
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
A replica exchange Monte Carlo algorithm for protein folding in the
HP model
Chris Thachuk1, Alena Shmygelska2 and Holger H Hoos*3

Address: 1School of Computing Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada, 2Department of Structural Biology, Stanford
University, Stanford, CA, 94305, USA and 3Department of Computer Science, University of British Columbia, B.C., V6T 1Z4, Canada

Email: Chris Thachuk - cthachuk@sfu.ca; Alena Shmygelska - alena.shmygelska@stanford.edu; Holger H Hoos* - hoos@cs.ubc.ca

* Corresponding author

Abstract

Background: The ab initio protein folding problem consists of predicting protein tertiary structure
from a given amino acid sequence by minimizing an energy function; it is one of the most important
and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein
folding problem is computationally challenging and has been shown to be -hard even when
conformations are restricted to a lattice. In this work, we implement and evaluate the replica
exchange Monte Carlo (REMC) method, which has already been applied very successfully to more
complex protein models and other optimization problems with complex energy landscapes, in
combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic
Polar (HP) lattice models.

Results: We demonstrate that REMC is highly effective for solving instances of the square (2D)
and cubic (3D) HP protein folding problem. When using the pull move neighbourhood, REMC
outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we
show that this new algorithm provides a larger ensemble of ground-state structures than the
existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds
significantly better conformations on long biological sequences and sequences with a provably
unique ground-state structure, which is believed to be a characteristic of real proteins. We also
present evidence that our REMC algorithm can fold sequences which exhibit significant interaction
between termini in the hydrophobic core relatively easily.

Conclusion: We demonstrate that REMC utilizing the pull move neighbourhood significantly
outperforms current state-of-the-art methods for protein structure prediction in the HP model on
2D and 3D lattices. This is particularly noteworthy, since so far, the state-of-the-art methods for
2D and 3D HP protein folding – in particular, the pruned-enriched Rosenbluth method (PERM) and,
to some extent, Ant Colony Optimisation (ACO) – were based on chain growth mechanisms. To
the best of our knowledge, this is the first application of REMC to HP protein folding on the cubic
lattice, and the first extension of the pull move neighbourhood to a 3D lattice.

Published: 17 September 2007

BMC Bioinformatics 2007, 8:342 doi:10.1186/1471-2105-8-342

Received: 28 February 2007
Accepted: 17 September 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/342

© 2007 Thachuk et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Page 1 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/342
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17875212
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
Background
The ab initio protein folding problem concerns the predic-
tion of the three dimensional functional state, i.e., the
native fold, of a protein given only its sequence informa-
tion. A successful method for solving this problem would
have far reaching implications in many fields including
structural biology, genetics and medicine. Current labora-
tory techniques for protein structure determination are
both costly and time consuming. In the current era of high
throughput sequencing, it is infeasible to rely exclusively
on time and labor-intensive experimental structure deter-
mination techniques, such as X-ray crystallography and
nuclear magnetic resonance, for characterizing the protein
products of newly discovered genes; there is a clear need
for effective and efficient computational protein structure
prediction programs. However, even for simplified pro-
tein models that use lattices to discretize the conforma-
tional space, the ab initio protein structure prediction
problem has been shown to be -hard [1-3], and a pol-
ynomial-time algorithm is therefore unlikely to exist.

One of the most prevalently studied abstractions of the ab
initio protein structure prediction problem is Dill's hydro-
phobic polar (HP) model. Many algorithms have been for-
mulated to address the protein folding problem using two
dimensional (2D) and three dimensional (3D) HP mod-
els on a variety of lattices (see, e.g., [4-12]). In this study,
we restrict our attention to those HP models that embed
all protein folds into the 2D square lattice or the 3D cubic
lattice. Many of these algorithms can be classified prima-
rily as construction based (or chain growth) algorithms,
which determine folds by sequentially placing residues
onto the lattice. Among these, the pruned enriched Rosen-
bluth method (PERM) [13] has been particularly success-
ful in finding optimal conformations for standard
benchmark sequences in both 2D and 3D. PERM is a
Monte Carlo based chain growth algorithm that iteratively
constructs partial conformations; it is heavily based on
mechanisms for pruning unfavourable folds and for
enriching promising partial conformations, to facilitate
their further exploration.

Despite being one of the most successful algorithms for ab
initio protein structure prediction in the 2D and 3D HP
models, PERM – like all other currently known algorithms
for this problem – is not dominant in every instance. In
the work of Shmygelska and Hoos [9] it was shown that
PERM has great difficulty folding proteins which have a
hydrophobic core located in the middle and not at one of
the ends of the sequence, as is the case when the core is
formed from interacting termini. We note that an earlier
version of PERM [14], capable of initiating search at non-
terminus positions, was previously proposed and may be

more effective in folding these types of sequences. How-
ever, to the best of our knowledge, no comparison has
been made with the most recent version of PERM or other
protein folding algorithms.

Shmygelska and Hoos proposed an ant colony optimiza-
tion algorithm, ACO-HPPFP-3, which employs both con-
struction and local search phases on complete
conformations [9]. Ant Colony Optimisation (ACO) is a
population-based stochastic search method for solving a
wide range of combinatorial optimisation problems. ACO
is based on the concept of stigmergy – indirect communi-
cation between members of a population through interac-
tion with the environment. From the computational
point of view, ACO is an iterative construction search
method in which a population of simple agents ('ants')
repeatedly constructs candidate solutions to a given prob-
lem instance; this construction process is probabilistically
guided by heuristic information on the problem instance
as well as by a shared memory containing experience gath-
ered by the ants in previous iterations of the search proc-
ess ('pheromone trails') [15]. The ACO-HPPFP-3
algorithm combines a relatively straight-forward applica-
tion of the general ACO method to the 2D and 3D HP
protein structure prediction problem with specific local
search procedures that are used to optimize the conforma-
tions constructed by the ants.

In the 2D case, ACO-HPPFP-3 was shown to be competi-
tive with PERM on many benchmark instances and dom-
inant on proteins whose hydrophobic core is located in
the middle of the sequence. Other attempts at the prob-
lem use local search methods on complete conforma-
tions, including the GTabu algorithm [7]. This method
utilizes the generic tabu search algorithm from the
Human Guided Search (HuGS) framework [16]. GTabu
was shown to find conformations with the lowest known
energy for several benchmark instances in the 2D case.
This was primarily made possible by using a newly intro-
duced neighbourhood consisting of so-called pull moves,
which is also utilized in our work.

In addition to PERM, many other Monte Carlo algorithms
have been devised to address the problem of ab initio pro-
tein structure prediction using lattice models [17-20]. A
class of Monte Carlo methods known as generalized ensem-
ble algorithms have been shown to be particularly effective
for more complex lattices and for the off-lattice case [5,21-
24]. Classical Monte Carlo search methods for protein
structure prediction typically sample conformations
according to the Boltzmann distribution in energy space.
In generalized ensemble algorithms, random walks in
other dimensions, such as temperature, can also be real-
ized. This is the case for replica exchange Monte Carlo
(REMC) algorithms, which maintain many independent


Page 2 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
replicas of potential solutions, i.e., protein conforma-
tions. Each replica is set at a different temperature and
locally runs a Markov process sampling from the Boltz-
mann distribution in energy space. A random walk in
temperature space is achieved by periodic exchanges of
conformations at neighbouring temperatures. REMC
appears to have been discovered independently by various
researchers [25-28] and is also known as parallel temper-
ing, multiple Markov chain Monte Carlo and exchange
Monte Carlo search. REMC has been shown to be highly
effective in high dimensional search problems with rug-
ged landscapes containing many local minima. Initially
this was demonstrated in an application to spin glass sys-
tems [26,29]. REMC has also been applied to the off-lat-
tice protein folding problem [21-24,30-34]. Furthermore,
it was previously used for folding proteins on the 2D
square lattice in a study by Irbäck [23] and to the face-cen-
tred cubic lattice in the work of Gront et al [5]. However,
to the best of our knowledge, no extensive study of the
REMC algorithm in the HP model on the cubic lattice has
been undertaken. The remainder of this paper is struc-
tured as follows. First, we formally introduce the hydropho-
bic polar model and describe in detail the two search
neighbourhoods (move sets) utilized later in this work.
Next, we present the general REMC method followed by
the three instantiations we have developed for the 2D and
3D HP protein folding problem. Then, we report results
from a comparative empirical performance analysis of our
new algorithms vs PERM and ACO-HPPFP-3. The respec-
tive computational experiments are run on standard
benchmark instances as well as on two new sequence sets,
which we introduced to evaluate the performance of
REMC when folding long sequences and sequences which
have a provably unique optimal structure. We also report
results from experiments involving proteins with termini
interacting to form a hydrophobic core. Next, we compare
the performance of our new REMC algorithms with that of
GTabu. A discussion follows, in which we report empirical
results regarding the effects of various parameters on the
performance of our new algorithms. We close with a high-
level summary of our major findings and a brief discus-
sion of potential future work.

The hydrophobic polar model
The hydrophobic polar (HP) model was first introduced
by Dill in 1985 [35]. In this model, amino acids are clas-
sified as either H (hydrophobic) or P (polar). Informally, a
sequence of H's and P's is embedded into a lattice struc-
ture. A valid conformation of the sequence corresponds to
a self-avoiding walk on the lattice. Borrowing the termi-
nology used by Lau and Dill [36], we define connected
neighbours as any two residues k and k + 1 that are adjacent
along the given sequence, and topological neighbours as res-
idues adjacent in topological space (forming a contact)
that are not also connected neighbours. The energy of a

conformation can be calculated as the number of H-H
contacts between topological neighbours. This is illus-
trated in Figure 1, which shows a conformation with
energy -2 (every H-H contact contributes -1 to the total
energy, while all other contacts do not contribute).

Formally, for a sequence s ∈ Σn with Σ = {H, P} and n = |s|,
we define a conformation ci ∈ Cs to have energy E(ci),
where Cs is the set of all valid self-avoiding walks on some
lattice L for sequence s, and E(ci) is given by the following
equation:

In this model, we search for a conformation c* that mini-
mizes the objective energy function E(ci). Such a confor-
mation is considered a solution and is also called a
ground-state conformation of the given protein sequence.
However, many instances of the HP protein folding prob-
lem exhibit solution degeneracy, i.e., have more than one
minimum-energy conformation. In this sense, our defini-
tion of ground-state conformation does not imply a
unique solution, but simply one that satisfies the follow-
ing equation:

E c N

N

j k

i jk
k j

n

j

n

jk

() ,=

=
−

= +=

−
∑∑ with

if and are both H r

11

1

1 eesidues

and topological neighbours

otherwise

;

.0







A ground-state conformation in the 2D HP modelFigure 1
A ground-state conformation in the 2D HP model. The
grid points and lines represent the 2D square lattice this con-
formation is embedded upon. Filled, black circles represent
hydrophobic residues while unfilled circles represent polar
residues. The conformation above yields an optimal energy
score in the HP model of -2. The two hydrophobic contacts
contributing to the score are between residues 4 and 13 and
between residues 5 and 12.

