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Abstract
Background: Cells dynamically adapt their gene expression patterns in response to various stimuli. This
response is orchestrated into a number of gene expression modules consisting of co-regulated genes. A growing
pool of publicly available microarray datasets allows the identification of modules by monitoring expression
changes over time. These time-series datasets can be searched for gene expression modules by one of the many
clustering methods published to date. For an integrative analysis, several time-series datasets can be joined into a
three-dimensional gene-condition-time dataset, to which standard clustering or biclustering methods are, however,
not applicable. We thus devise a probabilistic clustering algorithm for gene-condition-time datasets.

Results: In this work, we present the EDISA (Extended Dimension Iterative Signature Algorithm), a novel
probabilistic clustering approach for 3D gene-condition-time datasets. Based on mathematical definitions of gene
expression modules, the EDISA samples initial modules from the dataset which are then refined by removing
genes and conditions until they comply with the module definition. A subsequent extension step ensures gene and
condition maximality. We applied the algorithm to a synthetic dataset and were able to successfully recover the
implanted modules over a range of background noise intensities. Analysis of microarray datasets has lead us to
define three biologically relevant module types: 1) We found modules with independent response profiles to be
the most prevalent ones. These modules comprise genes which are co-regulated under several conditions, yet
with a different response pattern under each condition. 2) Coherent modules with similar responses under all
conditions occurred frequently, too, and were often contained within these modules. 3) A third module type,
which covers a response specific to a single condition was also detected, but rarely. All of these modules are
essentially different types of biclusters.

Conclusion: We successfully applied the EDISA to different 3D datasets. While previous studies were mostly
aimed at detecting coherent modules only, our results show that coherent responses are often part of a more
general module type with independent response profiles under different conditions. Our approach thus allows
for a more comprehensive view of the gene expression response. After subsequent analysis of the resulting
modules, the EDISA helped to shed light on the global organization of transcriptional control. An implementation
of the algorithm is available at http://www-ra.informatik.uni-tuebingen.de/software/IAGEN/.
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Background
Cellular signaling events affect the regulation of transcrip-
tion factor (TF) activation [1,2]. TFs in turn regulate the
expression of specific target genes. Microarrays can pro-
vide dynamic information on the phenomenological
responses induced by this underlying regulatory network.
Such datasets are either analyzed by approaches explicitly
modeling regulatory interactions [3-5] or are clustered
into co-expressed groups of genes, which potentially cap-
ture genes under the same regulatory control [6-8]. Both
approaches have been extended to integrate homogene-
ous [9] or heterogeneous [5,8] information potentially
leading to more expressive models. In this work we con-
centrate on the clustering paradigm in order to devise an
integrative approach for application to homogeneous
datasets.

The majority of DNA microarray assays monitor the
expression of genes over several time-points or condi-
tions, providing a two-dimensional dataset. Such datasets
are often processed by full-space clustering approaches,
such as k-means clustering [10], hierarchical clustering
[11], and spectral clustering [12]. In 2000, the biclustering
approach was introduced by Cheng et al. [13]. Further
publications followed [8,14-18]. These biclustering meth-
ods aim at finding subsets of genes and conditions by
clustering them simultaneously.

For an integrative analysis of 3D gene-condition-time data-
sets with standard clustering or biclustering approaches,
these datasets have often been projected onto a single
gene-condition matrix, with each time-point labeled as a
separate condition [14,19,20]. However, these
approaches ignore the time-dependent structure of the
dataset, directly comparing expression values from differ-
ent experiments. Hence, the variation within the dataset
and the number of potential modules increase. To analyze
multiple time-series datasets without disrupting their
structure, Zhao and Zaki [21] recently proposed the TRI-
CLUSTER approach. This approach extends the concept of
biclustering by an additional dimension. Daxin et al. [9]
introduced two algorithms extending the idea of a full-
space clustering approach. These methods mine for genes
that have coherent patterns across both the condition and
time dimension, hence coherent modules. Such modules
impose a strong constraint on the dataset, which has to be
equidistant in its time-steps, and onthe biological
response trajectory, which has to follow the same shape
under every condition.

An important prerequisite for such approaches is the
availability and composition of three-dimensional gene-
condition-time datasets. Such datasets could be composed
as an accumulation of different experiments from micro-
array databases [22-24], leading to a heterogeneous data-

set. Here, however, we concentrate on homogeneous
datasets generated within one study. For our analysis, we
used a multiple sclerosis dataset from Homo sapiens and
two datasets from Arabidopsis thaliana. In 2003 a 3D data-
set from multiple sclerosis patients [25] has been pub-
lished. The condition dimension consisted of 13 multiple
sclerosis patients, monitored over 7 time-points after IFN-
β injection. The Arabidopsis thaliana datasets were com-
posed of different abiotic stress stimulus experiments con-
ducted in the root and shoot tissue [26]. This dataset has
been previously analyzed by methods which cluster each
condition separately [17,27] and by other approaches
[28,29] employing different standard methodologies to
provide a comprehensive biological interpretation of the
datasets.

