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Abstract
Background: The set of extreme pathways (ExPa), {pi}, defines the convex basis vectors used for
the mathematical characterization of the null space of the stoichiometric matrix for biochemical
reaction networks. ExPa analysis has been used for a number of studies to determine properties of
metabolic networks as well as to obtain insight into their physiological and functional states in silico.
However, the number of ExPas, p = |{pi}|, grows with the size and complexity of the network being
studied, and this poses a computational challenge. For this study, we investigated the relationship
between the number of extreme pathways and simple network properties.

Results: We established an estimating function for the number of ExPas using these easily
obtainable network measurements. In particular, it was found that log [p] had an exponential

relationship with , where R = |Reff| is the number of active reactions in a

network,  and  the incoming and outgoing degrees of the reactions ri ∈ Reff, and ci the

clustering coefficient for each active reaction.

Conclusion: This relationship typically gave an estimate of the number of extreme pathways to
within a factor of 10 of the true number. Such a function providing an estimate for the total number
of ExPas for a given system will enable researchers to decide whether ExPas analysis is an
appropriate investigative tool.

Background
Extreme pathways (ExPas) of a metabolic network are the
irreducible set of vectors that define the basis of the null-
space of the network's stoichiometric matrix. Every allow-
able solution to the flux balance equations of a reaction
network in steady state, S·ν = 0, can be represented as a
non-negative linear combination of the extreme pathway
vectors. ExPas are biochemically and thermodynamically

feasible pathways that transform a selection of the given
substrates to a selection of allowable products. ExPas have
been extensively used for the analyses of metabolic net-
works (see, for example, [1-5]). Typically, such analyses
used ExPas to define possible phenotypic states of meta-
bolic networks under different simulation conditions, to
identify network redundancy, and to reveal eigenpathways
that effectively characterize all relevant physiological
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states of a metabolic network. Modified versions of ExPa
analyses have also been applied to regulatory networks
[6,7] and signaling pathways [8]. Such applications are
still in their infancy and are important research topics.
However, as the size of a network increases, the redun-
dancy of the network, that is, the number of different
pathways that transform given substrate(s) to given prod-
uct(s) [9,10], becomes more apparent, and the number of
ExPas increases rapidly. Redundancy also exists in small
systems but this can be easily handled and even provide
insights to legitimate alternative pathways. As the number
of ExPas increases at a drastic rate, performing insightful
analyses using ExPas become increasingly difficult.

The fact that the set of ExPas of a biochemical reaction net-
work defines the boundaries of its convex steady-state
solution space makes them a valuable tool for metabolic
network analysis. Further, they emphasize alternative
pathways that exist in a network, which may otherwise be
overlooked, and that can enrich the understanding of its
possible physiological states. However, the increasing
details included in reconstructed metabolic networks lead
to the combinatorial explosion of the number of ExPas
and their computation time. A method providing a good
estimate for the final number of ExPas for a given system
will enable researchers to decide whether ExPas analysis is
a appropriate tool for their objectives.

Another method often used for characterizing the steady-
state solution space for a biochemical reaction network is
known as Elementary Modes (EMs) [11]. Both ExPa and
EM analyses require the resulting solution vectors to be
non-decomposable and unique. In addition, ExPa vectors
are required to be systemically independent [12]. As a
result, ExPas for a system are a minimal set of EMs, and
the number of ExPas is less than or equal to the number
of EMs. Since both ExPas and EMs are biochemically and
thermodynamically feasible pathways, the number of
these pathways cannot be estimated using traditional
graph theoretical algorithms, such as the Dijkstra's algo-
rithm [13], for finding all shortest paths.

The combinatorial complexity of Elementary Modes of a
network was previously described by Klamt et al. [14] by
providing an upper-bound for the number of EMs. In
their work, the authors considered the following combi-
natoric problem: given a network with n reactions and m
metabolites, the maximal number of independent path-
ways occurs when each possible subset of the reactions
consisting of the m metabolites are independent. This

maximal number was found to be . They further

improved the upper-bound by removing those reactions

that were not utilized (redundant reactions) in the condi-
tion-specific models of the network. Klamt et al. generated
5 models of the E. coli reconstruction, which yielded 599
to 507632 elementary modes. The upper-bounds for these
models ranged from 5.57 × 1017 to 4.39 × 1021, which
were subsequently reduced to 1.67 × 1011 to 4.85 × 1013

after removing redundant reactions identified using Flux-
Analyzer. Despite an improvement of a factor of 6 to 8,
when comparing the upper-bounds to the actual number
of EMs calculated for the models, they typically overesti-
mated by approximately 6 × 109% [14]. Although their
work dealt with EMs, the problem was constructed as a
purely combinatoric problem. Therefore the same reason-
ing can be directly applied to Extreme Pathways.