1

2 3

4 5

13 12

6 7

8

9

10111415

16
Page 3 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
E(c*) = min{E(ci) | ci ∈ Cs}

Although ground-state structures in this model typically
do not closely resemble the known native conformations
of the respective proteins, a close correspondence has
been observed in some cases [37]; this is particularly true
for higher resolution lattices such as the face-centred cubic
lattice.

Generally, simplified models, such as the ones considered
here, are widely considered to be useful in studying cer-
tain aspects of protein folding and structure prediction,
including the formation of conformations exhibiting a
hydrophobic core [38,39].

Search neighbourhoods
Local search methods (including REMC and simple
Monte Carlo search) are based on the idea of iteratively
improving a given candidate solution by exploring its
local neighbourhood. In the protein folding problem as it
is presented here, the neighbourhood of a conformation
can be thought to consist of slight perturbations of the
respective structure. The neighbourhoods (move sets) used
in solving this problem specify a perturbation as a feasible
change from a current conformation c at time t to a valid
conformation at time t + 1. Thus, the neighbourhood of a
conformation c is a set of valid conformations c' that are
obtained by applying a specific set of perturbations to c. In
this study we consider two such neighbourhoods, the so-
called VSHD moves and pull move neighbourhoods, for both,
the 2D and 3D HP models.

VSHD moves
VSHD moves, as we will refer to them in this study,
appeared early on in the simulation of polymer chains by
Verdier and Stockmayer [40]. In this early work, only sin-
gle residue moves were used, and the single residue end and
corner moves were introduced. That work was later cri-
tiqued in a study by Hilhorst and Deutch [18], which also
introduced the two residue crankshaft move. Gurler et al.
combined all three types of moves into one search neigh-
bourhood [41], which we call the VSHD neighbourhood.

End moves
For a chain of length n, an end move can be performed on
residue 1 or residue n. The residue is pivoted relative to its
connected neighbour to a free position adjacent to that
neighbour. This mechanism ensures that the chain
remains connected. If more than one valid position is free,
one is chosen uniformly at random. For instance, in Fig-
ure 2a, residue 1 could be moved to two possible posi-
tions on the lattice. Generally, for the 2D and 3D HP
model, there are up to 2 and 4 possible moves for each of
the two end residues, respectively.

Corner moves
A corner move can potentially be performed on any resi-
due excluding the end residues. For a corner move to be
possible, the two connected neighbours of some residue i
must be mutually adjacent to another, unoccupied posi-
tion on the lattice. Note that for both, the 2D square and
the 3D cubic lattices, any two residues i - 1 and i + 1 can
share at most one adjacent lattice position. When this sit-
uation occurs, a corner is formed by residues i - 1, i and i
+ 1. If the mutually adjacent position is empty, residue i
can be moved to it. This is illustrated in Figure 2b for the
2D case. Overall, in 2D as well as in 3D, there are at most
n - 2 possible corner moves for any conformation of a n-
residue chain.

Crankshaft moves
A crankshaft move can occur if some residue i is part of a
u-shaped bend in the chain, as shown in Figure 2c. Refer-
ring to this figure, the crankshaft move can be performed
in 2D if positions i' and i + 1' are empty. Crankshaft
moves in 2D always involve a 180° rotation of a u-shaped
structure consisting of four connected neighbours on the
chain. The 3D case is handled analogously, except that the
motif is rotated by either 90° or -90°, provided the appro-
priate positions are empty. (If both rotations are feasible,
one of them is chosen uniformly at random). Note that in

VSHD MovesFigure 2
VSHD Moves. Residue positions are shown before the
move and immediately after a successful move. T(t) denotes
the state of the conformation at time t. In 2a there are two
possible positions that residue one could be moved to,
denoted by 1' in grey circles. Each position is checked in ran-
dom order for availability. If a position is found to be free,
the residue is moved. In 3D the same logic is followed except
there is a possibility of two additional potential positions
(four in total). End moves are applied on the last residue n in
the same manner. 2b shows there to be only one potential
new position for a corner move. This is also the case in 3D
where the position must lie on the plane formed by i - 1, i,
and i + 1. 2c shows the case for a crankshaft move. In 3D, the
crankshaft could potentially rotate 90° or -90°.

32

1

1'

T(t) T(t+1)

1'

321 i-1i

i+1 i'

T(t) T(t+1)

i-1

ii+1

1

i-2

i-1

i+2

i

i+1 i+1'

i'

i+3

1

i-2

i-1

i+2

i

i+1

i+3

T(t) T(t+1)

(a) (b)

(c)
Page 4 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
the figure, the same crankshaft move can be initiated from
residue i and i + 1.

Pull moves
Pull moves have been introduced relatively recently by Lesh
et al. [7], who used them in the context of a generic tabu
search algorithm for the 2D HP protein folding problem.
In the following, we will briefly introduce the central idea
behind this type of move. For a formal treatment of the
pull move neighbourhood and the proof of its complete-
ness (i.e., the fact that any two valid sequence conforma-
tions on the 2D square lattice can be transformed into
each other by a sequence of pull moves), the reader is
directed to the original paper by Lesh et al. [7].

Suppose at time t for some residue i there is an empty lat-
tice position labeled L which is adjacent to residue i + 1
and diagonally adjacent to i. Further consider a position
mutually adjacent to L and i, labeled C. Using this labe-
ling, a square is formed by residues i, i + 1, L and C, as
illustrated in Figure 3a. A pull move can only proceed if C
is either empty or occupied by residue i - 1.

The simplest case occurs when C is occupied by residue i -
1, in which case the entire move consists of moving resi-
due i to location L. Note that this move, which is illus-
trated in Figure 3a, is equivalent to the previously
introduced corner move. When C is not occupied by resi-
due i - 1, i is moved to L and i - 1 is moved to C. If residue
i - 2 is adjacent to position C, this second operation com-
pletes the pull move. This case is illustrated in Figure 3b.

If, however, residue i - 2 is adjacent to position C, the
chain is still not in a valid conformation at this point, and
in this case, the following procedure is used. Using the
notation by Lesh et al. [7], starting with residue j = i - 2, let
(xj(t + 1), yj(t + 1)) = (xj+2(t), yj+2(t)) until a valid confor-
mation has been found or residue 1 has been moved.
Informally speaking, residues are successively pulled into
positions that have just been vacated (as a consequence of
pulling another residue) until a valid conformation has
been obtained or one end of the chain is reached. Figure
3c illustrates this situation where residues i to i - 3 were
pulled successively, until the valid conformation shown
on the right was obtained. Note that pull moves have been
described as pulling from residue i down to residue 1, if
needed. Pulling in the opposite direction is equivalent
and also valid.

When they introduced pull moves, Lesh et al. claimed that
the resulting neighbourhood could be generalized to the
3D case. However, to the best of our knowledge no algo-
rithm implementing pull moves for the 3D case has been
published. For the 2D case, valid choices of L and C are
restricted to a single plane. The generalization to 3D can

consider choices of L and C in any plane containing both
i and i + 1; in the case of the 3D cubic lattice, there are two
such planes. In our study presented here, we have imple-
mented this generalization of pull moves in the context of
a standard REMC algorithm, which will be described in
the following.

Replica exchange Monte Carlo search
In the following, we provide a brief introduction to replica
exchange Monte Carlo search. For an in-depth description
of the algorithm including its historical aspects, the reader
is referred to the review of extended ensemble Monte
Carlo algorithms by Iba [42], which also provides details
related to simulated tempering [43] and replica Monte
Carlo search [44].

Replica exchange Monte Carlo (REMC) search maintains
χ independent replicas of a potential solution. Each of the
χ replicas has an associated temperature value (T1, T2,...,
Tχ). Each temperature value is unique and the replicas are
numbered such that T1 <T2 < ... <Tχ. In our description of
the algorithm, we will label the χ conformations main-
tained by the algorithm at any given time with the replica
numbers (1 ,... χ,) and always associate temperature Tj
with replica j (for all j such that 1 ≤ j ≤ χ). Thus, the
exchange of replicas is equivalent to (and is commonly
implemented as) the swap of replica labels.

Each of the χ replicas independently performs a simple
Monte Carlo search at the respective temperature setting.
The transition probability from some current conforma-
tion c to an alternative conformation c' is determined
using the so-called Metropolis criterion such that

where ∆E : = E(c') - E(c) is the difference in energy between
conformations c' and c, and T denotes the temperature of
the replica.

We can represent the current state of the extended ensem-
ble of all χ replicas as a vector c : = (c1,..., cχ) shown below,
where cj is the conformation of replica j, which (as previ-
ously stated) runs at temperature Tj. During replica
exchange, temperature values of neighbouring replicas are
swapped with a probability proportional to their energy
and temperature differences. An exchange of tempera-
tures, and therefore a relabeling of replicas, affects the
state of the extended ensemble c. Therefore, we define an
exchange between two replicas i and j more generally as a
transition of the current ensemble state c to an altered
state c'. We define l(ci) = i, the current label or replica
number, for all ci. The probability of a transition from

Pr[] :
,

.
c c

E

e
E

T
→ ′ =

≤




−

1 0if

otherwise

∆
∆ (1)
Page 5 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
ensemble state c to state c' by exchanging replicas i and j
is defined as:

The value ∆ is the product of the energy difference and
inverse temperature difference:

∆ : = (βj - βi)(E(ci) - E(cj)).

where is the inverse of the temperature of replica

i.

Potential replica exchanges are only performed between
neighbouring temperatures, since the acceptance proba-
bility of the exchange drops exponentially as the temper-
ature difference between replicas increases.

