-PubMed ID relations were downloaded
from NCBI Entrez Gene ftp site [18]. This data set con-
tained 25,294 distinct genes associated with at least one
PMID (a total of more than 142,000 PubMed abstract).
About 32% (44,806) of these papers were associated with
at least two genes.

6. Protein Interactions: The gene product interaction com-
plex relations were downloaded from NCBI Entrez Gene
ftp site [18]. This data set contained 8,040 distinct genes
from 19,714 distinct interaction complexes from 3 inter-
action databases: HPRD [47], BIND [48], and BioGRID
[49].

7. Gene Expression: Human microarray expression data
(Series GSE1133) from Genomics Institute of the Novartis
Research Foundation was obtained from the NCBI Gene
Expression Omnibus (GEO) [50]. This dataset [51] con-
tained expression values of 11,883 genes from 79 tissues
from normal adult human body. Microarray expression
CEL files were pre-processed using RMA algorithm. The
annotations were created with a custom chip description
file Hs133A_Hs_REFSEQ_8.cdf [52] to account for recent
advances in human genomics, followed by per gene
median normalization. Each gene was represented by a
vector of size 79, corresponding to the expression values
of the 79 normal adult human tissues.

Pre-processing of annotation terms

A pre-processing step was performed prior to using the
eight features for candidate gene prioritization. The infor-
mation content values of all categorical annotation terms,
namely, GO:MF, GO:BP, MP, Pathways, Protein
Domains, PubMed, and Protein Interaction annotations,
were calculated. The information content (gi) of annota-
tion term T; of a gene was defined in the following way:

i_ —In(p(T;))
max  {~In(p(T}))}

-
all Tj in the taxonomy

where

count(occurrence of T; and children of T; in case of ontological annotation)

nh)= - -
! count(occurrence of all terms in the same annotation set)

Processing of training set genes

The training process was to create a representative profile
of the training genes based on all the 8 annotations (fea-
tures). For categorical gene annotations this process was
to identify the over-representative terms from the training
genes. Hypergeometric distribution with Bonferroni cor-
rection was used as the standard method. For numeric

http://www.biomedcentral.com/1471-2105/8/392

gene annotation, i.e. microarray expression levels, the
training process generated the average (a vector of size 79)
of all the training genes.

Similarity measure

Again different methods were used for similarity measures
of categorical and numeric annotations. Fuzzy measure-
based similarity measure was applied for categorical
terms. The following part explains the method in detail.

If G = {Ty,..., T,} denotes the set of annotation terms of a
gene, a Sugeno fuzzy measure, g, is a real valued function
g: 26— [0, 1], satisfying

1) g(®)=0and g(G) =1,
2) g(A) <g(B) if A =B, and
3)ForallA, Bc GwithANB=9,
8(A U B =g(A) + g(B) + Ag(A)g(B) for some 4 > -1.
For a given gene annotation set G, the parameter 4 of its

Sugeno fuzzy measure can be determined uniquely by
solving the following equation:

n .
A+1)=JJ(+1g") forl>-1.
i=1
where giis the fuzzy density of term T, or the information
content obtained in the pre-processing step, and n is the
number of terms in G.

Fuzzy measure-based similarity (FMS) of two sets G, and
G, of annotation terms is defined as

81(G1NGy)+82(G1 NGy)
2 7

Sems(Gr, Gy) =

which can be derived based on the values of 4, and 4,
determined using equation (3). For ontological terms, the
augmented FMS (AFMS) was used to account for the hier-
archical structure of ontology annotations.

LG NG+ 83 (1G NG
SAFMS(G1,G2):g1 (G NGy )282([ 1N Gy )’

where [G1 N G,]* = [G1* N G,*] =[G G, U {Ty;, Ty},
Gyt = G U {Tyy, Ty}, Gyt = Gy U {Tyy, Ty}, and {Tyy, Ty}
denotes the set of most specific common ancestors of
every pair of terms (T,; T)) from G, and G,. This ensures
for two genes annotated by ontological terms, even
though they don't share common terms, the similarity
measure is > 0 (See Popescu et al [26] for additional
details). For numeric annotation, i.e. the microarray
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expression values, the similarity score was calculated as
the Pearson correlation of the two expression vectors of
the two genes.

Processing of the test set genes

In this step, each of the genes from the test set was com-
pared to the representative profile of the training set. As
described earlier, the training profile contained the over-
represented terms from the training genes for all categori-
cal annotations and the average vector for the expression
values. For a test gene, a similarity score to the training
profile for each of the eight features was derived using the
methods mentioned in the previous section. The test gene
was then summarized by the 8 similarity scores. In case of
missing value (for instance, lack of one or more annota-
tions for a test gene), the score was set to -1. Otherwise, it
is a real value in [0, 1].

In order to combine the 8 similarity scores into an overall
score, we applied a statistical meta-analysis. A p-value of
each annotation of a test gene G was derived by random
sampling from the whole genome. The p-value of similar-
ity score S; was defined as:

count of genes having score higher than G in the random sample

p(Si) =

count of genes in the random sample containing annotation

Fisher's inverse chi-square method, which states that

n
2Zlog b — )(2(2") (assuming p;'s come from independ-

i=1
ent tests), was then applied to combine the p-values from
multiple annotations into an overall p-value. Since the p-
values of GO:MF and GO:BP were highly correlated, a sin-
gle p-value was generated by taking the p-value of the aver-
age of GO:MF and GO:BP scores in the random sample. A
pairwise Pearson correlation test result of the p-values is
shown in Additional file 6. The final similarity score of the
test gene was then obtained by 1 minus the combined p-
value. We used random sampling to estimate the p-values
because the density functions of the similarity scores were
not easy to estimate, and although this process increased
the computation time, for a reasonably large random
sample the p-values were fairly stable.
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Additional material

Additional file 1

Comparison of ToppGene with other prioritization approaches — Work-
flow. This figure shows the details of the comparisons we performed to
evaluate our approach with respect to other similar gene prioritization
approaches.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S1.doc]

Additional file 2

List and ranking of genes in the 19 disease training sets used for valida-
tion. This file has the list of genes in the 19 disease training sets (randomly
derived from Genetic Association Database, GAD and Online Mendelian
Inheritance in Man, OMIM) used for validation along with the ranking
of the "target" genes in random cross-validation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S2.doc]

Additional file 3

List and ranking of "target" genes in locus-region cross-validation using
different feature sets. This file has the details of the ranking of the "target"
genes in locus-region cross-validation using different gene feature sets.
When MP or PubMed annotations were excluded in the prioritization, the
prioritization performance dropped significantly.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S3.doc]

Additional file 4

Comparison of relative rankings of "target" genes of congenital heart dis-
ease using SUSPECTS, ENDEAVOUR and ToppGene. The data provided
represent the ranking results of "target" genes of congenital heart disease
using SUSPECTS, ENDEAVOUR and ToppGene applications.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S4.doc]|

Additional file 5

Comparison of relative rankings of "target" genes of diabetic retinopathy
using SUSPECTS, ENDEAVOUR and ToppGene. The data provided rep-
resent the ranking results of "target" genes of diabetic retinopathy using
SUSPECTS, ENDEAVOUR and ToppGene applications.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S5.doc]

Additional file 6

Pairwise Pearson correlation test result of the p-values of all the 7 features
used for candidate gene prioritization. This figure shows the pairwise
Pearson correlation test result of the p-values of all the features used for
candidate gene prioritization.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-392-S6.doc]
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