In this study, we investigated the relationship between the
number of ExPas for a given network, p = |{pi}|, and its

basic network measurements. Several network measure-
ments are commonly used in describing the topological
features of a network and include connectivity, clustering
coefficient, network diameter, and degree distribution
[15]. The number of ExPas for a network can vary dramat-
ically under different simulation conditions, that is, differ-
ent environmental constraints. Consequently, basic
network information such as the numbers of reactions
and metabolites of the network cannot be solely used to
provide a meaningful estimate. Since ExPas are connected
reactions, we hypothesized that the higher the reaction
connections, the larger the number of ExPas. Based on this
hypothesis, we demonstrated an exponential relationship

between log [p] and , where R = |Reff|

is the active (or effective) reactions in the network, 

and  are the incoming and outgoing degrees of a reac-

tion, and ci is the clustering coefficient for each active reac-

tion. This relationship typically gave an estimate of the
number of ExPas to within a factor of 10. Since these net-
work measurements can be calculated quickly and easily
for any sized network, an estimation of ExPa numbers can
be readily obtained as this serves as an assessment of the
feasibility of ExPas as an analysis tool.

Results
The number of extreme pathways (ExPa), p = |{pi}|, for a

metabolic network increases drastically with the complex-
ity and size of the network. An estimate for p for a given
network can help one decide whether ExPa analysis is a
feasible tool for one's research objective. In this study, we
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investigated the relationship between p and a number of

factors, θi, formed by simple network measurements such

as the incoming and outgoing degree of reactions, d(ri) =

, and clustering coefficient of each reaction, c(ri) = ci.

These measurements were chosen as they could be calcu-
lated quickly and easily, and their definitions can be
found in the sections titled 'Reaction Connectivity d±(ri) =

' and 'Reaction Clustering Coefficient ci = c(ri)', respec-

tively. A total of 52 models, generated from 6 recon-
structed metabolic networks by altering environmental
conditions, were used to determine a relationship

between p and θi. The ExPas and corresponding network

measurements for these models were calculated and used
to identify possible estimating functions. Analyses on
logged data (the logarithmic values of the data) revealed

an exponential relationship between log [p] and log [θi]. A

total of 4 estimating functions using two factors were
obtained, which were then tested for robustness using an
additional 16 models. The numbers of ExPas for most of
these models were successfully estimated to within a fac-
tor of 10. We concluded that it was possible to formulate
an estimating function for the number of ExPas of a
model, p', that typically falls within a factor of 10 of the
actual number of ExPa.

Identification of Significant Contributing Factors

We aimed to identify factors that can be used for establish-
ing appropriate estimating functions. Desirable factors
must be i) easily obtained and ii) specific for a given
model. For example, network measurements such as the
incoming and outgoing degrees of each reaction, d(ri) =

, their clustering coefficients, c(ri) = ci, as well as the

number of external metabolites and their degrees can be
obtained quickly. In addition, we required factors to be
highly correlated to the number of ExPas and, further-
more, increased in values consistently with p to avoid mis-
representation due to incomparable ranges. The network
measurements used in this study are detailed in the 'Net-
work Measurements' section.

A number of potential factors for the estimating functions
were formed using the aforementioned network measure-
ments (Table 1). The correlations of these potential fac-
tors and p were evaluated using the Pearson's product-

moment correlation, r, and Spearman-rank correlation, ρ.
The Pearson's correlation is generally used as an indicator
for the strength and direction of a linear relationship and
is considered to be robust enough to handle non-para-
metric data. On the other hand, the Spearman's correla-
tion describes the monotonic relationship between two
variables without making any assumptions about the fre-
quency distribution of the variables. We used both of
these correlation coefficients on the original and logged
data to avoid misinterpretation due to the wide ranges of
data (Table 1). For the original data, the factor with the
highest Pearson correlation before was found for

, where R = |Reff| is the number of

active reactions in the network. In contrast, after data-log-
ging, the strongest correlation with p was found for

. The correlation between these two fac-

tors themselves were extremely high (~0.992176). In
addition, both factors had the second highest Spearman
correlations with p. Furthermore, these two factors also
had ranges comparable to that of the number of ExPas.
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Table 1: Identification of Potential Contributing Factors

R * ∑(d+d-) ∑c * ∑(d+d-c)

r Pre-log 0.459 0.656 0.509 0.666 0.6 0.0178 0.62 0.135 0.604 0.408
r Post-log 0.827 0.875 0.764 0.870 0.860 0.343 0.856 0.426 0.561 0.623

ρ 0.841 0.876 0.943 0.876 0.855 -0.059 0.845 0.478 0.496 0.603
Range Min 8 15 5 2 1.67 0.09 0.06 2 2 6

Max 174 89132 35.08 5781.73 665.38 0.9 47.78 25 47 414

A good factor for an estimating function must have a high correlation to that is being estimated. We further required that the factor must grow 
consistently with the number of ExPas. The rows labelled 'Pre-' and 'Post-' Log show the Pearson's correlations, r, between the number of ExPas and 
the corresponding factors. These factors were created using the following basic networks measurements: R = Reff the number of active reactions 
given the environmental conditions, d± = d±(ri) the incoming/outgoing connectivity of reaction ri, c = c(ri) the clustering coefficient of the ith reaction, 

 the set of input reactions, and  the set of output reactions. Both Pearson's and Spearman's Rank correlation coefficients, r and ρ were used a 
guide to identify reliable contributing factors. Given this information, the final chosen factors are emphasized by an asterisk (*).
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Despite the fact that the factors θ1 and θ2 are so closely cor-

related, both of these factors were used to create estimates
utilizing single factors in the following section.