Our REMC algorithms
Details of our implementation of REMC search are pre-
sented in the 'Methods' section. We have experimented

with three variants of the REMC algorithm for both the 2D
and 3D case, which differ only in the neighbourhoods
used in the subsidiary Monte Carlo local search proce-
dure. REMCvshd folds protein sequences using exclusively
the VSHD neighbourhood. Likewise, REMCpm is based on
the pull move neighbourhood. Our third variant, REMCm,
makes use of a hybrid neighbourhood that allows both,
pull moves and VSHD moves to be performed; more pre-
cisely, in each local search step, the pull move neighbour-
hood will be used with probability ρ (where ρ is a
configurable parameter of the algorithm) and otherwise,
the VSHD neighbourhood will be used.

Results
To evaluate the performance of our REMC algorithms we
directly compared results against those for two state-of-
the-art folding algorithms, ACO-HPPFP-3 and PERM. In
the same manner in which the parameters for REMC
remain fixed for all experiments, the PERM and ACO-
HPPFP-3 parameters have been fixed to the values sug-
gested by their authors. The parameter values for ACO-
HPPFP-3 have been taken from Shmygelska and Hoos [9],
and those for PERM were optimized by P. Grassberger and
his group and pre-configued in the code kindly provided
to us. For all runs of PERM, the parameter settings β : = 26
and q : = 0.2 were used [13].

Pr Pr[] : [() ()]

:
.

c c→ ′ = ↔

=
≤





−

l c l c

e

i j

1 0∆
∆ otherwise

(2)

βi
iT

= 1

Pull MovesFigure 3
Pull Moves. This figure has been reproduced from [7] to illustrate the central idea behind this neighbourhood. In 3a, the sim-
plest case where position C is occupied by residue i - 1 is shown. This move is equivalent to a corner move in the VSHD move-
set. In 3b, residue i is moved to L and i - 1 to C. The chain is in a valid conformation and the move is finished. In 3c, residues i
down to i - 3 must be pulled until a valid conformation is found.

i

i+1 L

T(t) T(t+1)

C

i+1 i

i-1

(a)

i+1 L

T(t) T(t+1)

C

i-2i-1

i

i+1

i-2

i-1

i

(b)

L

T(t) T(t+1)

C

i-7

i-4i-5

i-6

i-2i-3

i-1

i

i+1 i-7

i-4i-5

i-6

i-3

ii+1

i-2 i-1

(c)
Page 6 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
In our experiments we conducted a number of runs with
a given energy or CPU time cut-off on a standard set of
benchmark instances for both the 2D and 3D HP protein
folding problems. Furthermore, several new benchmark
sets were created to evaluate the performance of REMC on
long, biologically inspired sequences as well as on
sequences with provably unique optimal conformations.
A direct comparison between ACO-HPPFP-3 and PERM
has been previously reported by Shmygelska and Hoos
[9]. In this earlier work it has been shown through exper-
iments on artificially designed as well as on known bio-
logical sequences that PERM has inherit difficulties with
folding proteins where the termini interact in the forma-
tion of the hydrophobic core. Here, we performed analo-
gous experiments to determine the performance
differences between ACO-HPPFP-3, PERM and our REMC
algorithms for these cases. We further tested our 2D algo-
rithms using the pull move neighbourhood, REMCm and
REMCpm, against the first algorithm based on this neigh-
bourhood, GTabu, by means of a computational experi-
ment analogous to that performed by Lesh et al. [7].

Results for standard benchmark sequences
There are eleven benchmark sequences for the 2D HP
model and ten for the 3D HP model. This benchmark set,
in whole or in part, has been used extensively in the liter-
ature [8,9,11,12,45-48]. A complete listing of the 2D and
3D sequences can be found in Table 1. To evaluate per-
formance differences between ACO-HPPFP-3, PERM and
our REMC algorithms, we follow the experimental proto-
col established by Shmygelska and Hoos [9].

Every run was performed independently with a unique

random seed. In the 2D case, for sequences of length n ≤
50, 500 independent runs were performed; for 50 <n ≤ 64,
100 runs; and for n > 64, 20 runs. In the case of 3D, 100
independent runs were performed for each sequence.
Results for ACO-HPPFP-3 and PERM were taken from the
study of Shmygelska and Hoos [9], which used the same
experimental environment and protocol. Expected run-

times for PERM are computed as ,

where t1 and t2 are the average run-times when folding

from the N-terminus and C-terminus of the given protein
sequence, respectively; as noted by Shmygelska and Hoos,
the performance of PERM often varies substantially
between folding directions [9].

Results for the 2D case are listed in Table 2. All algorithms
show similar running times for the first three benchmark
sequences (S1-1 to S1-3). For sequences S1-4 to S1-11,
REMCvshd exhibited the worst performance; however, the

other two variants of REMC, both utilizing pull moves,
perform better than ACO-HPPFP-3 for all instances.
PERM shows better performance than REMCm and REM-
Cpm for sequence S1-7. On average, it also solves S1-9
faster than REMCpm. In every other case, however, REMCpm
and REMCm outperform PERM, often by a significant fac-
tor. Of particular note is the fact that the variants using
pull moves solve sequence S1-8 in a matter of CPU sec-
onds compared to 78 CPU hours required on average by
PERM (ACO-HPPFP-3 also outperforms PERM on this
sequence with a mean running time of 1.5 CPU hours).
Sequence S1-8 has a symmetric core formed by extensive

t
t texp = ⋅ +











−

2
1 1

1 2

1

Table 1: Standard benchmark sequences

ID Length E* Protein Sequence

2D HP

S1-1 20 -9 (HP)2PH2PHP2HPH2P2HPH
S1-2 24 -9 H2(P2H)7H
S1-3 25 -8 P2HP2(H2P4)3H2
S1-4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2
S1-5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5
S1-6 50 -21 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4(PH)4

H
S1-7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP
S1-8 64 -42 H12(PH)2(P2H2)2P2HP2H2PPH2P2HP2(H2P2

)2(HP)2H12
S1-9 85 -53 H4P4H12P6(H12P3)3HP2(H2P2)2HPH
S1-10 100 -50 P3H2P2H4P2H3(PH2)2PH4P8H6P2H6P9HPH

2PH11P2H3PH2PHP2HPH3P6H3
S1-11 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH

2PH7P11H7P2HPH3P6HPH2

3D HP

S2-1 48 -32 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3
HP8H2

S2-2 48 -34 H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2
H3PH

S2-3 48 -34 PHPH2PH6P2HPHP2HPH2(PH)2P3H(P2H2)
2P2HPHP2HP

S2-4 48 -33 PHPH2P2HPH3P2H2PH2P3H5P2HPH2(PH)2
P4HP2(HP)2

S2-5 48 -32 P2HP3HPH4P2H4PH2PH3P2(HP)2HP2HP6H
2PH2PH

S2-6 48 -32 H3P3H2PH(PH2)3PHP7HPHP2HP3HP2H6P
H

S2-7 48 -32 PHP4HPH3PHPH4PH2PH2P3HPHP3H3(P2
H2)2P3H

S2-8 48 -31 PH2PH3PH4P2H3P6HPH2P2H2PHP3H2(PH)
2PH2P3

S2-9 48 -34 (PH)2P4(HP)2HP2HPH6P2H3PHP2HPH2P2
HPH3P4H

S2-10 48 -33 PH2P6H2P3H3PHP2HPH2(P2H)2P2H2P2H7P
2H2

2D and 3D standard benchmark collection which can be found in [9].
These sequences can be found originally amongst [6, 20]. As
presented in [9], Hi and Pi indicate a string of i consecutive H's and P's;
likewise (s)i indicated an i-fold repetition of string s.
Page 7 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
interactions between the two termini; the difficulty of
sequences with interacting termini for PERM has been
previously demonstrated by Shmygelska and Hoos [9].
The second-hardest instance for PERM, S1-10, is solved on
average 2.5 times faster by REMCm and nearly 6 times
faster by REMCpm. The other benchmark sequence with
100 residues, S1-11, is solved approximately 8 times faster
by both pull move variants. Overall, on the eleven bench-
mark instances the performance of PERM is matched or
exceeded in 9 and 10 cases by REMCpm and REMCm,
respectively.

In the 3D case (see Table 3), the general performance
trend is similar. All REMC variants report superior run-
ning times to ACO-HPPFP-3 in every case, as does PERM.
Furthermore, PERM outperforms REMCvshd in each case,
often by a significant factor. However, the generalization
of pull moves to the 3D case has lead to a substantial
increase in the performance of REMC. For only one
sequence, S2-10, does PERM outperform REMCpm and
REMCm (by a factor of 10). REMC using pull moves shows
significantly better performance than PERM on S2-4, S2-5
and S2-9, where a five- to twenty-fold increase in perform-
ance is observed. For the other instances, REMCpm and
REMCm match or outperform PERM by a small margin.

REMCpm and REMCm also outperform other algorithms
found in the literature. Shmygelska and Hoos compared
PERM and ACO-HPPFP-3 against other methods with
previously published results on the standard benchmark
sets [9]. For the 2D square lattice, this comparison

included the genetic algorithm of Unger and Moult [11],
the evolutionary Monte Carlo algorithm of Liang and
Wong [8], and the multi-self-overlap ensemble algorithm
of Chikenji et al. [47]. Furthermore, a previous applica-
tion of replica exchange Monte Carlo search (parallel tem-
pering) on the 2D square lattice [23] has failed to reach
ground-state configurations for the two largest standard
benchmark sequences (here referred to as S1-10 and S1-
11) [47]. For the 3D cubic lattice, the hydrophobic zipper
algorithm [49], the constraint-based hydrophobic core
construction method [37], the core-directed chain growth
algorithm [46] and the contact interactions algorithm
[10] were considered. Considering these previously pub-
lished results in combination with the results reported
here, REMCpm and REMCm both perform better than any
of the earlier methods mentioned above in terms of the
energy of the conformations found or the CPU time
required for reaching a given energy level (where differ-
ences in CPU speed are taken into account).

Due to their superior performance, only the REMCpm and
REMCm algorithms were considered in the remainder of
our study.

