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Abstract
Background: Innovative extensions of (M) ANOVA gain common ground for the analysis of
designed metabolomics experiments. ASCA is such a multivariate analysis method; it has
successfully estimated effects in megavariate metabolomics data from biological experiments.
However, rigorous statistical validation of megavariate effects is still problematic because
megavariate extensions of the classical F-test do not exist.

Methods: A permutation approach is used to validate megavariate effects observed with ASCA.
By permuting the class labels of the underlying experimental design, a distribution of no-effect is
calculated. If the observed effect is clearly different from this distribution the effect is deemed
significant

Results: The permutation approach is studied using simulated data which gave successful results.
It was then used on real-life metabolomics data set dealing with bromobenzene-dosed rats. In this
metabolomics experiment the dosage and time-interaction effect were validated, both effects are
significant. Histological screening of the treated rats' liver agrees with this finding.

Conclusion: The suggested procedure gives approximate p-values for testing effects underlying
metabolomics data sets. Therefore, performing model validation is possible using the proposed
procedure.

1 Background
In life science research many measuring tools emerged in
recent years. These tools give a coarse profile of biological
classes such a transcripts (transcriptomics), proteins (pro-
teomics) and metabolites (metabolomics). This paper
focuses on the field of metabolomics; the comprehensive
quantitative and qualitative analysis of all small mole-
cules of cells, body fluids, and tissues. The mix of hypo-
thesis and discovery driven omics-experiments create
novel biostatistical challenges noted since combining pat-
tern recognition and body fluid profiling in the early

eighties [1]. Interpreting the multivariate metabolomics
results means integrating biological knowledge with pos-
sible contributing metabolites.

Metabolomics data sets comprise hundreds of metabo-
lites measured in typically tenths of samples. Multivariate
statistics on data that have fewer samples than metabo-
lites is cumbersome. Usually there is an experimental
design underlying the metabolomics data sets. The obvi-
ous technique for analyzing such data, Multivariate Anal-
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ysis of Variance (MANOVA) [2] cannot deal with data that
consists of more metabolites than samples.

The recent introduction of ANOVA-based extensions of
multivariate data analysis methods may open new angles
to analyze metabolomics data. These methods aim to ana-
lyze designed experiments with more measured metabo-
lites than samples. Among the new methods are ANOVA-
principal component analysis (PCA), principal response
curves (PRC) and ASCA [3-5]. All these methods are a
combination of PCA and ANOVA. In this paper we will
provide a validation procedure for ASCA using a randomi-
zation strategy. The models of other ANOVA-based meth-
ods may also use this validation procedure.

Analysis of variance simultaneous component analysis,
ANOVA-SCA or ASCA is a generalized version of analysis
of variance for univariate data to the multivariate case [5].
With this method it is possible to isolate the variation in
the data induced by a factor varied in the experimental
design. Analyzing this isolated variation with simultane-
ous component analysis may reveal the relation between
the samples and metabolic profile. ASCA successfully
helped the quality control in an application of the metab-
olomics platforms NMR, GC-MS and LC-MS [6]. In an
experiment with toxin dosed animals, ASCA successfully
disentangled the effects and helped to visualize the home-
ostatic capacity of the animals [7].

The independent factors in the experimental design trans-
late into a mathematical model that associates the factors
to the measured metabolites. It is essential to question
whether an effect found in the sample reflects the effect of
this specific factor in the population or that it is merely a
sampling fluctuation. This paper tries to answers that
question and to provide a way to validate ASCA models.
Experiments in metabolomics typically have few samples
and normality and equal variances can neither be
assumed nor tested. Therefore, we propose a procedure
for validating megavariate effects in ASCA without the
common assumptions of normality or equal variance.

Section two will define the goal and explains some of the
theory of statistical validation. That section also explains
the ASCA method by defining the model constraints and
the used notation scheme. Some of the essential proper-
ties, like orthogonality of effect estimates are explained.
Explaining ASCA ends with an example of the ASCA
model SCA notation. The section that follows details how
to randomize the data given the experimental setup of the
study. It also details why not to use jackknife or bootstrap,
but why permutations are the way to go. A simple exam-
ple details the model validation, followed by an explana-
tion of how to randomize the data. In section three a
simulated data set will serve as an example to certify the

validation procedure. Also in that section an experiment
with bromobenzene dosed rats will be analyzed and vali-
dated. Finally, the last section gives some closing remarks.

2 Methods and Theory
2.1 Definitions and purpose
The experiments in a metabolomics study often follow an
experimental design with varying levels of treatment con-
ditions, also known as factors [8]. Typically the observed
metabolic profiles of two different levels of one factor are
not the same. This inequality of levels is due to sampling
fluctuations and the effect of the varied factor.