Single Factor Estimate

The factors identified in the previous section, namely

 and  were used to

formulate estimating functions for the number of extreme
pathways, p. Preliminary analyses showed that the rela-

tionships between log [p] and log [θj], j = 1, 2, were non-

linear (Figure 1 and Figure 2). In particular, the expression
found to best describe these relationships had the form

where  is the estimated number of ExPas for a given

model k, θj, k are the values of the factors θj, j = 1, 2 for the

kth model, and Rk is the number of active reactions in

model k. The estimating functions were formulated using

the factors θj solely (case i = 1) and by scaling these factors

with  (case i = 2). For the former, the parameter ω1 had

the value 0. For the latter case, ω2 was the optimal value

for which the highest Pearson's correlation between log

[p] and log [ ] could be obtained using the two different

factors. This number was found to be the same for both

factors and had the value ω2 = 2.124857. The parameters

αi, j, βi, j, and γi, j take on different values for the four esti-

mating functions fi (θj), which are detailed in the follow-

ing subsections 'Estimation Using θ1' and 'Estimation

Using θ2'.

Estimation Using θ1

Using factor , the following estimating

function was obtained when ω1 was applied:

and with ω2:

The fitted curves given by Equations (2) and (3) are
shown in Figure 1. The Pearson's correlation was
0.883439 for the function given by Equation (2), whereas
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Relationship between the Number of ExPas and Factor Figure 1

Relationship between the Number of ExPas and Factor . Graphs displaying the two relationships 

derived from the factor . It was observed that θ1 had an exponential relation to p as shown in (i). The use 

of Rω as a scaling factor was found to improve the fit of the data (ii).
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that given by Equation(3) resulted in a better fit, with cor-
relation being 0.900704 and reduced mean absolute- and
root-mean-square errors (Table 2). The overall perform-
ance of this estimator was evaluated. It was found that the
number of ExPas for most of the models (47 out of 52)
could be described to within a factor of 10 using the esti-
mating functions, while those that could not tended to be

over-estimated (Table 2). The inclusion of the factor 
led to better fits between the estimating function and the
training data and reduced average errors.

Estimation Using θ2
Using the second factor, θ2, the estimating functions with
and without scaling had the respective forms

and

The relationships between log [p] and Equations (4) and
(5) are displayed in Figure 2. In this case, the Pearson's
correlation before the inclusion of Rω was 0.887057, and
was improved to 0.898332 after scaling.
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Table 2: Fit of Training Data to Estimating Functions

Fit of Factors Over-Estimation Under-Estimation

Factor Correlation r m.a.e. r.m.s. Max. Value Members>1 Min. Value Members<1

θ1 = ∑d+d-c 0.883439 0.407565 0.539834 1.512650 5 -1.138180 1
θ1 = ∑d+d-

†0.887057 0.406882 0.544633 1.585230 3 -1.071100 1
Rωθ1

‡0.900704 0.383868 0.512515 1.629060 3 -0.918259 0
Rωθ1 0.898332 0.381380 0.518272 1.674300 3 -0.963172 0

This table summarizes the statistics describing the relationships between the four different estimations fi(θj) and the 52 data points. The results 
show that the two factors θ1 and θ2 allowed better estimations when the scaling factor Rω was included. The top two rows and the bottom two 
rows of the table, respectively, represent the factors before and after scaling by the factor Rω. The cells with the highest Pearson's correlation, r, 
before and after scaling are emphasized with † and ‡, respectively.

Relationship between the Number of ExPas and Factor Figure 2

Relationship between the Number of ExPas and Factor . Similar to Figure 1, it was observed that 

 also had an exponential relation to log [p] (i), which could be improved if scaled by Rω (ii).
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Similar to the case for θ1, the errors were reduced after
scaling (Table 2). The unscaled estimating function, Equa-
tion (4), again, described most of the models (48 out of
52) to within a a factor of 10 with respect to the actual
ExPa numbers (Table 2). The inclusion of the scaling fac-
tor resulted in less outliers, a better correlation and
reduced errors (Table 2).

Performance of Estimations Functions
The performance of the estimating functions (2–5) was
tested using an additional 16 models. These models were
reduced but functional models of the central metabolism
derived from reconstructed metabolic networks of 3 dif-
ferent organisms, namely H. pylori [3], M. barkeri [16], and
H. influenzae [1]. All four estimating functions successfully
predicted 9 out of the 16 test models (56%) to within a
factor of 10 (Figure 3). For all four estimating functions,
the number of ExPas of seven models were overestimated
by a factor greater than 10 while none were under-esti-
mated beyond that factor. In particular, the estimating

function f2(θ1) yielded the smallest error range for all
models. The 16 test data points had the highest correla-
tion with f2(θ1), as did the 52 data points used for its for-
mulation (Table 3). We concluded that the estimating
function f2(θ1) can typically successfully estimate the
number of ExPas of a metabolic network to within a factor
of 10.