Characteristic performance of REMC
Prompted by the results on sequence S1-8, we decided to
further investigate to which extent REMC using pull
moves can fold proteins with interacting termini in their
cores substantially more effectively than PERM. To that
end, we used three additional sequences that had been
shown to be difficult for PERM by Shmygelska and Hoos

Table 2: Results on 2D benchmark sequences

ID E* ACO-HPPFP-3 REMCvshd REMCpm REMCm

S1-1 -9 -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec)
S1-2 -9 -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec)
S1-3 -8 -8 (2 sec) -8 (2 sec) -8 (< 1 sec) -8 (< 1 sec) -8 (< 1 sec)
S1-4 -14 -14 (< 1 sec) -14 (4 sec) -14 (15 sec) -14 (< 1 sec) -14 (< 1 sec)
S1-5 -23 -23 (2 sec) -23 (1 min) -23 (91% of runs

18 min)
-23 (< 1 sec) -23 (< 1 sec)

S1-6 -21 -21 (3 sec) -21 (15 sec) -21 (98% of runs
19 min)

-21 (< 1 sec) -21 (< 1 sec)

S1-7 -36 -36 (4 sec) -36 (20 min) -34 (33% of runs
33 min)

-36 (10 sec) -36 (13 sec)

S1-8 -42 -42 (78 hrs) -42 (1.5 hrs) -35 (11% of runs
40 min)

-42 (5 sec) -42 (6 sec)

S1-9 -53 -53 (1 min) -53 (20% of runs 1
day)

-50 (5% of runs 19
min)

-53 (2 min) -53 (38 sec)

S1-10 -50 -50 (20 min) -49 (12 hrs) -46 (5% of runs 41
min)

-50 (3.5 min) -50 (8 min)

S1-11 -48 -48 (8 min) -47 (10 hrs) -46 (5% of runs 97
min)

-48 (1 min) -48 (1.2 min)

Details on runs can be found in the text. Results for PERM and ACO-HPPFP-3 are reproduced from [9]. In all instances, REMCvshd reports the worst
running times followed by ACO-HPPFP-3. REMCm outperforms PERM in 10 of 11 instances and REMCpm reports better times than PERM in 9 of 11
instances. Details of the experimental protocol can be found in the text.

PERMtexp
Page 8 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
[9]; these sequences are listed in Supplemental Table 1
[see Additional file 1]. These sequences and the corre-
sponding mean run-times for each algorithm (determined
from 100 independent runs) are reported in Table 4. For
all four instances, both REMC variants outperform ACO-
HPPFP-3 by factors ranging from 21 to 236. In the case of
B50-5, REMCpm and REMCm easily outperform PERM (by
a factor of 20) when the latter is folding from both direc-
tions or from the C-terminus; however, when folding
from the N-terminus, PERM slightly outperforms REMCpm
(by a factor of 1.2).

For B50-7, REMC beats all variants of PERM by more than
two orders of magnitude. As B50-7 involves significant
interaction between both termini, the folding direction of
PERM appears to be inconsequential. This is not the case
for D-1. When folding from the C-terminus, PERM has no
difficulty folding the sequence within 1 CPU second, as a
significant part of the C-terminus forms the hydrophobic
core of this protein. This performance is matched by both
REMC algorithms. However, when folding from the N-ter-
minus, PERM requires a mean run-time of over one CPU
hour. The D-2 sequence is highly symmetric in its core for-
mation. PERM reports the worst run-times of all algo-
rithms in this instance with a mean run-time of over 2.5
CPU hours in the best case. This is more than 200 times
worse than either of the REMC algorithms. Overall, these
results clearly indicate that, compared to PERM, REMC is
much more effective in finding low-energy structures
whose termini interact to form hydrophobic cores.

It has also been previously demonstrated that ACO-
HPPFP-3 provides a larger range of relative H-H contact
order values than PERM when analyzing the ensemble of
folds obtained from multiple independent runs on the
same sequence [9], where the ensemble contains the first
optimal conformation encountered in each of the inde-

pendent runs. The relative H-H contact order measures
the average separation of hydrophobic-hydrophobic con-
tacts and is formally defined as

where l is the number H-H contacts, n is the number of
hydrophobic residues, and i and j are hydrophobic resi-
dues in contact that are not neighbours in the chain. This
measure can be employed to compare the quantity and
diversity of structures returned by one or more algorithms.
Since identical conformations have the same relative H-H
contact order value, the number of unique structures in a
set is bounded from below by the number of unique con-
tact order values. Furthermore, a larger range of relative
contact order values is indicative of a more diverse set of
structures.

Figure 4 demonstrates the frequency distribution of rela-
tive H-H contact orders for AC0-HPPFP-3, PERM and the
REMC variants using pull moves. Ground-state conforma-
tions were examined from 500 independent runs per algo-
rithm on S1-7 for the 2D case (left side) and on S2-5 for
the 3D case (right side). Runs were terminated immedi-
ately after a ground-state conformation was found. For the
2D case, ACO-HPPFP-3 and REMC find conformations
with higher relative contact order than PERM does (rela-
tive COH-H = 0.324). REMC also appears to have a flatter,
more even distribution than either ACO-HPPFP-3 and
PERM. Both REMCpm and REMCm find 34 unique relative
contact order values, while ACO-HPPFP-3 finds 22 and
PERM only 15.

In the 3D case, the REMC algorithms also find a more
diverse set of ground-state structures than ACO-HPPFP-3
and PERM. REMCm and REMCpm return 82 and 83 unique

CO
l n

i jH H
i j

−
< −

=
⋅

−∑: ,
1

1

Table 3: Results on 3D benchmark sequences

ID E* ACO-HPPFP-3 REMCvshd REMCpm REMCm

S2-1 -32 -32 (0.1 min) -32 (30 min) -32 (0.75 min) -32 (0.1 min) -32 (0.1 min)
S2-2 -34 -34 (0.3 min) -34 (420 min) -34 (8.1 min) -34 (0.2 min) -34 (0.2 min)
S2-3 -34 -34 (0.1 min) -34 (120 min) -34 (3.3 min) -34 (0.1 min) -34 (0.1 min)
S2-4 -33 -33 (2 min) -33 (300 min) -33 (2.2 min) -33 (0.2 min) -33 (0.1 min)
S2-5 -32 -32 (0.5 min) -32 (15 min) -32 (1.2 min) -32 (0.1 min) -32 (0.1 min)
S2-6 -32 -32 (0.1 min) -32 (720 min) -32 (1.5 min) -32 (0.1 min) -32 (0.1 min)
S2-7 -32 -32 (0.5 min) -32 (720 min) -32 (3.9 min) -32 (0.4 min) -32 (0.3 min)
S2-8 -31 -31 (0.3 min) -31 (120 min) -31 (2.3 min) -31 (0.2 min) -31 (0.1 min)
S2-9 -34 -34 (5 min) -34 (450 min) -34 (14 min) -34 (0.7 min) -34 (0.9 min)
S2-10 -33 -33 (0.01 min) -33 (60 min) -33 (2 min) -33 (0.1 min) -33 (0.1 min)

Details on runs can be found in the text. Results for PERM and ACO-HPPFP-3 have been reproduced from [9]. All variants of REMC outperform
ACO-HPPFP-3. REMCm and REMCpm match or outperform PERM in 9 of 10 instances. Details of the experimental protocol can be found in the
text.

PERMtexp
Page 9 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
values, respectively, compared to 74 found by ACO-
HPPFP-3 and 69 by PERM. Furthermore, REMC finds con-
formation with larger relative contact order values than
ACO-HPPFP-3 and PERM; the largest values are 0.789 for
REMCm, 0.776 for REMCm, 0.75 for ACO-HPPFP-3 and
0.737 for PERM.

Results for longer sequences
To evaluate how REMC's performance scales with
sequence length, a new, biologically motivated test set
was constructed. All sequences were taken from the Pro-
tein Data Bank and have length between 200 and 250 res-
idues at a sequence similarity of less than 10%. Sequences
were translated into HP strings based on the RASMOL
hydrophobicity classification scale [50], except for non-
standard amino acid symbols, such as X and Z, which
were skipped (the same protocol has been previously used

by Shmygelska and Hoos [9]). The resulting HP sequences
are listed in Supplemental Table 2 [see Additional file 1].
As ACO-HPPFP-3 scaled poorly with sequence length on
the benchmark sequences compared with PERM and
REMC, it has been omitted from this evaluation. PERM
was run in both directions for each instance.

For each sequence, ten independent runs were conducted
for each algorithm in both 2D and 3D. Runs were termi-
nated after 60 CPU minutes on our reference machine,
and the best energy was recorded. Figure 5 shows the best
and mean energy values for REMCm plotted against the
respective performance metrics for PERM; the best energy
value corresponds to the lowest energy value found
amongst all independent runs, while the mean energy
value we report is the average of the best energies found in
each independent run. In the 2D case (Figure 5, left side),

Comparison of the distribution of H-H contact orders found by REMC, ACO-HPPFP-3 and PERMFigure 4
Comparison of the distribution of H-H contact orders found by REMC, ACO-HPPFP-3 and PERM. The frequency
distribution of relative contact order values for folding S1-7 in 2D (left side) and S2-5 in 3D (right side) over 500 independent
runs is shown. This measure can be employed to compare the quantity and diversity of folds returned by one or more algo-
rithms. In both the 2D and 3D case, REMC variants have a more even distribution and find a larger number of relative contact
order values than PERM or ACO-HPPFP-3. REMC and ACO-HPPFP-3 both find relative contact orders larger than PERM in
2D. In 3D, REMC finds larger relative contact order values than both PERM and ACO-HPPFP-3.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.22 0.24 0.26 0.28 0.3 0.32 0.34

F
re

q
u

e
n

c
y
 (

R
e

la
ti
v
e

 C
O

H
H

)

Relative COHH

REMCm
REMCpm
PERM
ACO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
re

q
u

e
n

c
y
 (

R
e

la
ti
v
e

 C
O

H
H

)

Relative COHH

REMCm
REMCpm
PERM
ACO

Table 4: Results for biological and designed sequences

ID E* ACO-HPPFP-3 REMCpm REMCm

B50-5 -22 5 sec 118 sec 9 sec 820 sec 6 sec 5 sec
B50-7 -17 271 sec 299 sec 284 sec 130 sec 1 sec 2 sec
D-1 -19 3 795 sec 1 sec 2 sec 236 sec 1 sec 1 sec
D-2 -17 9 257 sec 19 356 sec 12 524 sec 951 sec 44 sec 41 sec

Results for PERM and ACO-HPPFP-3 are reproduced from [9]. In all instances, REMC finds optimal conformations relatively easily compared with
the other algorithms. REMC does not demonstrate an inherit difficulty folding sequences when conformations involve hydrophobic cores confined
to one end of the sequence or the case involving both ends. For every instance, 100 independent runs were conducted of 1 CPU hour each. In
cases where not every run reached the same energy value after 1 hour, the expected run-time to reach the energy value shown in the table was
calculated using the equation detailed by Parkes and Walser [54].