In order to mine 3D gene-condition-time datasets with dif-
ferent module definitions we established the EDISA
(Extended Dimension Iterative Signature Algorithm),
which is based on the Iterative Signature Algorithm (ISA)
proposed by Bergman et al. [30] in 2003. We chose to
extend the ISA algorithm because it was successfully
applied to Saccharomyces cerevisiae microarray data [31],
ranked among the best biclustering algorithms in a com-
parative study [20], and was flexible enough to be
extended by a further dimension and novel module defi-
nitions. However, a acknowledged problem of the ISA lies
in its predilection for strong signals, which are found hun-
dreds of times before weaker signals are, if at all, detected.
In cases where genes with a strong signal have been
selected into the initial sample, they dominate the aver-
age, driving the module towards their signal. Lazzeroni
and Owen [32] address a similar problem by subtracting
signals which are contained in the already detected mod-
ules. Kloster et al. [33] extend the ISA, stipulating that the
condition vector of each new module be orthogonal to the
condition vectors of the previously identified modules.

We borrowed the idea of iteratively refining the genes and
conditions contained in a module from the ISA. However,
the module definitions as well as the pre- and post-
processing steps were redesigned and further module def-
initions were added. The preprocessing was redesigned to
compensate for the predilection of the ISA approach for
strong signals, whereas the postprocessing was designed
to generate a comprehensive set of distinct modules.

Results and discussion
Approach
The method proposed in this work is the Extended
Dimension Iterative Signature Algorithm (EDISA). It is an
extension of the ISA approach [30]. While the ISA oper-
ates on two-dimensional datasets, the EDISA is capable of
mining gene modules in the three-dimensional datasets
used throughout this work.
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Commonly, two-dimensional gene expression datasets
comprise a gene and a condition dimension. Thus, to
extract modules, biclustering algorithms mine for subsets
of genes and conditions within a permutable matrix of
expression values. In the case of a three-dimensional data-
set, the gene-condition matrix contains time-series of gene
expression values, rather than scalar values.

For each module type, a mathematical definition is pro-
vided in the methods section, specifying the set of all
modules of a particular type contained in a dataset. To
mine for all modules, one could, in principle, enumerate
all the subsets of genes and conditions. This, however, is
intractable as the number of possible subsets grows expo-
nentially with the genes and conditions. Nonetheless, we
want to mine the datasets for all modules contained
therein in reasonable time. To accomplish this, several
steps are taken. We introduce a simple probabilistic pre-
processing method to sample subsets of genes potentially
containing a module. Typically, the number of conditions
is small compared to the number of genes. Thus, we can
include all the conditions into the initial module and only
sample the genes. Starting from initial samples, the EDISA
algorithm refines sets of genes and conditions at each iter-
ation step. This is achieved by removing genes and condi-
tions not sufficiently aligned with the average expression
pattern of the module. The iteration formulas are repeated
until convergence is reached. Convergence is reached if
the module definition is satisfied for all genes and condi-
tions. If a module is found, it is stored and the procedure
is repeated, leading to a redundant set of modules. The
postprocessing step merges these modules into a non-
redundant set. This reduction is accomplished by remov-
ing modules that are a subset of a larger module. Finally,
for every remaining module, two extension steps are
applied, ensuring gene and condition maximality. A sche-
matic overview of the EDISA algorithm is given in Figure
1.

Gene modules
Our definitions of gene modules are designed to fulfill
several conditions, that enable us to capture the modular
structure of transcriptional control [7,34]. The modules
are non-exhaustive, since some genes might be unaffected
under the conducted experiment. They are non-exclusive,
since a gene might be regulated by different mechanisms
under different conditions. To account for this, it is possi-
ble to assign a gene to multiple modules. Apart from the
general concept of a gene module, each module definition
provided here is derived from a particular biological intu-
ition. Single response modules associate genes with one
condition, uncovering very specific response mechanisms
that may help biologists to find marker genes for certain
stresses. Coherent modules, on the other hand, reveal co-
expression under multiple conditions and display a more

general response. The genes involved in both the single
response and coherent modules are potentially controlled
by the same transcription factors. Independent response
modules allow for a more complex type of modular co-
expression, i.e. they hint at the existence of stress
responses specific for every condition alongside with a
common transcriptional control. The introduction of
independent response modules extends previous
approaches by a novel module type [9,21].