Consideration of Other Network Measurements

During the development of these estimating functions,
other factors such as the degrees of exchange metabolites
were considered. In the case of exchange metabolites, the
correlation of the sum of the degrees of all input metabo-

lites,  was found to have a low corre-

lation (< 0.5) to the number of extreme pathways, both
before and after the data was logged. The correlation for

output metabolites, , however, was

D d min ii
M= −
=

−

∑ ( )| |
1

D d mout ii
M= +
=

+

∑ ( )| |
1

Comparison of Test Models to the Estimating FunctionsFigure 3
Comparison of Test Models to the Estimating Functions. Figures displaying the relationships amongst the test data 
points and the four estimation functions given by equations (2), (3), (4) and (5). These are shown in (i), (ii), (iii) and (iv) respec-
tively. The red lines in each case are given by fi(θj) ± 1 and indicate the boundaries of the regions that are within a factor of 10 
of the respective estimations.
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found to have a high correlation (> 0.5) to p. Their prod-
uct, Din·Dout, had correlations of 0.408543 and 0.638261

before and after the data was logged. A similar situation
existed for the number of effective reactions R, which had
a low and high correlation before and after the data was
logged. By inspection, a relationship in the bform of
Equation (1) could have been established for R. However,

the range of R did not grow as consistently as θ1 and θ2. As

an example, for one H. pylori model, 174 effective reac-
tions resulted in 204,412 extreme pathways, whereas for
the Mitochondria model with the reaction SUCD3-u10 m
removed, 174 effective reactions only produced 4209
ExPas. This then led to the conclusion that R alone was
not an appropriate factor of estimation. The fact that the

factor θ1 grows consistently with p may have over-shad-

owed the importance of these factors.

Discussion
The goal for this study was to produce an estimating func-
tion using basic network measurements. Specifically, we
aimed to obtain a function such that only a single factor is
used for estimation. In principle, it was possible to use a
multivariate (polynomial) regression method using a
number of the factors described in the section 'Identifica-
tion of Significant Contributing Factors'. However, the
independence assumption upon which this method is
based was not applicable as the factors themselves tend to
be highly correlated. Furthermore, it would have been dif-
ficult to interpret which factors were truly responsible for
the increase in p, and would probably lead to inaccurate
estimations in test models. Here, the most descriptive fac-
tor was θ1, which includes the clustering coefficients. The
interpretation of the clustering coefficient used in this
study is also often used in sociology and biochemical net-
works (see, for example, [15,17]). There are other inter-
pretations of the clustering coefficient, such as that
described by Soffer et al. [18]. Their definition eliminates
degree-correlation biases, thus, quantifying the connectiv-
ity amongst the neighbors of a vertex independent to its

degree and the degree of its neighbors. It would be inter-
esting to use a similar definition for directed graphs and
investigate its effects on ExPa estimation. Additionally, it
is possible that other factors may provide a more accurate
estimation for the number of ExPas. However, these fac-
tors may only be found by detailed analyses of network
structures.

The estimating function given by Equation (3) typically
estimated the number of ExPas of the test models to
within a factor of 10. In cases where it failed, it did not
under-estimate the number of ExPas. The version of the E.
coli reconstructed network used by Klamt et al. [14] was
not elementally- and charge-balanced and has since been
replaced by updated versions [19,20]. We used a revised
version iJE660a, which was found to be the closest to what
they used, and is publicly available [19,21], to compare
our method with Klamt's. When the estimating function
was applied to this version, assuming that all reactions
were active concurrently, 7 × 1012 ExPas were estimated
with our method, whereas Klamt's method yielded an
upper-bound of 5 × 1013 after disregarding inactive reac-
tions in the unbalanced and smaller model. Given that
iJE660a has 41 more reactions and all the reactions are
elementally- and charge-balanced, we are confident that
our estimating function can also serve as a conservative
upper-bound of the number of ExPas after some adjust-
ments. For larger networks such as the latest published
reconstruction of E. coli consisting of 904 cited reactions
[20], we estimate 3 × 1018 ExPas, The Human recon-
structed network with 3311 reactions [22] is predicted to
have 1029 ExPas when all reactions were active concur-
rently.