PERMt1
PERMt2

PERMtexp
Page 10 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
PERM finds a better energy value for one sequence and
finds the same best energy values for two others. In the
remaining seven cases, REMCm finds superior conforma-
tions. For every sequence, REMCm achieves better mean
energy values than PERM.

In the 3D case (Figure 5, right side), the performance dif-
ference is more pronounced. REMC finds better confor-
mations on average and in the best case for every
sequence. Considering the best conformations found
among the ten independent runs for each algorithm and
for each initial direction in the case of PERM, REMCm
reaches significantly lower energies; the same holds with
respect to average energy values. REMCpm achieves similar
performance in all cases (results not shown).

Results for sequences with unique ground-state
conformations
Further experiments were conducted on three classes of
sequences with unique ground-state conformations in the
2D HP model on the square lattice. In 2003, Aichholzer et
al. identified and proved that a class of sequences
uniquely fold into structures dubbed Z-structures [51].
Later, Gupta et al. proposed a tile set used to design con-
structible structures for the inverse protein folding prob-
lem. Of these constructible structures, the authors proved
that the sequences associated with linear structures with
no bends (L0) and linear structures with one bend (L1)
uniquely fold into the designed conformation [52]. Exam-
ples of these structures are shown in Figure 6. We con-
structed a new test set comprising ten sequences of
increasing length for each of these classes of sequences
and list them in Supplemental Table 3 [see Additional file
1]. To evaluate the performance of PERM and REMC on
these test sequences, we performed 100 independent runs
per sequence, each with a cut-off time of 1 CPU hour.
PERM was run in both directions, and in the case where
neither direction finds the (known) lowest energy, the
expected run-time is reported for the best energy found.

The mean run-times for the Z-structures is reported in
Table 5. REMC finds the unique conformation of each
sequence relatively easily with a worst case mean run-time
of 2 CPU seconds. PERM's performance, on the other
hand, scales very poorly with sequence length, and the
algorithm is unable to find the optimal energy for the four
longest sequences.

The L0 structures turned out to be much more difficult to
solve for REMC (see Table 6). Neither PERM nor REMC
are able to find the optimal conformation for L0-9 or L0-
10, although REMCm finds lower-energy conformations
than PERM in both cases. PERM finds the same sub-opti-
mal solution as REMCpm for L0-10 in significantly less
time. For all other instances, both REMC variants domi-

nate PERM by finding either lower energy conformations
or by requiring less run-time for reaching the same energy
values.

The L1 structures are the hardest for all algorithms consid-
ered here (see Table 7). For the three longest sequences,
both REMC algorithms find the same sub-optimal solu-
tions as PERM, but PERM reaches these only for one fold-
ing direction. For the other instances, REMC consistently
finds the optimal conformation significantly faster than
PERM.

Comparison with GTabu
The variants of REMC utilizing pull moves significantly
outperform REMCvshd for the 2D and 3D HP models. This
clearly demonstrates the effectiveness of the pull move
neighbourhood. To address the question to which extent
the REMC search strategy contributes to the excellent per-
formance of REMCpm and REMCm, we compared the per-
formance of these algorithms with that of GTabu, the first
algorithm for the HP model to use pull moves. In their
paper describing GTabu and pull moves, Lesh et al.
reported performance results for the standard benchmark
sequences S1-8 to S1-11 [7]. To ensure the comparability
of results, we used the same experimental protocol as Lesh

Table 5: Results on stable Z-structures

ID E* REMCpm REMCm

Z-4 -3 -3 (< 1 sec) -3 (< 1 sec) -3 (< 1 sec)
Z-8 -7 -7 (< 1 sec) -7 (< 1 sec) -7 (< 1 sec)
Z-12 -11 -11 (< 1

sec)
-11 (< 1 sec) -11 (< 1 sec)

Z-16 -15 -15 (3 sec) -15 (< 1 sec) -15 (< 1 sec)
Z-20 -19 -19 (51

min)
-19 (< 1 sec) -19 (< 1 sec)

Z-24 -23 -23 (49
hrs†)

-23 (< 1 sec) -23 (< 1 sec)

Z-28 -27 -26 -27 (< 1 sec) -27 (< 1 sec)
Z-32 -31 -29 -31 (< 1 sec) -31 (< 1 sec)
Z-36 -35 -31 -35 (1 sec) -35 (< 1 sec)
Z-40 -39 -34 -39 (2 sec) -39 (1 sec)

The Z-structures proposed in [51] are easy for REMC to fold when
compared with PERM. After Z-24, PERM is unable to find the unique
optimal conformation in any of the 100 independent runs conducted.
When only one folding direction of PERM finds the optimal
conformation, we report the mean run-time of that direction,
denoting this in the table with a †. When best energies found by

 and differed (and neither find the optimal

solution), the best energy by either is reported and the run-time is
omitted. For every instance, 100 independent runs were conducted
of 1 CPU hour each. In cases where not every run reached the same
energy value after 1 hour, the expected run-time to reach the energy
value shown in the table was calculated using the equation detailed
by Parkes and Walser [54].

PERMtexp

PERMt1 PERMt2
Page 11 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
et al. for evaluating our REMC algorithms on these
sequences. Two hundred independent runs were per-
formed for each sequence and the rate of successful com-
pletion (i.e., fraction of runs in which the best known
energy was reached) after 30 minutes and 60 minutes was
reported.

Lesh et al. pointed out that the performance of their
implementation of GTabu could be improved by a factor
of 2 to 5 through relatively straightforward optimizations.
Furthermore, GTabu was evaluated on different hardware
(based on the 1000 MHz Alpha processor). Therefore,
optimistically assuming our hardware is three times faster
and GTabu performance could be improved by a factor of
five, we also report run-times for GTabu if it were faster by
a factor of fifteen.

Figure 7 shows the run-time distributions of REMCpm and
REMCm (i.e., empirical distributions of run-times over the
200 independent runs) for each of the four sequences. We
also indicate the completion rates achieved by GTabu
after 30 CPU minutes (scaled to 2 minutes) and 60 CPU
minutes (scaled to 4 minutes). Overall, even for the opti-
mistically scaled results, it is clear that REMC significantly
outperforms GTabu on three of the four instances. The
remaining instance, S1-8, is the most difficult of the
benchmark sequences for PERM, while being solved easily
by both, GTabu and REMC.

Discussion
In all experiments reported so far, the parameters of the
REMC algorithms have remained fixed at the values listed
in the 'Methods' section. These parameter sets were cho-
sen separately for the 2D case and for the 3D case using
the automatic algorithm configuration tool of Hutter et al.
[53], which performs a local search in parameter space to
optimize a given performance criterion (here: mean run-
time). Attempts to manually configure the algorithm

Table 7: Results on stable L1-structures

ID E* REMCpm REMCm

L1-1-3 -16 -16 (120
sec)

-16 (6 sec) -16 (6 sec)

L1-2-2 -16 -16 (57
sec)

-16 (3 sec) -16 (2 sec)

L1-3-1 -16 -16 (28
sec)

-16 (3 sec) -16 (3 sec)

L1-1-5 -24 -24 (100
hrs†)

-24 (17
min)

-24 (14
min)

L1-2-4 -24 -24 (49
hrs†)

-24 (9 min) -24 (7 min)

L1-3-3 -24 -23 -24 (7 min) -24 (5 min)
L1-4-2 -24 -24 (49

hrs†)
-24 (5 min) -24 (4 min)

L1-3-7 -40 -38 -38 (20 hrs) -38 (20 hrs)
L1-5-5 -40 -38 -38 (16 hrs) -38 (14 hrs)
L1-8-2 -40 -38 -38 (16 hrs) -38 (14 hrs)

The L1-structures proposed in [52] are the most difficult stable
structures for REMC to fold. Both PERM and REMC are unable to
find the optimal conformations for L1-3-7, L1-5-5, and L1-8-2 after
100, one hour runs. PERM also did not find the optimal
conformation for L1-3-3. When only one folding direction of PERM
finds the optimal conformation, we report the mean run-time of
that direction, denoting this in the table with a †. When best

energies found by and differed (and neither

find the optimal solution), the best energy by either is reported and
the run-time is omitted. For every instance, 100 independent runs
were conducted of 1 CPU hour each. In cases where not every run
reached the same energy value after 1 hour, the expected run-time
to reach the energy value shown in the table was calculated using
the equation detailed by Parkes and Walser [54].

PERMtexp

PERMt1 PERMt2

Table 6: Results on stable L0-structures

ID E* REMCpm REMCm

L0-1 -4 -4 (< 1 sec) -4 (< 1 sec) -4 (< 1 sec)
L0-2 -8 -8 (< 1 sec) -8 (< 1 sec) -8 (< 1 sec)
L0-3 -12 -12 (< 1

sec)
-12 (< 1
sec)

-12 (< 1
sec)

L0-4 -16 -16 (32
sec)

-16 (7 sec) -16 (5 sec)

L0-5 -20 -20 (3
hrs†)

-20 (1.1
min)

-20 (55
sec)

L0-6 -24 -23 -24 (16
min)

-24 (13
min)

L0-7 -28 -26 (33 sec) -28 (3.2
hrs)

-28 (2.5
hrs)

L0-8 -32 -30 (3 min) -32 (50
hrs)

-32 (16
hrs)

L0-9 -36 -34 (22
min)

-35 (99 hrs) -35 (100
hrs)

L0-10 -40 -38 (40
min)

-38 (9.6
hrs)

-39 (100
hrs)

The L0-structures proposed in [52] are hard for both REMC and
PERM to fold. After L0-5, PERM is unable to find the unique optimal
conformation in any of the 100 independent runs conducted. REMC
is unable to find the ground-state conformation for L0-9 and L0-10,
however, REMCm finds better sub-optimal conformations than PERM
in both instances. When only one folding direction of PERM finds the
optimal conformation, we report the mean run-time of that
direction, denoting this in the table with a †. When best energies

found by and differed (and neither find the

optimal solution), the best energy by either is reported and the run-
time is omitted. For every instance, 100 independent runs were
conducted of 1 CPU hour each. In cases where not every run
reached the same energy value after 1 hour, the expected run-time
to reach the energy value shown in the table was calculated using the
equation detailed by Parkes and Walser [54].

PERMtexp

PERMt1 PERMt2
Page 12 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
parameters failed to produce settings as robust as those
found by the automated tool. Experiments using manu-
ally tuned parameter configurations yielded performance
results that were biased in favour of either short or long
sequences.