Parameter settings
In order to obtain correlated biclusters on biological data-
sets, it is essential to find the threshold which is able to
distinguish different signals while separating them from
noise. EDISA has two main parameters, τG and τC. The τG
parameter specifies how well each gene has to be aligned
with the average trajectory of the module. Respectively,

Schematic flowchart depicting the EDISAFigure 1
Schematic flowchart depicting the EDISA. Before 
applying EDISA, the module definition and the dataset have 
to be specified. Here, we provide three predefined module 
types. Given this information random samples are drawn 
from the dataset (preprocessing). EDISA iteratively refines 
these samples and stores them if they match the module def-
inition. After a specified number of runs EDISA computes the 
final modules (postprocessing).
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parameter τC specifies how well each condition has to be
aligned with the average trajectory of the module. Con-
ceptually, τG can be related to the intra-condition variance
of different genes under the same regulatory control, and
τC can be related to the inter-condition variance of a gene.

A common strategy for adjusting these parameters, which
is already known from the ISA [30], requires several passes
over the data at different resolutions. Low values of τ will
create modules containing highly correlated gene expres-
sion profiles. Hence, increasing the value of τ will result in
modules containing an increasing number of genes, that
display a reduced correlation. Here, we adjust parameters
τG and τC during the process of extracting the modules.
The adjustment is based on a clustering step which sepa-
rates the signals from noise (for details, see Automatically
refining the parameters). In a postprocessing step the
obtained modules are matched against their module defi-
nition, for which fixed τG and τC parameters are applied.

Thus, the user can specify three parameters τG, τC and the
number of iterations performed, i.e. the number of sam-
ples drawn from the dataset.

Testing
In order to evaluate its performance, the EDISA was
applied to a randomly generated synthetic dataset. There-
fore, the number of samples was set to 1,000, τG to 0.1 and
τC to 0.2, for the noise levels σ ∈ [0, 0.5]. For the noise
level σ = 0.7 the parameter τG was set to 0.15 and for the
noise level σ = 0.9 the parameter τG was set to 0.2. The syn-
thetic dataset contains three overlapping modules and
one exclusive module.

Apparently, EDISA is robust against noise applied to the
modules and the variance of the results from separate runs
is fairly small (Figure 2), given the probabilistic nature of
the method. A direct comparison of the EDISA to the
methods of Zhao and Zaki [21] and Daxin et al. [9] is not
provided here, since such a comparison could only be car-
ried out for coherent modules.

Application to biological datasets
EDISA has been applied to the biological datasets to mine
for coherent and independent response modules. We did not
explicitly mine single response modules, since they are con-
ceptually contained in independent response modules [see
Additional file 2]. On the biological datasets the EDISA
was applied with 10,000 iterations and the threshold set-
tings τG = 0.1 and τC = 0.2. An overview of the obtained
modules is given in Table 1.

To gain insight into the ability of the EDISA to produce
biological relevant models, we related the obtained mod-
ules to their biological process, by mapping the respective

genes to the Gene Ontology (GO) [35]. This mapping was
performed with DAVID [36]. DAVID calculates p-values
by employing a modified Fisher Exact test (EASE) [37],
which is based on the hypergeometric distribution. Addi-
tionally, for the Arabidopsis thaliana dataset we performed
an enrichment analysis for cis-regulatory motifs.

Evaluation on the Homo sapiens multiple sclerosis dataset
The Homo sapiens multiple sclerosis dataset was obtained
from multiple sclerosis patients after injection of 30 µg of
IFN-β, with GeneFilters GF211 DNA arrays. After applying
the EDISA to this dataset, we received 15 independent
response modules (MIR), 8 coherent modules (MCo) but no
single response modules (MSR) (Figure 3). These modules

Table 1: Modules found in the datasets

modules
datasets coherent independent 

response
single response

Homo sapiens 
multiple 
sclerosis

8 15 0

Arabidopsis 
thaliana root

5 34 8

Arabidopsis 
thaliana shoot

13 47 5

Number of modules and module types found in each dataset after 
searching for coherent modules and independent response modules 
separately. The single response modules are a subset of the 
independent response modules. In each case 10,000 EDISA iterations 
were performed with τG = 0.1 and τC = 0.2.

Performance of EDISA on an synthetic datasetFigure 2
Performance of EDISA on an synthetic dataset. EDISA 
was applied to a synthetic dataset with implanted modules 
and different levels of noise. The overlap of the implanted 
modules and the modules mined by EDISA were scored 
(equation 15). Six runs with 400 iterations were performed, 
with τG = 0.1 and τC = 0.2 for σ ∈ [0,0.5], τG = 0.15 for σ = 
0.7 and τG = 0.2 for σ = 0.9.
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capture 2,420 different genes responding to the IFN-β
treatment [38]. Several modules cover responses in which
the genes of patients I-L are down-regulated (e.g. M10IR,
Figure 4) or up-regulated (e.g. M13Co), respectively.
Another group of modules exists which captures peaked
responses affecting the genes of patients E-H (M6Co and
M14IR, Figure 4). Analysis with the functional Gene
Ontology annotation often showed an enrichment for the
regulation of cellular processes such as the regulation of
the nucleic acid and protein metabolism. As IFN-β is
known to inhibit proliferative activities [39], the func-
tional enrichment of cell growth and/or maintenance is
plausible. The extracted modules often reveal striking dif-
ferences between the patients of this study. For instance
the patients A-C are associated with the modules M3Co,
M4Co, and M7Co. Whereas, the patients I-L are associated
with the modules M8Co and M9IR-M11IR.