Conclusion
In this study, we investigated the possibility of estimating
with confidence the number of extreme pathways (ExPa),
p, for metabolic networks. Our effort concentrated on the
use of simple network measurements, namely the incom-

ing and outgoing degrees,  and the clustering coeffi-d
i∓

Table 3: Fit of Test Data to Estimating Functions

Fit of Factors Over-Estimation Under-Estimation

Factor Correlation r m.a.e. r.m.s. Max. Value Members>1 Min. Value Members<1

f1 (θ1) 0.893058 0.956777 1.042668 1.513670 7 -0.785898 0
f2 (θ1) *0.894445 0.806018 0.919502 1.353102 7 -0.765522 0
f1 (θ2) 0.864965 0.891715 1.004652 1.501480 7 -0.851316 0
f2 (θ2) 0.876409 0.777881 0.897856 1.401680 7 -0.808617 0

Table detailing the relationships between the 16 test data points and the four estimating functions. Although all four functions failed to predict 7 
models to within a factor of 10 of their actual number of ExPas, the function f2 (θ1) had the least range for over- and under-estimation. Rows 
representing information of estimating functions using factors θ1 and θ2, respectively, in the top two and bottom two rows. The cell corresponding 
to the highest correlation, r, is emphasized by an asterisk (*).
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cients, ci, for each of the active reactions, ri ∈ Reff. In

particular, it was found that log [p] was correlated to the

factors  and  with an

exponential relationship. These factors can be calculated
quickly and easily, and were found to increase in values
consistently with p. The resulting estimating functions, in
particular that given by Equation (3), typically estimated
the number of ExPas to within a factor of 10. Therefore we
are confident that these estimating functions are scalable
and can be reliably applied to larger networks. These esti-
mating functions will therefore enable researchers to
decide whether ExPa analysis is an appropriate investiga-
tive tool for their objectives.

The set of extreme pathways is the convex basis used for
biochemical characterization of the null-space of the stoi-
chiometric matrix for a biochemical reaction network.
ExPa analyses have typically been used to characterize
phenotypic states of metabolic networks and identify net-
work redundancy. Beyond these uses, the singular value
decomposition of the extreme pathway matrix has been
used to identify eigenpathways that are capable of charac-
terizing phenotypic states of a system [23,24]. Neverthe-
less, applications such as these require ExPas to be
calculated prior to any analysis. The number of ExPas is
set to increase dramatically with network size and com-
plexity. In particular, with the increase in details of meta-
bolic network reconstructions and the emergence of
reconstruction of global transcription/translation net-
works, new techniques for calculating and analyzing
ExPas are much needed. Since the goal of systems biology
is to study an organism as a whole, different types of bio-
chemical networks will eventually be combined so that
the system can be studied in its entirety. To over-come
future computational challenges as well as being
equipped with the necessary analytical techniques should
become our immediate goal.

Methods
Basic Concepts and Notations
Hypergraph

We introduce some basic concepts and notations that will
assist us in describing the measurements needed. We first
note that a metabolic network can be described as a
directed-hypergraph, where a node represents a metabo-
lite and an edge a reaction. The stoichiometric matrix, S,
can thus be seen as a node-edge incidence matrix. A
directed-hypergraph (V, E) consists of nodes (vertices)

v ∈ V and edges e ∈ E. Let the matrix S be the node-edge
incident matrix such that si, j < 0 if node vi is at the tail of

edge ej, si, j > 0 if vi is at the head of ej, and si, j = 0 if ej does

not contain vi. We define the set of nodes v that are tails

(heads) of edge r to be T(e) (H(e)). It can easily be seen

that T(e) ∩ H(e) = ∅.

Reaction Adjacency and Neighbourhood Matrices Â, 
The adjacency matrix contains information about whether
one reaction 'goes into' another. Using the notation intro-
duced in the 'Hypergraph' section, two reactions ri and rj

are adjacent if H(ri) ∩ T(rj) ≠ ∅ or H(rj) ∩ T(ri) ≠ ∅, that

is, the intersection of the set of outputs of reaction ri and

the set of inputs for reaction rj is non-empty, or vice versa.

In particular, we say ri 'goes into' to rj if H(ri) ∩ T(rj) ≠ ∅.

The adjacency matrix Â is constructed from the stoichio-
metric matrix S by partitioning S into two digitized com-

ponents Ŝ+ and Ŝ-, where  if si, j > 0 and  if

si, j < 0. Let S be an n × m matrix. The adjacency matrix for

the reactions is then given by

The elements of the adjacency matrix  = 1 if and only

if there exists an metabolite mk such that sk, i > 0 and sk, j <

0; i.e. reaction ri 'goes into' reaction rj. In terms of the

matrix Â, two reactions ri and rj are adjacent if either 

or  is non-zero, which is in agreement with the above

definition.

Reactions ri and rj are said to be connected if any of H(ri) ∩
T(rj), T(ri) ∩ H(ri), H(ri) ∩ H(rj) or T(ri) ∩ T(rj) is non-
empty. The neighbourhood matrix is given in the form

where  if si, j is non-zero and 0 otherwise, and

 iff ri and rj are connected.

Network Measurements
Effective Number of Reactions R = |Reff|
For any models of a reconstructed network, redundancy in
terms of reactions that are not utilized is often expected.
This is due to the fact that, for any specific model, there is
a set of reactions that is not used under the specific simu-
lation conditions, and therefore can be removed from the
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network without affecting the model's function. Extreme
pathways are classified into 3 types, with Type-I being
those that have exchange fluxes across the system bound-
aries that correspond to non-currency metabolites [25].
Here, we denote the set of reactions that are present in at
least one Type-I ExPas by R = |Reff|. This number can be
obtained by optimization techniques such as Flux-Bal-
ance Analysis [26] using tools such as SimPheny by Geno-
matica or FluxAnalyzer [27].