To better understand the impact of parameter settings on
the performance of our REMC algorithms, we performed
a series of additional experiments, in which we varied one

parameter at a time, while leaving all others fixed at their
default values (as specified in the 'Methods' section), i.e.,
(ϕ, τmin, τmax, χ, ρ) : = (500, 160, 220, 5, 0.4) in 2D and (ϕ,
τmin, τmax, χ, ρ) : = (500, 160, 220, 2, 0.5) in 3D, where ϕ
is the number of local steps in a Monte Carlo search, τmin,
and τmax, are the minimum and maximum temperature
values respectively, χ is the number of replicas to simulate
and ρ is the probability of performing a pull move.

Two test sequences were selected from the standard
benchmark set for this purpose. The first sequence, S1-7,
was selected for the 2D case as it does not involve signifi-
cant interaction of the sequence termini in hydrophobic
core formation. We did not choose a sequence with a sym-
metric optimal fold, such as S1-8, since in that case, REMC
always appeared to find an optimal conformation fast
(compared to the time required for solving other
sequences of similar length), irrespectively of the parame-
ter settings used. For the 3D case, sequence S2-7 was cho-
sen. Neither sequence demands extensive CPU time to
solve, therefore 100 independent runs were conducted for
each parameter value being evaluated. In the following,
we always report the mean run-time required for reaching
the target energy level. Results for REMCvshd have been
omitted, because they are always significantly inferior to
those achieved by REMCm and REMCpm.

Examples of sequence classes with unique structuresFigure 6
Examples of sequence classes with unique structures.
On the left, an example of a Z-structure proposed by Aich-
holzer et al. [51] is shown. On the right, we show an example
of a L1-structure proposed by Gupta et al. [52]. An L1-struc-
ture has one bend whereas the other L-structure we experi-
ment with (L0) has no bends. The sequences associated with
these structures have a provably unique optimal conforma-
tion [51, 52].

1 n n

1

Comparison of energies found by REMC and PERM for long biological sequencesFigure 5
Comparison of energies found by REMC and PERM for long biological sequences. The best and mean energy values
found over 10 independent, one hour runs for each of the long biological sequences found in Supplemental Table 2 [see Addi-
tional file 1] is shown. The mean energy values reported for each instance is the average energy found amongst the 10 inde-
pendent runs; the best energy is the lowest value found amongst the 10 runs. Notice that ground-state conformations have
minimal free energy and therefore lower energy values are more desirable. In the 2D case (left side), PERM finds a best energy
value lower than REMC in one instance and matched the best energy value found by REMC in two other instances. In the other
7 instances, REMC finds conformations with lower energies. In all instances, the average energy found was lower for REMC
than PERM. In the 3D case (right side), REMC reports lower energies than PERM overall and on average for every instance.

-120

-110

-100

-90

-80

-120-110-100-90-80

P
E

R
M

 e
n
e
rg

y

REMCm energy

mean energy
best energy

-220

-210

-200

-190

-180

-170

-160

-150

-140
-220-210-200-190-180-170-160-150-140

P
E

R
M

 e
n
e
rg

y

REMCm energy

mean energy
best energy
Page 13 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
Number of replicas

A particularly important parameter of any REMC algo-
rithm is the number of replicas, i.e., the number of confor-
mations on which Monte Carlo search is concurrently

performed. In the literature, the use of χ : = replicas

has been suggested, where N is the number of degrees of
freedom within the system [42].

To test the specific effect of this parameter within the con-
text of protein folding in the HP model with our current
implementation, we conducted experiments on S1-7 and
S2-7 using 2, 3, 4, 5, 6, 7, 8, 9 and 10 replicas. As stated
above, all other parameters remained fixed including the
minimum and maximum temperature, set to 160 and
220, respectively. Formally, when evaluating the perform-
ance for replicas χ the temperature of replica k, 1 ≤ k ≤ χ,
was determined by the uniform linear function

Figure 8 shows the effect of the number of replicas on
mean run-time in the 2D case (left) and the 3D case

(right). Interestingly, the best parameters found by the
automatic algorithm configuration tool of Hutter et al.
[53], 5 replicas for the 2D case and 2 replicas for the 3D
case, seem to perform poorly for the problem instances
tested here. In fact, the worst results in the 2D case for
both REMCm and REMCpm occurred when using 5 replicas.
However, the results shown in Figure 8 demonstrate the
effect of the number of replicas on run-time only for two
specific problem instances, whereas the automatic algo-
rithm configuration tool determined parameters such that
performance was optimized across a wide range of prob-
lem instances.

Temperature distribution
We now focus our attention on the effect of temperature
values on run-time. The probability distributions that
control the acceptance of conformations during the
Monte Carlo search depend directly on the temperature
settings for each replica (see Equation 1); similarly, the
probability for performing replica exchanges depends on
the temperature difference between neighbouring replicas
(see Equation 2). Generally, a replica with a higher tem-
perature value will accept a worsening move with a higher
probability than a replica at a lower temperature. Hence,

N

T k k() : ()= + − ⋅ −
−

160 1
220 160

1χ

Comparing REMC and GTabuFigure 7
Comparing REMC and GTabu. The run-time distributions of REMCm and REMCpm for the four largest benchmark instances
in 2D are shown; P(solve) denotes the probability of finding a ground-state conformation within a given run-time. The comple-
tion rates for GTabu after 30 minutes and 60 minutes as reported in [7] are plotted. Optimistically assuming GTabu could be
improved by a factor of 15 under different experimental conditions and implementation improvements, we have also plotted
the same completion rates after 2 and 4 minutes. In the case of S1-8, GTabu reports a 100% successful completion rate. In all
other instances, both variants of REMC using pull moves in their local search neighbourhood outperform GTabu even under a
handicapped analysis.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

S1-8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

S1-9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

P
(s

o
lv

e
)

run-time, log [CPU sec]

S1-10

REMCm
REMCpm
GTabu - Scaled
GTabu - Actual

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

S1-11
Page 14 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
at higher temperatures, the search process is less likely to
stagnate in local minima of the energy landscape. At the
same time, however, lower temperatures are required for
exploring promising regions effectively. Therefore, there is
a trade-off between search diversification and intensifica-
tion that is controlled by the temperature values used by
the replicas. While our algorithms support arbitrary
assignments of temperature values to each replica, in all
experiments conducted in this study we have chosen sim-
ple linear temperature distributions over replicas, in
which the temperature values are obtained by uniform
linear interpolation between a minimum and a maximum
temperature value. Furthermore, we have chosen to fix the
minimum temperature to 160 in all cases; at this value,
significantly worsening moves are accepted with a proba-
bility near zero while exchanges between the neighbour-
ing temperature are still possible when reasonable values
are chosen. For a thorough discussion on the use of expo-
nential temperature distributions and the general effect of
temperature distribution on performance, the reader is
referred to the work of Iba [42] and Mitsutake et al. [24].
The results reported in Figure 9 suggest a clear relationship
between maximum temperature and mean run-time in
both, the 2D case (left side) and the 3D case (right side).
In the 2D case, run-time is poor at both extremes of the
temperature range. When temperature values are too low,
the algorithm gets trapped in local minima regions for
extended periods of time; likewise, higher temperatures
make it difficult for the algorithm to effectively optimize
promising conformations. The default parameter value of
220 seems a reasonable choice for both REMCm and REM-
Cpm. In the case of 3D, it seems that run-time scales worse
as temperature is increased.

Number of MC steps
The parameter φ specifies the number of Monte Carlo
steps performed by each replica between any two (pro-
posed) replica exchanges. To determine the effect of this
parameter on the run-time of our REMC algorithms, we
conducted experiments using a number of values ranging
from 5 to 5000 MC steps between replica exchanges.

Figure 10 shows the results for the 2D case (left side) and
3D case (right side). Although the relationship between
the setting of ϕ and algorithm performance is not as clear
as in the case of temperature choices, we observe that our
default value of 500 MC steps is a good choice for REMCm
and REMCpm on both, 2D and 3D instances.

Probability of performing pull moves
In REMCm, a parameter ρ is used to specify the probability
of using the pull move (rather than the VSHD) neighbour-
hood in any given search step. Figure 11 illustrates how
the value of ρ affects the performance of the algorithm in
the 2D case (left side) and 3D case (right side). Note that
for ρ = 0, REMCm becomes identical to REMCvshd, and for
ρ = 1, REMCm behaves exactly like REMCpm. As can be
expected based on the results previously shown for all
three algorithms, low settings of ρ result in substantially
weaker performance than high settings; for the instances
considered here, there were no significant performance
differences for ρ ≥ 0.3.

Conclusion
In this work we have demonstrated the effectiveness of an
extended ensemble algorithm, replica exchange Monte
Carlo search, when applied to the protein structure predic-

Effect of number of replicas on run-timeFigure 8
Effect of number of replicas on run-time. Results for mean runtimes of 100 independent runs at varying number of repli-
cas is shown for S1-7 in 2D (left) and S2-7 in 3D (right). A general relationship is unclear, however, the runtimes observed
while increasing the number of replicas scale less than the expected linear increase in most cases.

 8

 9

 10

 11

 12

 13

 14

 15

 2 3 4 5 6 7 8 9 10

C
P

U
 t
im

e
 [
s
e
c
]

number of replicas

REMCm
REMCpm

 14

 15

 16

 17

 18

 19

 20

 21

 2 3 4 5 6 7 8 9 10

C
P

U
 t
im

e
 [
s
e
c
]

number of replicas

REMCm
REMCpm
Page 15 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
tion problem for the HP model on the two dimensional
square lattice and the three dimensional cubic lattice. A
direct comparison with two state-of-the-art algorithms,
ACO-HPPFP-3 and PERM, on a standard set of bench-
mark sequences has shown that when using the pull move
neighbourhood, REMC performs exceptionally well. In
the 2D case, REMC ties or outperforms ACO-HPPFP-3 on
every problem instance we studied. Furthermore, the per-
formance of REMCm matches or exceeds that of PERM on
ten out of the eleven benchmark instances.

In 3D, we have shown that REMC outperforms ACO-
HPPFP-3 on all commonly studied benchmark instances.
Moreover, REMC variants based on pull moves find
ground-state conformations as fast or faster than PERM
for nine of ten instances and with a mean run-time of 0.1
CPU seconds on the remaining instance (which PERM
solves in 0.01 CPU seconds on average).