2.2 ASCA models
This section explains the ANOVA-SCA method. The basis
of ASCA is the variation partitioning property of ANOVA
that allows estimating the effects of the factors encoded in
the experimental design [5]. ASCA has some desirable
properties such as orthogonality of effect estimates.
Orthogonal effect estimates suit metabolomics experi-
ment analysis well as it allows unique isolation of effect
specific variation. Consider, for instance, the case where
the treatment regime consists of metabolite data from two
dosage levels and three measured time points. ASCA
allows isolating the time effects independently from the
dosage effects; it can isolate general aging from drug inter-
vention effects.

The variation isolation works as in ANOVA; the preceding
example of metabolite data from two dosage levels at
three time points translates to a two-way ANOVA design.
This design consists of two main effects, time and dosage,
and a time dosage interaction effect. The main effects and
the interaction effect are all orthogonal; this enables per-
fect isolation of effect specific variation.

In the following text the boldface uppercase characters
represent matrices (X), vectors are in lowercase bold-italic
(x) and scalars in lowercase italic (x). The experimental
data is shown as X (I × J). The I rows contain the samples
while the J columns in X describe the metabolite levels
within the samples.

The following text assumes that X is mean centered, that
is, the mean of each column in X is 0, equation 1.

If the matrix Xδ contains the estimates of an effect, then
equation 2 defines the sum of squares (SSQ) of that effect,
here shown for effect δ.

x jij
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=
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Xτ, Xδ and Xτδ represent the isolated variation due to time,
dose, and their interaction respectively. Xe contains the
individual variation that is not induced by the factors.

A general two-way ANOVA model is shown in equation 3,
where τ and δ are the main effects with levels c and d, j is
the variable index. An example of 2-way ANOVA model
common in the metabolomics field shows in (equation 4)
how the variation is composed of time effects, dosage
effects, interaction between time and dosage and residuals
(equation 4 and 5). Each of the effect partitions in equa-
tion 4 is orthogonal to the others, equation 6. This orthog-
onal property allows for the variation decomposition
shown in equation 4 [5]. The effect estimates are not nor-
malized.

xcdj = τcj + δdj + (τδ)cdj (3)

Alternatively equation 3 can be written in the matrix form,
shown in equation 4.

X = Xτ + Xδ + Xτδ + Xe (4)

The variation measured in sum of squares, can be
uniquely partitioned into the effect, equation 5.

||X||2 = ||Xτ||2 + ||Xδ||2 + ||Xτδ||2 +||Xe||2 (5)

The orthogonality of the effects is shown in equation 6.

The SCA estimates the information in the partitions time,
dosage and dosage time interaction. The two-way ANOVA
style ASCA model (equations 3, 4) give the following
ASCA model after SCA (equation 7):

A more detailed review of the ASCA method properties is
found elsewhere [9].

2.3 Type of resampling to use
A way to tackle the problem of validating ASCA models is
by using resampling techniques, being jackknife, boot-
strapping and permutation tests [10]. The basic idea will
be explained by a univariate analysis of two groups of
equal size. Later, this will be generalized to the megavari-
ate case. The standard way of testing the difference
between group means, with the underlying null-hypo-
thesis that the population group means are not different,

is with a t-test. The ANOVA F-test comes down to a t-test
for the two group case. Under the assumptions of normal-
ity and equal group variances the t-statistic is

where  and  are the group means, n the num-ber of

samples in the groups and s1 and s2 are the group standard

deviations [11]. The pooled standard deviation sp can be

calculated easily from s1 and s2 given the assumptions of

normality and equal group variances. Actually, sp is the

standard deviation of (  −  ), showing the rationale of

the t-statistic: a measure of the devia-tion (  −  ) in its

standard deviation units sp. Including the proper degrees

of freedom allows for testing the null-hypothesis of equal
group means.

The bootstrap and jackknife work by resampling the sam-
ples in the groups, keeping the grouping structure intact,
estimating from those resamplings the group standard
deviations s1 and s2. However, this does not directly give

the wanted result, because the value needed for the t-test

is the standard deviation of (  −  ). Assuming normal-

ity and equal variances, this value can be calculated from
the group variances using equation 9. This is a reasonable
assumption for analytical replicates of a sample, but not
directly for the biological variation across subjects. The
assumption of equal group variances is questionable in
this case. These assumptions cannot easily be tested given
the small group sample sizes. Thus, it is not clear how to

obtain a standard deviation value for (  −  ) from the

jackknifed or bootstrapped s1 and s2 without making extra

assumptions.