Reaction Connectivity d±(ri) = 

Having identified the set of reactions from a reconstruc-
tion that are active in a model, the stoichiometric matrix
S can then be reduced by removing inactive reactions and
metabolites. The connectivity (degree) of each active reac-
tion can then be calculated. Since S can be considered the
node-edge incidence matrix for a directed-hypergraph, it
is more appropriate to consider the incoming and outgo-
ing metabolites separately. The adjacency and connectiv-
ity between each pair of reactions can then be described in
terms of the definition given in the section titled 'Reaction

Adjacency and Neighbourhood Matrices Â, '. The
number of reactions that produce at least one product
which is consumed by reaction ri gives rise to the quantity

 = di(ri), and the number of reactions that consume

one or more of the products of ri is defined by the quantity

 = d+(ri).

From Figure 4, it can be seen that the number of possible

pathways through a given reaction ri is given by .

It is tempting to conclude that the number of pathways

calculated is given by . However, this

would be similar to the number derived in [14], which
typically over-estimated the number of elementary
modes, of which the set of ExPas {pi} is a subset, by a fac-

tor of 6 × 107. Here, we instead looked into the relation-
ship between p = |{pi}| and the sum of these terms to

avoid such an overestimation.

Reaction Clustering Coefficient ci = c(ri)

A metabolic network is described by the stoichiometric
matrix S. This S-matrix can be seen as a node-edge inci-
dence matrix for a directed hypergraph. However, the
clustering coefficient for a hypergraph is not well defined.
Since we are interested in how the reactions are con-
nected, we can use the adjacency matrix, Â, which con-
tains the node-node (reaction-reaction) information of

the network, where  ≠ 0 if vertex vi is adjacent to vj, i.e.,

reaction i goes into reaction j (see Figure 5). In this config-
uration, we can then calculate the clustering coefficients
for each active reaction using the usual equation

where ki is the number of reactions that ri is connected to,

i.e., ki is the number of non-zero elements of the vector 

of the matrix . The set {ep, q} denotes the set of edges

going from rp to rq with both rp and rq being connected to

ri, i.e., rp and rq are connected to ri and are themselves adja-

cent. The denominator is the number of all such possible
edges for a given ri. Note that since we are dealing with a

directed graph, ep, q is not the same as eq, p. Alternative path-

ways from one set of substrates to one set of products
almost always exist in biological networks, especially in
metabolic networks. Figure 6 shows that non-zero cluster-
ing coefficients are related to alternative routes, and could
then be an important factor for determining the number
of extreme pathways calculated.

Reconstructed Networks and Simulation Conditions
Reconstructed metabolic networks of H. pylori [3], Human
Cardiac Mitochondria [4], the Human Red Blood Cell [5],
and the core E. coli [28] network were used in this study.

d
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Connectivity of ReactionsFigure 4
Connectivity of Reactions. Diagram describing different 
types of connectivities. Reaction ri utilizes metabolite A, 
which is produced by three reactions, and produces metabo-
lite B, which is consumed by three reactions. Reaction ri then 
has an incoming degree of d-(ri) = 3 due to metabolite A, and 
outgoing degree of d+(ri) = 3.
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These networks are all mass- and charge-balanced, and
were all tested on SimPheny (Genomatica) for the ability
to produce biomass constituents. Furthermore, older ver-
sions of published, available networks that were used for
extreme pathway and flux-balance analysis, which may
not be completely balanced, were included in this study.
This selection of networks represented a spectrum of com-
plexity. Elementary network measurements, the number
of generated models, and the source of each of these net-
works are detailed in Table 4.

A total of 52 models were used from these networks. Most
of these models were used to test for production of prod-
ucts given a specified substrate along with core exchange
metabolites. The remaining 9 models included single-
reaction deletions and/or the request for specific demand
metabolites given a combination of primary substrates.

The specific environmental conditions of these models are
listed in Table 5, along with the names of abbreviated
metabolites in Table 6.

A total of 16 functional models from 3 different organ-
isms were used to test the validity of estimations formu-
lated in the section 'Single Factor Estimate'. The networks
used were 2 reduced versions of H. pylori, one consisting
of 168 reactions and 170 metabolites, the other with 48
reactions and 65 metabolites. Reduced versions of the net-
works of M. barkeri [16] and H. influenzae [1] were also
used. These consisted of 84 and 61 reactions and 121 and
83 metabolites, respectively. These networks are similar to
the core E. coli model, with each reaction being mass- and
charge-balanced. They were also tested for the production
of biomass using SimPheny and hence are functional sys-
tems.

Relationship between Reactions with Non-zero Clustering-coefficient and Alternative RoutesFigure 6
Relationship between Reactions with Non-zero Clustering-coefficient and Alternative Routes. Diagram showing 
relationship between non-zero clustering coefficients and alternative pathways. (i) shows three possible routes for a simple sys-
tem; (ii) is the non-directed representation of this system using the above projection. The system has non-zero clustering coef-
ficients, emphasizing alternative routes are possible; (iii) is the projection conforming to that shown in Figure 5, where non-
zero clustering coefficient is found for 5 of the reactions that are involved in the branching points of alterative routes.