We have demonstrated that in the context of REMC
search, using pull moves – as opposed to VSHD moves
only – results in substantial performance improvements.
We have also shown that by combining pull moves and
VSHD moves into a hybrid search neighbourhood, better
(and more robust) performance can be obtained in some
cases. At the same time, the use of REMC search also con-
tributes to the overall effectiveness of our new algorithms,
as can be seen from the fact that our REMC algorithms
using pull moves performs better than the GTabu algo-
rithms, which is also based on the pull move neighbour-
hood. While GTabu introduced pull moves on the square

lattice, (to the best of our knowledge) our study is the first
to use pull moves on a 3-dimensional lattice model.

REMC proved to be very effective in folding proteins
whose hydrophobic cores are formed by interacting ter-
mini, such as S1-8 from the standard benchmark set – a
class of sequences that are very difficult for PERM. Simi-
larly, we have shown that REMC finds ground-state con-
formations for sequences with provably unique optimal
structures more effectively than PERM. We also presented
evidence indicating that when applied to sequences with
degenerate ground-states, REMC finds a larger and more
diverse set of ground-state conformations in both 2D and
3D. Finally, we have demonstrated that REMC performs
better than PERM on long biological sequences (in 2D
and 3D), which suggests that REMC's performance scales
quite well with sequence length. We expect, however, that
for very long sequences it may be beneficial to use a chain-
growth method to generate a compact conformation from
which REMC search is started. Overall, we have demon-
strated that REMC algorithms using the pull move neigh-
bourhood show excellent performance on the HP model.
Considering the generality of REMC and the possibility of
adapting the concept of pull moves to more complex lat-
tice structures, we see much promise in developing similar
algorithms for models that can represent protein structure
more accurately.

Methods
In this section, specific details of our algorithm, experi-
mental protocol and experimental environment are listed.

Effect of maximum temperature on run-timeFigure 9
Effect of maximum temperature on run-time. Results for mean runtimes of 100 independent runs is shown for an
increasing value of the maximum temperature. In the 2D case of folding S1-7 (left side), extremely low and extremely high tem-
peratures yield the worst running times. The mean run-time seems to consistently scale worse as the maximum temperature is
increased in the 3D case, while folding S2-7.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 160 180 200 220 240 260 280 300 320 340

C
P

U
 t

im
e

 [
s
e

c
]

maximum temperature

REMCm
REMCpm

 10

 15

 20

 25

 30

 35

 40

 45

 160 180 200 220 240 260 280 300 320 340

C
P

U
 t

im
e

 [
s
e

c
]

maximum temperature

REMCm
REMCpm
Page 16 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
Naming of problem instances
We have followed the naming conventions of problem
instances established by Shmygelska and Hoos [9]. The
instances with unique ground-state conformations were
named analogously. For the long biologically-inspired
sequences we retained the respective Protein Data Bank
identification codes.

Details of our REMC algorithm
In Figure 12, pseudo-code is presented illustrating the
details of our Monte Carlo search procedure performed
for a single replica and a predetermined number of steps.
Figure 13 presents pseudo-code of our replica exchange
implementation.

In order to demonstrate the effectiveness of the REMC
algorithms without prior knowledge of problem

Effect of pull move probability on run-timeFigure 11
Effect of pull move probability on run-time. Results for mean runtimes of 100 independent runs using different probabil-
ities of performing pull moves are reported for folding S1-7 in 2D (left) and S2-7 in 3D (right). Worst running times are
observed for very low values. Otherwise, performance is generally consistent for other values.

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 t

im
e

 [
s
e

c
]

pull move probability

REMCm

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 t

im
e

 [
s
e

c
]

pull move probability

REMCm

Effect of number of local steps on run-timeFigure 10
Effect of number of local steps on run-time. Results for mean runtimes of 100 independent runs using different numbers
of local steps during Monte Carlo search, ranging from 5 to 5000, are presented. The value of local steps is plotted in log scale.
Results in 2D for folding S1-7 are shown on the left and those of folding S2-7 in 3D are shown on the right. The relationship in
this instance appears to be more erratic, with poorest performance often observed at the extreme values tested. The default
value of 500 local steps reports good relative running times for both REMCm and REMCpm in both 2D and 3D.

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000 10000

C
P

U
 t

im
e

 [
s
e

c
]

number of local steps

REMCm
REMCpm

 14

 16

 18

 20

 22

 24

 26

 28

 30

 1 10 100 1000 10000

C
P

U
 t

im
e

 [
s
e

c
]

number of local steps

REMCm
REMCpm
Page 17 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
instances, we have fixed parameters across all experiments
including long sequences. For the 2D case, we use the
parameter configuration (ϕ, τmin, τmax, χ, ρ) : = (500, 160,
220, 5, 0.4); in 3D, (ϕ, τmin, τmax, χ, ρ) : = (500, 160, 220,
2, 0.5) where ϕ is the number of local steps in a Monte
Carlo search, τmin, and τmax, are the minimum and maxi-
mum temperature values respectively, χ is the number of
replicas to simulate and ρ is the probability of performing
a pull move. In the case of REMCvshd, where pull moves are
not considered, we use ρ : = 0.0; likewise, ρ : = 1.0 is used
in the case of REMCpm. A detailed description of these
parameters and their effects on run-time can be found in
the 'Discussion' section. The REMC algorithms are always
run on one processor and have not been parallelized.

Experimental protocol

In all experiments, runs were conducted independently
and with unique random seeds. All runs were terminated
immediately upon discovering the best known energy of
some sequence, or when a pre-specified maximum run-

time was exceeded in the case of fixed time runs. When
less than 100% of runs were successful, i.e.. reached the
target energy level, the expected run-time was calculated
as detailed by Parkes and Walser [54] as

, where ts and tf are the mean run-

time of successful and unsuccessful runs, respectively, and
sr is the ratio of successful to unsuccessful runs. All timing
of runs was performed measuring CPU time and started
with the first search step.

t t
sr

texp s f:= + −





⋅1
1

Outline Replica exchange Monte Carlo searchFigure 13
Outline Replica exchange Monte Carlo search. (a,
b) denotes a uniform random selection of a real number in
the inclusive range a to b. The procedure swapLabels(ca, cb)
swaps the labels (and therefore their temperature values) of
replicas a and b.

Procedure REMCSimulation(c, E∗,φ, ν)
Input: c – the state of the extended

ensemble, E∗ – the optimal energy,
φ – the number of local steps, ν –
the search neighbourhood

Output: c′ – the modified state of the
extended ensemble

E′ ← 0;
offset ← 0;
while E′ > E∗ do

foreach replica i in M do
MCsearch (φ,ci,ν);
if E(ci) < E′ then

E′ ← E(ci);
endif

endfch
i ← offset + 1;
while i+ 1 ≤ M do

j ← i+ 1;
∆ ← (βj − βi)(E(ci)− E(cj));
if ∆ ≤ 0 then

swapLabels (ci,cj);
else

q ← U(0, 1);
if q ≤ e−∆ then

swapLabels (ci,cj);
endif

endif
i ← i+ 2;

endw
offset ← 1− offset ;

endw



Outline of Monte Carlo procedureFigure 12

Outline of Monte Carlo procedure. (a, b), and (a,
b), denote a uniform random selection of a real number, and
respectively an integer number, in the inclusive range a to b.

(c', k, ν) denotes a mutation performed on conformation
c' at residue k, using a move from the ν neighbourhood.
When more than one move is feasible at position k, one is
chosen uniformly at random.

Procedure MCsearch(φ, c, ν)

Input: φ – the number of search steps to
perform, c – the current
conformation, and ν the search
neigbourhood

Output: c′ – the modified conformation
for i ← 1 . . .φ do

c′ ← c;
k ← Û(1, n);
c′ ← M(c′, k, ν) ;
∆E ← E(c′)− E(c);
if ∆E ≤ 0 then

c ← c′;
else

q ← U(0, 1);
if q > e

−∆E
T then

c ← c′;
endif

endif
endfor

 



Page 18 of 20
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
Experimental environment
All experiments were performed on PCs with 2.4Ghz Pen-
tium IV processors with 256KB cache and 1GB of RAM,
running SUSE Linux version 9.2, unless explicitly stated
otherwise.

Implementation
All versions of our REMC protein folding algorithms were
coded in C++ and compiled using g++ (GCC version
3.3.3). The source code is freely available under the GNU
General Public License (GPL) and can be downloaded
from our project website [55].

Authors' contributions
HH and AS initially proposed to investigate REMC in
combination with the pull move neighbourhood for the
HP folding problem. AS provided code which partially
formed the basis of the initial REMC implementation. CT
implemented REMC and conducted all experiments. CT
and HH collaborated on improving REMC, incorporating
pull moves and generalizing them to the 3D cubic lattice;
they also designed most of the computational experi-
ments. All authors were involved in interpreting experi-
mental results and in writing this manuscript.

Additional material

Acknowledgements
We would like to thank Neil Lesh, Michael Mitzenmacher and Sue White-
sides for providing us with their GTabu code, and Peter Grassberger for
providing us with an implementation of PERM. CT was funded by the CIHR/
MSFHR Bioinformatics Training Program for Health Research. This
research was also supported by funding from the Mathematics of Informa-
tion Technology and Complex Systems (MITACS) Network of Centres of
Excellence held by HH. We would like to thank the anonymous reviewers
for their helpful comments.

References
1. Berger B, Leighton T: Protein folding in the hydrophobic-

hydrophilic (HP) is NP-complete. Proceedings of the second
annual international conference on Computational molecular biology 1998,
5(1):27-40.

2. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis
M: On the complexity of protein folding. Proceedings of the sec-
ond annual international conference on Computational molecular biology
1998:61-62.

3. Hart W, Istrail S: Robust proofs of NP-hardness for protein
folding: general lattices and energy potentials. Journal of Com-
putational Biology 1997, 4:1-22.

4. Grassberger P: Pruned-enriched Rosenbluth method: Simula-
tions of θ polymers of chain length up to 1 000 000. Physical
review. E, Statistical physics, plasmas, fluids, and related interdisciplinary
topics 1997, 56(3):3682-3693.

5. Gront D, Kolinski A, Skolnick J: A new combination of replica
exchange Monte Carlo and histogram analysis for protein
folding and thermodynamics. The Journal of Chemical Physics 2001,
115(3):1569-1574.

6. Konig R, Dandekar T: Improving genetic algorithms for protein
folding simulations by systematic crossover. Biosystems 1999,
50:17-25.