This grouping allows a phenomenological classification
of patients with respect to their stress responses. For
instance, only patients E-H are associated with module
M6Co with a functional enrichment of "cell cycle" (p-value:
1.0 × 10-5) and "organic acid metabolism" (p-value: 7.3 ×
10-4). Whereas, only patients I-L are associated with the
module M10IR, with a functional enrichment of "response
to stress" (p-value: 7.0 × 10-4). These response characteris-
tics can be related to independent differences in disease
history or progression.

Single response modules were not observed as could be
expected since the external stimulus is identical for all
patients. Surprisingly, this did not result in a high number
of coherent modules. Instead, we observed a rather high
number of independent response modules.

Evaluation on the Arabidopsis thaliana abiotic stress 
dataset
To analyze the response to several abiotic stresses, a com-
prehensive Arabidopsis thaliana transcript expression study
was performed for the tissues root and shoot [26]. These
measurements were performed in parallel on Affymetrix
ATH1 microarrays. Some time-points in this dataset were
not consistently measured under all conditions, and have
therefore, been removed when mining for coherent mod-
ules.

Employing the EDISA, we extracted 47 independent
response modules from the shoot (S1IR-S47IR, Figure 5)
and 34 independent response modules from the root dataset
(R1IR-R34IR, Figure 5). From 4,491 genes, which meet the
fold-change criteria, 2,617 were included into at least one
module. The modules can be grouped into four compo-
nents, explaining most of the variation in gene expression.
These four components are: The circadian rhythm, the
heat shock response, a general stress response and specific
stress responses.

Circadian rhythm
The circadian rhythm in the shoot tissue is an excellent
example of a coherent response, displayed by the modules
S10IR and S46IR (Figure 6). The genes of module S46IR are
up-regulated at daytime, and the genes of S10IR are down-
regulated at daytime. Unlike the genes of other modules,
the circadian clock genes do not respond to the applied
stress, since the pattern of S46IR can also be observed in
the control measurement of the shoot tissue. Under cold
stress, however, this oscillation is disrupted. Gould et al.
[40] describe how the Arabidopsis thaliana circadian clock
usually compensates for temperature differences. They
cover a temperature range from 12 to 27°, whereas a cold
stress of 4° was applied here. Ramos et al. [41] discovered
that two chestnut proteins (CsTOC1 and CsLHY), which
are homologous to two proteins of the circadian rhythm
in Arabidopsis thaliana, fail to oscillate during winter dor-
mancy. This supports the finding of a clock disruption
under cold stress.

For the S46IR module we could identify two cis-regulatory
elements that are highly enriched in the upstream regula-
tory sequences, a GCCAC motif (p-value: 2.5 × 10-1) and
the consensus for the well known G-box, CACGTG (p-
value: 4.3 × 10-5). Although the first motif is of low signif-
icance, it is noteworthy that both motifs have already
been discovered in two publications on phytochrome
mediated light signaling cascades [42]. The G-box is
bound by specific G-box-binding transcription factors of
the bZIP-transcription factor family and has already been
shown to constitute an essential regulatory element in sev-
eral promoters of light regulated genes.

Overview of the Homo sapiens multiple sclerosis modulesFigure 3
Overview of the Homo sapiens multiple sclerosis 
modules. Depicts the independent response and coherent 
modules. The edges indicate the amount of overlap between 
the modules (equation 14), if the respective value is lower 
than 0.15 no line is drawn. Table 1 provides an overview of 
all different module types.
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Heat shock response
A clear example of an independent response module can be
observed in the module R34IR consisting of 17 genes (Fig-
ure 6). Of these, 9 map to "response to heat" (p-value: 2.0
× 10-17), 13 to "response to abiotic stimulus" (p-value: 8.5
× 10-15) and 7 map to "protein folding" (p-value: 7.0 × 10-

9). Apparently, this module is mainly composed of heat
shock proteins which have already been described to be
co-regulated by the heat shock transcription factors hsf1
and hsf3 [43]. Both factors bind to the spaced dyad palin-
drome GAA(N)TTC. Indeed, this motif occurs frequently
in the upstream sequences of the genes in this module (p-
value: 4.9 × 10-06).