Projection from Directed Hypergraph to One-mode GraphFigure 5
Projection from Directed Hypergraph to One-mode Graph. Projection from directed hypergraph to one-mode graph, 
where the hyperedges on the left-hand side become the nodes of the the graph on the right-hand side. A thick black arrow in 
the graph on the right signifies an edge ri is adjacent to rj, whereas a thin blue line signifies two edges connected that are not 
adjacent.
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Table 4: Basic Information of Models Used

Network # Rxns Reversible # Mets Models Used Source

H.pylori 479 166 485 13 [3]
Mitochondria 200 92 238 16 [4]
Core E.coli 62 35 63 9 [28]

Central E.coli 56 19 62 2 [30]
Toy E.coli 50 37 53 4 [31]

Red Blood Cell 32 17 39 8 [5]

Simple measurements, statistics and sources of the models used in this study.
Table 5: Environmental Conditions of Models. Table detailing the models used for estimation formulation, along with their 
environmental conditions.

Core Metabolites Core Metabolites Specification

Organisms Name Type Inputs Outputs Free

H. pylori co2 Free Ac ac mal-L Single Input along with core 
metabolite, allowing all outputs 
(unless specified as input only)

fe2 Free acac akg orn
fe3 Free ad asp-L phe-L
h2o Free ade acald pro-L
h Free akg etoh pyr

nh4 Free etoh fum ser-L
pi Free fum glu-L succ

so4 Free gsn gsn thr-L
o2 Free lac gua trp-L

mal h2co3 tyr-L
pyr hxan urea
succ lac-L
urea lys-L

Mitochondria co2 Free arachd atp glu-L Single Input along with core 
metabolite, allowing all outputs 
(unless specified as input only)

h Free bhb pheme gly
h2o Free crvnc phs-L glyc
fe2 Input glc-D 12dgr_m glyc3p
o2 Input glu-L acac hdca
pi Input hdca arachd lac-L

urea Output lac-L bhb ocdca
ocdc All coa ocdcea
ocdca crvnc ocdcya
ocdcea cys-L pheme
ocdcya glc-D ps_m

Mitochondria co2, h, h20 fe2, fe3, 
o2 urea

Free acac atp 12dgr_m (1) Single K/O of: CYOOm3, 
SUCD3-u10m

Input arachd lac-L coa
Output Bhb pheme cys-L

crvnc phs-L glu-L (2) Individual Request for: atp, phs-L, 
pheme

glc-D gly
glyc ps_m

glyc3p
hdca
ocdca
ocdcea
ocdcya

E. coli Core co2 Free ac ac Single Input along with core 
metabolite, allowing all outputs 
(unless specified as input only)
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h Free akg akg
h2o Free etoh etoh
o2 Input for for
pi Input fum fum

glc-D lac-D
lac-D pyr
pyr succ
succ

RBC adp, atp, co2, h, 
h2o, nad, nadh 

nadp, nadph, nh3, pi

Free ade 23dpg ino (1) Single Input along with core 
metabolite, allowing all outputs 
(unless specified as input only)

Free ado ade lac
Free glc ado pyr

hx glc
ino hx
lac
pyr
glc 23dpg ade (2) Multiple Inputs

hx ado
ino
pyr
ino

Central E. coli adp, atp, coa, co2, 
h, h2o, nad, nadh, 

nadp, nadph, pi, ppi

Free glycogen 2dmmql8 mqn8 (1) Glycogen as Primary Input

Free 2dmmq8 mql8
Free 3pg oaa

akg pep
amp pyr
e4p q8
fad q8h2

fadh2 r5p
fad 2dmmq8 pyr (2) A different set of Primary Input
q8 fadh2 pep

2dmmql8 q8h2 e4p
amp r5p
oaa 3pg
akg

Table 5: Environmental Conditions of Models. Table detailing the models used for estimation formulation, along with their 
environmental conditions. (Continued)
Table 6: External Metabolites Abbreviation

Exchange Metabolite Abbreviation

12dgr_m 1,2-Diacylglycerol hx Hypoxanthine
23dpg 2,3-Phospho-D-glyceroyl phosphate hxan Hypoxanthine
2dmmq8 2-Demethylmenaquinone 8 ile-L L-Isoleucine
2dmmql8 2-Demethylmenaquinol 8 ino Inosine
3pg 3-Phospho-D-glycerate lac Lactate
ac Acetate lac-L L-Lactate
acac Acetoacetate leu-L L-Leucine
acald Acetaldehyde lys-L L-Lysine
ad Acetamide mal Malate
ade Adenine mal-L L-Malate
ado Adenosine meoh Methanol
adp ADP mql8 Menaquinol 8
akg 2-Oxoglutarate mqn8 Menaquinone 8
ala-L L-Alanine nad Nicotinamide adenine dinucleotide
ala-S S-Alanine nadh Nicotinamide adenine dinucleotide – reduced
amp AMP nadp Nicotinamide adenine dinucleotide phosphate
arachd Arachidonic Acid (C20:4) nadph Nicotinamide adenine dinucleotide phosphate – reduced
asp-L L-Asparagine nh3 Ammonium
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The number of data points may seem unorthodox.
Although in theory it was possible to automatically gener-
ate networks of different input/output combinations,
leading to a larger number of training and validation data
points, in practice, only a few of such combinations
would have resulted in models that produce non-Type-III
extreme pathways as well as biomass constituents. For the
validation stage, models producing biomass constituents
as well as non-Type-III pathways that could be calculated
quickly were desired. By drastically reducing networks, it
was difficult to construct models that maintained biomass
production.