Permutation tests work directly on the variability of (  −

) by randomly permuting class labels and recalculating

the group-mean differences. Actually, such permutation
tests go back a long way [12] as an alternative for t-tests
and are now also routinely used in gene-expression data
analysis, as for instance Significance Analysis of Microar-
rays (SAM) [13].

SSQ xij
j

J

i

I

δ δ= =
==
∑∑X 2 2

11

( ) (2)

X Xθ φ θ φ τ δ τδ θ φT e= ∀ ⊂ ≠0 { , } { , , , } : (6)

X T P T P T P T P= + + + +τ τ δ δ τδ τδ
t T T

e e
T E( ) ( ) (7)

t
x x

sp
= −( )1 2 (8)

s
n

s sp = +1
1
2

2
2( ) (9)

x1 x2

x1 x2

x1 x2

x1 x2

x1 x2

x1

x2
Page 3 of 8
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:322 http://www.biomedcentral.com/1471-2105/8/322
The standard deviation of (  −  ) has the squared

Euclidean distance in its numerator, the denominator is
constant over the permutations. In centered data the
squared Euclidean distance equals the sum of squares

(SSQ) of (  −  ). Using the SSQ as effect statistic, the

generalization from univariate to multivariate follows
from summing the univariate SSQ's for all variables.

2.4 How to randomize the data
Randomizing or permutation is the uncoupling of the
data from the group labels [14,15]. Take note that in data
with a zero mean (equation 1) the random sampling
expectated value is 0. Considering the level averages, the
randomization procedure tests whether the results with
randomized labels are as different from zero as the origi-
nal result is. The randomization, or permutation, does not
change the metabolite values for a sample, but it reassigns
each sample randomly to one of the treatment groups.

2.5 Model validation example
This section gives a detailed example of how the permuta-
tion works and how it will help to validate models.

In most experimental designs it is important to assess the
statistical confidence of the effect estimates. An experi-
ment with two measurement series and three measure-
ments in each series will serve as example for the
validation. If these series are a and b, the two series com-
prise the levels of the effect δ, giving the model shown d
in equation 10. This equation holds for both vectors and
matrices, shown here is the matrix form of effect of factor
δ. The null hypothesis (H0) is the sum-of-squares (SSQ)
associated with the effect of factor δ is zero (Equation 11).
The alternative hypothesis (H1) states the that SSQ of the
effect of factor δ is larger than zero.

X = Xδ + Xe (10)

H0 : ||Xδ||2 = 0;H1 : ||Xδ||2 > 0 (11)

The chosen distance measure that marks how far the
group averages are apart is the squared Euclidean distance.
In the hypothetical case with a known population, the fac-
tors without effect have an SSQ that is zero. Due to the
small sample size, the distance between a and b will never
be exactly zero, giving an ||Xδ||2 > 0. The SSQ is by its
nature also a distance measure that describes how far the
effect levels are from zero. In the univariate context, usu-
ally variances of the groups are analyzed. In the multivar-
iate context the analysis focuses on SSQ's. The SSQ also
conveniently describes the variation in the data.

The measured results for series a are 5, 4 and 3, for series
b the results are -3, -4 and -5. These values satisfy equation
1. The average of level a is 4 and the average of level b is -
4, shown in equation 12.

Randomization is uncoupling the group labels from the
data and randomly reassigning them. To show the rand-
omization the samples with the ± 3 will switch groups.
Level a now has the measured values -3, 4 and 5, while
level b has 3, -4 and -5, equation 13. xp shows the per-

muted x and  its average.

The distance between the averages is much smaller in the
randomized set than the averages of the original data,
equation 14.

The distance between series a and b is much larger than
any of the SSQ's after randomization. There is no permu-
tation that gives a larger SSQ than the original grouping.
The larger distance in the original model suggests a signif-
icant difference in the series a and b, equation 15.

Randomly reassigning multivariate samples to a group
works in the same way as described in the preceding par-
agraphs for univariate data. The randomization leaves the
order of metabolites of the sample unaffected. The SSQ,
equation 2, allows for univariate and multivariate calcula-
tion of the sum of squares; thereby forming the generali-
zation to the multivariate case.
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Repeating the randomization procedure many times gives
just as many SSQ values. These values define the reference
distribution. When most of the randomization SSQ
results are larger than the original group assignment
result, the effect SSQ is a sampling fluctuations and H0 is
not to be rejected. Finally, the probability value or p-value
is defined to be the number of SSQs in the reference dis-
tribution that is larger than the original SSQ. So when 35
of the 1000 SSQs in the reference distribution are larger
than the original SSQ, the probability of finding a larger
than original SSQ value is (p-value) 35/1000 = 0.035.