Cold, osmotic, and salt stress response
The most prevalent signals appear under the cold, osmotic
and salt conditions (Figure 7). Kreps et al. [44] found
about one third of the Arabidopsis genome to be sensitive
to these three conditions. EDISA detects several modules

taking part in the response to these stresses. Several dis-
tinct shapes can be observed, which are similar for salt
and osmotic stress. This suggests that genes are co-regu-
lated under osmotic and salt stress, or, more likely, that
the plant does not distinguish between salt and osmotic
stress most of the time. Overall, these modules seem to be
the result of an underlying general stress response mecha-
nism, which is activated by different stresses. Module S7IR
is significant for "response to water deprivation" (p-value:
2.9 × 10-8) and is pronounced under "response to cold"
(p-value: 1.6 × 10-16). Module S16IR is assigned to
"response to cold" (p-value: 1.6 × 10-16), "response to salt
stress" (p-value: 1.0 × 10-5) and " response to osmotic
stress" (p-value: 3.3 × 10-5) confirming the cold, osmotic
and salt component of this module. In the promoters of
the genes contained within this module we found the
drought and cold responsive element ACCGAC enriched,
which is the DREB transcription factor binding site. This
cis-regulatory element was found several times with vary-

Modules in the Homo sapiens multiple sclerosis datasetFigure 4
Modules in the Homo sapiens multiple sclerosis dataset. The modules of the Homo sapiens dataset show distinct 
responses for the different patients. Module M4 depicts a response of patients A-C. Modules M6 and M14 cover a similar 
response trajectory, while M4 was detected with the coherent definition and M14 with the independent response definition. Mod-
ule M10 is associated with the patients I-J and depicts a group of genes which are down-regulated after IFN-β treatment. Con-
ditions not contained in a module are depicted in gray.
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ing flanking nucleotide sequences at p-values ranging
from 1.2 × 10-5 to 4.3 × 10-5.

Specific stress responses
Very pronounced responses can be found under exposure
to oxidative stress in the shoot or salt stress in the root
(Figure 6). One of the most striking patterns in this respect
is the single response module S23IR which reacts to oxida-
tive stress in the shoot tissue. A functional analysis of this
cluster reveals an enrichment of the pyrimidine (p-value:
8.6 × 10-5) and purine (p-value: 8.9 × 10-3) metabolism.
All mapped enzymes catalyze different deoxynucleotides,
hence precursors necessary for DNA synthesis (see Figure
8). This finding is in accordance with the fact that module
S23IR is a single response module, and thus only genotoxic
stress has a significant effect on the DNA synthesis.
Another single response module (R11IR) specifically
responding under salt stress in the root is depicted in Fig-
ure 6. This is an especially interesting module, as the anti-
sense of the W-box motif (TTGACTT) has been detected
several times in the promoters. This is noteworthy, as the
WRKY-transcription factors that bind to this element are
already known to play a role in various abiotic and biotic
stress responses. Two representatives of this class are con-
tained within R11IR. The W-box motif AGTCAA has been
found 96 times more frequently in the promoters of this
dataset (p-value: 4.2 × 10-09) than one would expect at
random.

Overall, the Arabidopsis thaliana dataset contains coherent,
independent response and single response modules (see Table
1). The independent response modules are the most numer-
ous. The coherent modules occur less frequently. In the
shoot tissue, these modules often contain cyclic genes

which do not respond to the applied stresses. The single
response modules occur several times, however not all the
stresses could be related to such a module.

Conclusion
Cells co-regulate the expression of their genes to respond
appropriately to the sensed stimulus. They orchestrate
these genes into general stress responses (coherent mod-
ules), some with different profiles (independent response
modules), and into specific stress responses (single
response modules). This modular response organization
can only be observed in the light of multiple time-series
microarray datasets. EDISA is capable of capturing such
complex response patterns with manifold trajectories.

We evaluated the capability of EDISA to extract these
response patterns from different datasets. Using a syn-
thetic dataset, we showed that the algorithm is robust
against noise and, despite its randomized nature, the
results are rather stable. The EDISA could be applied to
different biological datasets with the same parameter set-
ting for τG, τC, and the number of iterations. The EDISA is
capable of auto-adjusting the sensitive parameters during
the iteration procedure. The predilection of the ISA
approach for strong signals could be compensated for
through the pre- and postprocessing procedures. This
leads to a comprehensive set of distinct modules, covering
a large variety of stress responses.

The subsequent analysis of these modules revealed inter-
esting aspects of stress responses. This allowed the gener-
ation of hypotheses regarding the underlying regulatory
system. For instance, observing general stress responses
hints at a common regulatory control independent of the
specific stress stimulus, while a regulatory mechanism
responding to specific stress stimuli can be supported by
single response modules. Such single response modules
could also be captured by standard clustering methods.
However, one can only distinguish between general and
specific responses by finding these modules within 3D
datasets. In the Arabidopsis thaliana dataset we have a
strong indication of a common transcriptional control for
osmotic and salt stress, whereas the single response genoto-
xic module hints at a specific response mechanism. In
contrast, there has been only one stimulus applied to the
Homo sapiens multiple sclerosis dataset. Therefore, differ-
ences in the response patterns of individual patients can
be investigated, rather than differences in stimuli. The
Homo sapiens multiple sclerosis modules exhibit a clear
separation of patients into distinct groups, which respond
differently to the same stimulus. These differences can be
informative regarding disease states, disease progression
and the respective regulatory mechanisms. The separation
of the mathematical definition of a module and the min-
ing algorithm allows for a flexible adaptation of both. The