In the case of H. pylori, three models were produced using
the larger network in its entirety. Since the computation of
ExPas is a time-consuming process, a smaller network was
created to facilitate this process. This smaller network was
subjected to random reaction-deletion while ensuring
that the subsequent modified models could still produce
equal amount of biomass. Five such models with random
deletion were produced for this study. In addition, 5 mod-
els for M. bakeri and 3 for H. influenzae were generated in
a similar fashion so that ExPa computation could be done
within a reasonable computational time and effort. These
are listed in Table 7.

Calculation of Extreme Pathways and Network 
Measurements
The extreme pathways of all models were computed using
an implementation of the algorithm given in [29]. This
implementation includes the C++ STL and the number
theory library NTL. Algorithms for calculating the greatest
common factor of a set of integers of arbitrary size and for
sparse-matrix operations were also implemented. Net-
work properties, including incoming and outgoing
degrees and clustering coefficients of reactions, were cal-
culated using a C++ implementation of the methods
described in 'Basic Concepts and Notations' and 'Network
Measurements' using sparse-matrix algorithms and bit-
wise operations.

Correlation Coeffcients
Both Pearson's product-moment and Spearman's rank
correlation coefficients were used as a guide to help iden-
tify important factors that contribute to the number of
extreme pathways. The former is defined as
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atp ATP nh4 Ammonium Ion
bhb (2)-3-Hydroxybuanoate o2 O2
ch4 Methan oaa Oxaloacetate
co2 CO2 ocdc All octadecanoate, octadecenoate, octadecynoate
coa Coenzyme A ocdca octadecanoate
crvnc Cervonic Acid (C22:6, n-3) ocdcea octadecenoate
cys-L L-Cysteine ocdcya octadecynoate
e4p D-Erythrose 4-phosphate orn Ornithine
etoh Ethanol pep Phosphoenolpyruvate
fad Flavin adenine dinucleotide phe-L L-Phenylalanine
fadh2 Flavin adenine dinucleotide (reduced form) pheme Protoheme
fe2 Iron (II) phs-L Phospholipid
fe3 Iron (III) pi Phosphate
for Formate ppi Diphosphate
fum Fumarate pro-L L-Proline
glc Glucose ps_m Phosphatidylserine
glc-D D-Glucose pyr Pyruvate
glu-L L-Glutamate q8 Ubiquinone-8
gly Glycine q8h2 Ubiquinol-8
glyc Glycerol r5p alpha-D-Ribose 5-phosphate
glyc3p Glycerol 3-phosphate ser-L L-Serine
gsn Guanosine so4 Sulfate
gua Guanine succ Succinate
h H+ thr-L L-Threonine
h2 H2 trp-L L-Tryptophan
h2co3 carbonic acid tyr-L L-Tyrosine
h2o H2O urea Urea
hdca Hexadecanoate (n-C16:0) val-L L-Valine

Abbreviations of all external metabolite found in the 68 models used in this study.

Table 6: External Metabolites Abbreviation (Continued)
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for a series of n measurements xi and yi. It was used in this
study as a guide to detect linear relationships amongst the
data and estimating functions. The non-parametric corre-
lation coefficient used in this study is defined as

where Di is the difference in the ranks of the correspond-
ing values of the n pairs (xi, yi). This was used to decide
whether a factor increased monotonically with the
number of ExPas p.
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Table 7: Environmental Conditions of Test Models

Organism #Rxn #Met External Metabolites

M. barkeri 84 121 ac, ala-L, alac-S, ch4, co2, cys-L, gly, h, h2 h2o, ile-L, leu-L, meoh, pi, pyr, val-L
H. influenzae 61 83 ac, akg, co2, for, fum, glc-D, h, hxan nh4, mal-L, pi, pyr

H. pylori 48 65 acald, akg, co2, etoh, for, fum, glc-D, h h2co3, lac-L, mal-L, o2, pi
H. pylori 168 170 ac, acald, akg, asp-L, co2, etoh, fum, glc-D, glu-L, h, h2co3, h2o, lac-L, lys-L, mal-L, nh4, 

o2, phe-L, pi, pyr, ser-L, succ, thr-L, trp-L, tyr-L, urea

Simple network measurements and the lists of external metabolites for the networks used to test the capability of estimations developed in the 
section 'Single Factor Estimate'.
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