7. Lesh N, Mitzenmacher M, Whitesides S: A complete and effective
move set for simplified protein folding. In RECOMB '03: Proceed-
ings of the seventh annual international conference on Research in compu-
tational molecular biology New York, NY, USA: ACM Press;
2003:188-195.

8. Liang F, Wong WH: Evolutionary Monte Carlo for protein fold-
ing simulations. The Journal of Chemical Physics 2001,
115:3374-3380.

9. Shmygelska A, Hoos H: An ant colony optimisation algorithm
for the 2D and 3D hydrophobic polar protein folding prob-
lem. BMC Bioinformatics 2005, 6:30.

10. Toma L, Toma S: Contact interactions method: A new algo-
rithm for protein folding simulations. Protein Science 1996,
5:147-153.

11. Unger R, Moult J: Genetic Algorithms for Protein Folding Sim-
ulations. Journal of Molecular Biology 1993, 231:75-81.

12. Unger R, Moult J: Genetic Algorithm for 3D Protein Folding
Simulations. In Proceedings of the 5th International Conference on
Genetic Algorithms San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc; 1993:581-588.

13. Hsu HP, Mehra V, Nadler W, Grassberger P: Growth-based opti-
mization algorithm for lattice heteropolymers. Physical review.
E, Statistical, nonlinear, and soft matter physics 2003, 68(2):021113.

14. Bastolla U, Frauenkron H, Grassberger P: Phase Diagram of Ran-
dom Heteropolymers: Replica Approach and Application of
a New Monte Carlo Algorithm. Journal of Molecular Liquids 2000,
84:111-129.

15. Dorigo M, Gambardella LM: Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem.
IEEE Transactions on Evolutionary Computation 1997, 1:53-66.

16. Klau GW, Lesh N, Marks J, Mitzenmacher M: Human-guided tabu
search. In Eighteenth national conference on Artificial intelligence Menlo
Park, CA, USA: American Association for Artificial Intelligence;
2002:41-47.

17. Gront D, Kolinski A, Skolnick J: Comparison of three Monte
Carlo conformational search strategies for a proteinlike
homopolymer model: Folding thermodynamics and identifi-
cation of low-energy structures. The Journal of Chemical Physics
2000, 113(12):5065-5071.

18. Hilhorst HJ, Deutch JM: Analysis of Monte Carlo results on the
kinetics of lattice polymer chains with excluded volume. The
Journal of Chemical Physics 1975, 63(12):5153-5161.

19. Kremer K, Binder K: Monte Carlo simulation of lattice models
for macromolecules. Computer Physics Reports 1988, 7(6):259-310.

20. Ramakrishnan R, Ramachandran B, Pekny JF: A dynamic Monte
Carlo algorithm for exploration of dense conformational
spaces in heteropolymers. The Journal of Chemical Physics 1997,
106(6):2418-2425.

21. Hansmann UHE: Parallel tempering algorithm for conforma-
tional studies of biological molecules. Chemical Physics Letters
1997, 281:140-150.

22. Irbäck A, Sandelin E: Monte Carlo study of the phase structure
of compact polymer chains. The Journal of Chemical Physics 1999,
110(24):12256-12262.

23. Irbäck A: Dynamic Parameter Algorithms for Protein Fold-
ing. In Monte Carlo Approach to Biopolymers and Protein Folding Edited
by: Grassberger P, Barkema G, Nadler W. World Scientific, Singa-
pore; 1998:98-109.

24. Mitsutake A, Sugita Y, Okamoto Y: Generalized-ensemble algo-
rithms for molecular simulations of biopolymers. Peptide Sci-
ence 2001, 60(2):96-123.

Additional file 1
Supplemental material. This file contains tables listing the biologically
motivated benchmark sets and the problems instances with a provably
unique ground-state conformation. Additionally, results of simulations are
reported for the rate of energy evaluations (per CPU second) achieved by
our implementation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-342-S1.pdf]
Page 19 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-342-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9109034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9109034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8771207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8771207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8496967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8496967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14524959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14524959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11455545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11455545

BMC Bioinformatics 2007, 8:342 http://www.biomedcentral.com/1471-2105/8/342
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

25. Geyer C: Markov chain Monte Carlo maximum likelihood.
Computing Science and Statistics: Proceedings of the 23rd Symposium on
the Interface 1991.

26. Hukushima K, Nemoto K: Exchange Monte Carlo Method and
Application to Spin Glass Simulations. Journal of the Physical Soci-
ety of Japan 1996, 65:1604-1608.

27. Iba Y: Review of Extended Ensemble Algorithms. Proceedings
of the Institute of Statistical Mathematics 1993, 41:65.

28. Kimura K, Taki K: Time-homogeneous parallel annealing algo-
rithm. Proceedings of the 13th IMACS World Congress on Computation
and Applied Mathematics (IMACS'91) 1991, 2:827-828.

29. Hukushima K, Takayama H, Yoshino H: Exchange Monte Carlo
Dynamics in the SK Model. Journal of the Physical Society of Japan
1998, 67:12-15.

30. Lin CY, Hu CK, Hansmann UH: Parallel tempering simulations
of HP-36. Proteins 2003, 52(3):436-445.

31. Sugita Y, Kitao A, Okamoto Y: Multidimensional replica-
exchange method for free-energy calculations. The Journal of
Chemical Physics 2000, 113(15):6042-6051.

32. Sugita Y, Okamoto Y: Replica-exchange molecular dynamics
method for protein folding. Chemical Physics Letters 1999, 314(1–
2):141-151.

33. Sugita Y, Okamoto Y: Free-Energy Calculations in Protein Fold-
ing by Generalized-Ensemble Algorithms. Lecture Notes in Com-
putational Science and Engineering 2001.

34. Sugita Y, Okamoto Y: Replica-exchange multicanonical algo-
rithm and multicanonical replica-exchange method for sim-
ulating systems with rough energy landscape. Chemical Physical
Letters 2000, 329(3–4):261-270.

35. Dill KA: Theory for the folding and stability of globular pro-
teins. Biochemistry 1985, 24(6):1501-1509.

36. Lau KF, Dill KAD: A lattice statistical mechanics model of the
conformational and sequence spaces of proteins. Macromole-
cules 1989, 22(10):3986-3997.

37. Yue K, Dill K: Forces of Tertiary Structural Organization in
Globular Proteins. Proceedings of the National Academy of Sciences
of the United States of America 1995, 92:146-150.

38. Kolinski A, Skolnick J: Reduced models of proteins and their
applications. Polymer 2004, 45(2):511-524.

39. Dill KA, Bromberg S: Molecular Driving Forces New York and London:
Garland Science; 2003.

40. Verdier PH, Stockmayer WH: Monte Carlo Calculations on the
Dynamics of Polymers in Dilute Solution. The Journal of Chemi-
cal Physics 1962, 36:227-235.

41. Gurler MT, Crabb CC, Dahlin DM, Kovac J: Effect of bead move-
ment rules on the relaxation of cubic lattice models of poly-
mer chains. Macromolecules 1983, 16(3):398-403.

42. Iba Y: Extended Ensemble Monte Carlo. International Journal of
Modern Physics C 2001, 12:623.

43. Marinari E, Parisi G: Simulated tempering: a new Monte Carlo
scheme. Europhysics Letters 1992, 19:451-458.

44. Swendsen R, Wang J: Replica Monte Carlo simulation of spin
glasses. Physical Review Letters 1986, 57:2607-2609.

45. Bastolla U, Frauenkron H, Gerstner E, Grassberger P, Nadler W:
Testing a new Monte Carlo algorithm for protein folding.
Proteins 1998, 32(1):52-66.

46. Beutler TC, Dill KA: A fast conformational search strategy for
finding low energy structures of model proteins. Protein Sci-
ence 1996, 5(10):2037-2043.

47. Chikenji G, Kikuchi M, Iba Y: Multi-Self-Overlap Ensemble for
Protein Folding: Ground State Search and Thermodynam-
ics. Physical Review Letters 1999, 83(9):1886-1889.

48. Krasnogor N, Hart WE, Smith J, Pelta DA: Protein Structure Pre-
diction With Evolutionary Algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference Volume 2. Edited by:
Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M,
Smith RE. Morgan Kaufmann; 1999:1596-1601.

49. Dill K, Fiebig K, Chan H: Cooperativity in Protein-Folding
Kinetics. Proceedings of the National Academy of Sciences of the United
States of America 1993, 90(5):1942-1946.

50. Sayle R, Milner-White EJ: RASMOL – Biomolecular Graphics for
All. Trends in biochemical sciences 1995, 20(9):374-376.

51. Aichholzer O, Bremner D, Demaine ED, Meijer H, Sacristan V, Soss
M: Long proteins with unique optimal foldings in the H-P
model. Computational Geometry 2003, 25(1–2):139-159.

52. Gupta A, Manuch J, Stacho L: Structure-Approximating Inverse
Protein Folding Problem in the 2D HP Model. Journal of Com-
putational Biology 2005, 12(10):1328-1345.

53. Hutter F, Hoos HH, Stützle T: Automatic Algorithm Configura-
tion based on Local Search. Proceedings of the Twenty-Second Con-
ference on Artifical Intelligence (AAAI '07) 2007:1152-1157.

54. Parkes A, Walser J: Tuning Local Search for Satisfiability Test-
ing. In Proceedings of the Application of Artifical Intelligence Conference
MIT Press; 1996:356-362.

55. A replica exchange Monte Carlo algorithm for protein fold-
ing in the HP model: Project website [http://www.cs.ubc.ca/
labs/beta/Projects/REMC-HPPFP]
Page 20 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12866054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12866054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3986190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3986190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10033814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10033814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8897604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8897604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7680482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7680482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16379538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16379538
http://www.cs.ubc.ca/labs/beta/Projects/REMC-HPPFP
http://www.cs.ubc.ca/labs/beta/Projects/REMC-HPPFP
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The hydrophobic polar model
	Search neighbourhoods
	VSHD moves
	End moves
	Corner moves
	Crankshaft moves

	Pull moves

	Replica exchange Monte Carlo search
	Our REMC algorithms

	Results
	Results for standard benchmark sequences
	Characteristic performance of REMC
	Results for longer sequences
	Results for sequences with unique ground-state conformations
	Comparison with GTabu

	Discussion
	Number of replicas
	Temperature distribution
	Number of MC steps
	Probability of performing pull moves

	Conclusion
	Methods
	Naming of problem instances
	Details of our REMC algorithm
	Experimental protocol
	Experimental environment
	Implementation

	Authors' contributions
	Additional material
	Acknowledgements
	References