Overview of the Arabidopsis thaliana modulesFigure 5
Overview of the Arabidopsis thaliana modules. 
Depicts the independent response modules. The edges indicate 
the amount of overlap between the modules (equation 14). If 
the respective value is lower than 0.15 no line is drawn. 
Table 1 provides an overview of all different module types.
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provided definition of the independent response modules
captures several interesting responses, while remaining
flexible with respect to the biological patterns and the
structure of the dataset. Biological response patterns are
allowed to be time-shifted or have completely different
profiles. The dataset is not required to have the same
number of measurements for every condition, or equal
time-steps. Even the normalization protocol is not
required to be equal. Hence, independent response modules
can be used to analyze datasets from different experiments
which cannot be compared directly. It is, however, impor-
tant to stress that the biological validity of exploring this
flexibility should be further addressed. Overall, the EDISA
allows for a flexible, integrative analysis resulting in
informative and dense modules, which can be subject to
further downstream functional analysis.

Methods
Mathematical definitions

The gene expression matrix EGCT is composed of genes G =
{g1, �, g|G|}, conditions C = {c1, �, c|C|} and time-points

, were |G| denotes the number of genes,

|C| the number of conditions and |Tc| the number of time-

points measured under the condition c. If |Tc| varies

throughout the dataset, only independent response modules
can be mined, whereas, coherent and independent response
modules can be mined in datasets where all conditions
contain d samples. Egct refers to the expression value of
gene g under condition c at time-point t. The vector egcT-
specifies the profile of gene g under condition c over all
time-points |Tc| (equation 1). Using this notation, a row

(egCT), containing all conditions and time-points of a sin-
gle gene, is defined in equation 2 and a column (eGcT),
containing all genes and time-points under a single condi-
tion, in equation 3.

Further, we define the average trajectory  over

all conditions Cm and all genes Gm, as well as the average

T t t Tc
= { }1, ,

egcT gct gct gct
E E E Tc= ( , ,..., )1 2

e e e egCT gc T gc T gc TC= ( , ,..., )1 2

e e e eGcT g cT g cT g cTG= ′( , ,..., )1 2

eG C Tm m

Module types in Arabidopsis thalianaFigure 6
Module types in Arabidopsis thaliana. The circadian rhythm modules S10IR (dotted) and the S46IR (solid) are examples for 
modules with a coherent trajectory over all conditions, except cold. For both modules the control measurements are 
depicted, along with the time-points of the experiments and the respective time of the day. The heat shock module (S23IR) is an 
independent response module, with a strong signal under heat. Various profiles can be observed along with a clear co-expres-
sion. The two single response modules S23IR and R11IR are depicted only with the condition under which the response pattern 
can be observed. Conditions marked with a star (*) comprise transient stresses, all other stresses were applied permanently. 
Conditions not contained in a module are depicted in gray.
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trajectory over all genes Gm within one condition

. Each trajectory contributing to the average is

assigned a weight. This weight is specified for each gene
and condition by the vectors WG and WC. The denomina-
tor normalizes the average profile in accordance to these
weight vectors:

To quantify the similarity of two genes we apply the Pear-
son distance ρ to their profile. This distance can be related
to the Pearson correlation coefficient r by the simple for-
mula ρ = 1 - r. Now, we can provide a mathematical defi-
nition for the coherent and independent response modules,
where M refers to a module containing the genes GM and
the conditions CM.

Coherent modules

For the coherent modules the Pearson distance of each
condition c, containing the genes Gm, to the average trajec-
tory (equation 4) must not exceed the threshold τC.
Accordingly, the Pearson distance of every gene g, under
the conditions Cm, to the average trajectory (equation 4)
must not exceed the threshold τG. Coherent modules are
defined as follows:

Independent response modules
In case we wish to mine independent response modules
instead of coherent modules, comparisons are restricted to
be within conditions. This restriction is imposed because
comparisons between conditions are only desirable if one
wants to align the profile of different conditions, as it is
done for the coherent modules. Thus, for each condition c
∈ Cm we average over the Pearson distance of each trajec-
tory contained in Gm to the average trajectory of all genes
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contained in Gm (equation 5). This average must not
exceed the threshold τC. Accordingly, for each gene g ∈ Gm
we average over the distance of each trajectory contained
in Cm to the average trajectory of all genes contained in
Gm. This average must not exceed the threshold τG. Inde-
pendent response modules are defined as follows:

Single response modules
As a special case of coherent or independent response mod-
ules, the single response module type can be defined by set-
ting the number of conditions to one.

Note, that all definitions are symmetric with respect to the
genes and conditions. For the independent response mod-
ules no assumption is made regarding the comparability
of the expression values among the conditions. This ena-
bles the comparison of experiments with different dimen-
sions, time intervals, and normalization protocols.

Preprocessing
Prior to the preprocessing procedure, genes are filtered
from the dataset if they do not have a two-fold difference
under at least one condition. This step aims at removing
noise signals and unaffected genes. For the Arabidopsis
thaliana dataset, a control measurement was available as

reference point. For the Homo sapiens multiple sclerosis
dataset no control measurements were available. Here we
used the first measurement as a reference for all time-
points.

EDISA is designed to refine initial modules sampled from
prefiltered datasets. Such modules could be randomly
drawn from the dataset. However, this leads to a predilec-
tion for strong signals, which is a recognized problem of
the ISA approach. Therefore, before applying the module
refinement, samples are drawn from the dataset with the
aim of creating initial modules which follow a certain tra-
jectory representing the signal of a module, while the set
of all samples covers a broad range of signals. The
approach proceeds by randomly sampling seed genes and,
according to the Pearson distance, selecting its s - 1 nearest
neighbors within one of the conditions, where s is the
desired sample size. To cover a broad range of signals we
are not interested in drawing the same genes too fre-
quently. Therefore, we draw genes without replacement to
obtain module samples of size s = 30.

Module scores
The mathematical definitions of the modules specify the
set of all modules of a desired type. However, to mine for
modules contained in the set, we need to define a scoring
function, in accordance with the module definition. This
scoring function is employed throughout the iterative pro-
cedure of the EDISA algorithm. Analogous to the coherent
module definition, the scoring function for coherent mod-
ules is defined:

Analogous to the independent response module definition,
the scoring function for independent response modules is
defined as follows:

Iteration
At each iteration step i the iteration scheme applies a filter
to remove those genes and conditions from Gi and Ci,
which do not meet the module criteria. This results in new
gene and condition sets Gi+1 and Ci+1, for the next iteration
step i + 1. In order to explicitly mine for either coherent or
independent response modules, the score of each module is
computed with the respective scoring function. This pro-
cedure implies that genes and conditions are treated
equally.

Assume, we are searching for coherent modules. Then,
given the current Gi and Ci, the score for each gene and
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Genotoxic stress genes involved in the pyrimidine metabo-lismFigure 8
Genotoxic stress genes involved in the pyrimidine 
metabolism. The genes involved in the genotoxic stress 
module S23IR were mapped to the KEGG [49] pyrimidine 
metabolism of Arabidopsis thaliana. The enzymes that match 
the respective genes in the module S23IR are depicted in 
color. All these enzymes are involved in reactions cataboliz-
ing deoxynucleotides, which are precursors for the DNA 
synthesis.
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condition in the module is computed using the scoring
function Sco:

Ci+1 = {∀c ∈ Ci|Sco (GicT) <τC}

Given Gi and Ci+1 the next iteration step is:

Gi+1 = {∀g ∈ Gi|Sco (gCi+1T) <τG}

To search for independent response modules, the scoring
function Sir is applied.

Ci+1 = {∀c ∈ Ci|Sir (GicT <τC}

Given Gi and Ci+1 the iteration step is:

Gi+1 = {∀g ∈ Gi|Sir (gCi+1T) <τG}

These iteration formulas are repeated until Gi = Gi+1 and Ci

= Ci+1 holds.

Average trajectory calculation
The initial sample drawn by the preprocessing step has a
fixed size s. Often, the size of this sample is larger than the
number of genes contained in a module. Thus a small sig-
nal is embedded into a relatively large amount of back-
ground noise, which is likely to dominate the average. To
account for this effect, a weighted average trajectory is
used (equation 4), which takes advantage of the preproc-
essing procedure. Thereby, s genes are selected iteratively,
where at every step the gene with the smallest Pearson dis-
tance to the seed gene g is added. To assign a weight to
each gene, we generate a weighting vector WG by drawing
s samples from the exponential distribution with λ = 1.
These weights are sorted and the highest weight is associ-
ated with the seed gene g. Then they descend according to
their Pearson distance to g from 1 to s.

Automatically refining the parameters τC and τG
The mathematical definition of the modules defines a set
of modules by applying global thresholds τG and τC. How-
ever, initial modules are often fuzzy and contain random
genes, disrupting the average of the final module. Thus,
initially a less restrictive threshold is needed, which, as the
iteration proceeds, can be decreased to narrow the mod-
ule down to its dense core. This refinement is only
employed during the iteration procedure and does not
affect τG and τC in the postprocessing.

The adaptation of τC and τG is accomplished by applying a
k-means clustering with k = 2 at each iteration step. Thus,
k-means separates the genes or conditions into two sets,
one which should remain in the module and another
which should be discarded. For both sets the module def-
initions are applied to calculate the minimal acceptable

values of τG and τC. The new thresholds are then set to the
minimal τG and τC, respectively. Given these thresholds,
the iteration formula refines the modules in accordance
with the clusters determined by k-means. The thresholds
are left unaffected if k-means is unable to partition the
modules.

This adaptation procedure increased the performance of
EDISA significantly on the synthetic dataset.

Postprocessing
The EDISA approach draws a large number of random
samples. It is inevitable that this approach can yield the
same module a number of times. Furthermore, a maximal
module may be found along with numerous copies of its
submodules. Consequently, for a proper evaluation of the
results, the sampled modules are merged.

First the merging procedure filters out all modules with a
value above a specified threshold τ (equation 8 or 9).
Then, a k-means clustering, with 10 restarts, is performed
on the remaining modules. The clustering operates on the
pairwise Pearson distances of the centroids, so that similar
centroids are clustered. The parameter k is set to the
number of principal components which explain for 95%
of the variation in the centroid distance matrix. All mod-
ules that cluster together are tested for inclusion and all
modules are discarded which are subsets of other mod-
ules. This inclusion test could also be performed without
clustering the modules, however, the clustering procedure
provides a significant runtime improvement. The merged
modules are refined by two extension steps. The first
extension step considers all genes in the dataset and adds
them to the module if their correlation to the average
module trajectory is below the threshold τG. Accordingly,
the second extension step considers for every condition
whether it should be added to the module, by matching
its average correlation against τC. Both extension steps are
carried out in accordance with equations 6 and 7. After the
extension step a final filter is applied, removing all mod-
ules which have an overlap (according to equation 14) of
more than 75% with another module.

Organization of the modules
A requirement for module definitions is that the modules
are allowed to overlap. To visualize the number of genes
shared by different modules, we represent their relation-
ship by a graph, in which the edges indicate the degree of
overlap between two modules. The edge weight is calcu-
lated by equation 14. A weight of 0 indicates no overlap
and 1 indicates module identity. Edges with a value below
0.15 are not drawn.
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Evaluation on the synthetic dataset
To evaluate the EDISA approach, we applied it to a syn-
thetic dataset with implanted modules. To obtain a score
for recovered modules, each module M is compared
against the most similar implanted module (equation
15). A perfect correspondence of the recovered and
implanted modules results in a score of 1, whereas com-
pletely disjoint modules score with 0. The equation
employed for this score is similar to the previously intro-
duced postprocessing equation (equation 14). Two sets of
modules R1 = (M1, ... M|R1|) and R2 = (M1, ... M|R2|) are
compared based on the genes Gn and conditions Cn which
are part of the respective modules.

Analysis of cis-regulatory elements
The analysis on cis-regulatory elements has been carried
out with the RSA-tools package described by van Helden
et al. [45,46], which is based on the frequency of a motif
over its respective background frequency. Motifs found
significantly enriched in the 1100 bp upstream region of
the translation start site (ATG) were subsequently com-
pared to the PLACE database [47] to identify motifs of
known regulatory function.

Datasets
Synthetic
The synthetic dataset contains 1,000 genes measured over
10 conditions with 6 time-points each. The measurements
were generated by drawing the first time-point from a nor-
mal distribution with a mean of 5 and a variance of 0.3.
The remaining time-points were sampled from a normal
distribution with a variance of 0.3 and a mean centered at
the first time-point. Into this background model four
modules were implanted. Each module contained 50
genes and three of the modules were overlapping. In the
case of perfectly correlated modules, the noise level within
the modules is σ = 0. To introduce artificial variance to the
modules, noise was added to the modules by a normal
distribution with different standard deviations σ = (0.1,
0.3, 0.5, 0.7, 0.9) [see additional file 1].

Homo sapiens multiple sclerosis dataset
The dataset was generated in the course of a pharmacolog-
ical study analyzing the response of multiple sclerosis
patients to IFN-β treatment [25]. Peripheral blood of 14
multiple sclerosis patients was obtained and the measure-
ments were conducted before as well as 1, 2, 4, 8, 24, 48,

120, and 168 h after the treatment. This dataset was
obtained from the authors of the Guttman et al. publica-
tion [25].

Arabidopsis thaliana abiotic stress dataset
The Arabidopsis thaliana dataset is provided by the AFGN
(Arabidopsis Functional Genomics Network) and availa-
ble at TAIR [22]. Within this project, 9 time-series experi-
ments were conducted [26]. Among these, we extracted a
group of abiotic stress stimuli for the tissues shoot and
root, as well as the respective control measurements. The
stress conditions and their reference numbers at TAIR are
(cold: ME00325, osmotic: ME00327, salt: ME00328,
drought: ME00338, genotoxic: ME00326, uv-b:
ME00329, wound: ME00330, heat: ME00339). Each of
these time-series contains 6 to 9 measurements with two
biological replicates.

The signals were normalized with GCRMA [48], the bio-
logical replicates were averaged and finally the log2 was
taken.
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