A good estimate on the randomized SSQ distribution
needs many randomization iterations. How many rand-
omization iterations are enough for a good probability
estimate is difficult to establish before starting, because
that largely depends on the data. However, repeating the
randomization series should give similar results, this sug-
gests enough iteration. The permutations are a random
subset of all the possible permutations [15]. This
approach is also known as Monte Carlo resampling.

This method validates the multivariate ANOVA partition-
ing, not the SCA part of ASCA. The SCA method subse-
quently describes most variation within each partition.

2.6 One-Way ANOVA Design
The preceding example is an example of a one-way
ANOVA design with two levels (equation 12). To get a ref-
erence distribution one can simply permute the group
labels. If the original SSQ is larger than most of the refer-
ence distribution the model is considered significant, oth-
erwise it is not. In the preceding example series a is
significantly different from series b.

2.7 Two-Way ANOVA Design
A two-way ANOVA extends the one-way ANOVA design to
two factors. In metabolomics experiments common factor
examples are time and a drug intervention.

Unlike one-way designs two-way ANOVA designs may
also include an interaction term. The interaction captures
the relation between two main factors. In a time and drug
example, the interaction effect means the drug shows a
different at different time points.

Each main effect needs to be validated separately, getting
the reference distribution for the main effect is the same
as for the one-way ANOVA. Getting the reference distribu-
tion for the interaction term is a bit more complicated.
The best option is to permute the residual samples (equa-
tion 16) [14]. Residual samples are samples that have the
main effects removed.

Xr = X - Xτ - Xδ (16)

2.8 Nested ANOVA Design
Nested ANOVA designs are extensions of ANOVA design
with another factor nested in the main effect. Some spe-
cial cases need nested ANOVA models, like experiments
that measure one animal at different times. The repeated
measuring nests the factor time in the animal. The rand-
omization strategy in such cases only allows for placing
the animal time series in other levels of the one-way
ANOVA factor. In a nested ANOVA design, the permuta-
ble unit is the animal itself [2,14,15].

2.9 Related Methods
A widely used method in metabolomics is principal com-
ponent analysis. This method, however, does not take
group structures into account, hindering the analysis of
effects. Methods that are more closely related to ASCA are
SMART and PRC [4,16]. However, these methods differ
on a key issue, namely orthogonality of effect estimates
(equation 5). The effect estimates of SMART are not
orthogonal, as a result the here proposed validation pro-
cedure cannot be used. In PRC the effect estimates are
orthogonal up to the deflation of the control condition.
The proposed validation procedure can be used in PRC as
long as it is used before deflating the control effect.

2.10 Experimental environment
The ASCA algorithm was implemented in MATLAB script
code, using The MathWorks MATLAB version 7.1 release
14 running on Fedora Core 3 on an Intel Corporation
Pentium IV (3.0 GHz) computer.

The ASCA algorithm is in the download section of our
website [17]. The validation algorithm can be found there
as well.

3 Results & Discussion
This section shows results to certify the proposed valida-
tion method for synthetic data and real world experimen-
tal data.

The real world experiment deals with toxin-dosed rats [7].
Various other methods already analyzed this experiment;
the results strongly suggest the toxin is affecting the ani-
mal. This experiment serves as a real world certification of
the suggested statistical validation approach in multivari-
ate data sets.

3.1 Examples; certifying the procedures with designed data
This example study showcases two data sets. The first data
set has two effect levels that are significantly different. The
second data set has two effect levels that are not signifi-
cantly different. This is to test the suggested procedure in
the simple case with known true statistics.
Page 5 of 8
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ASCA describes each effect level by the averages of the
metabolites in that level. In this example study, ASCA will
test if the multivariate average of the first 10 rows is differ-
ent from the multivariate average of the last 10 rows.
When many randomizations give an SSQ that is equally
large as the original SSQ, the groups probably do not dif-
fer. When only a minor fraction of the randomizations
give a larger group distance, the groups most likely differ.

In the model the effect δ has two levels (equation 10). d
In the first data set the first 10 rows are filled with ones
and the last 10 rows are filled with zeros. Normal distrib-

uted white noise (N(σ = 1, μ = 0)) is added to this data.
The second data set is filled with zeros and white noise
(N(σ = 1, μ = 0)) is added to it.

Figures 1b &1d show the two example data sets, the rows
are individual samples and the columns are the metabo-
lites. The colored cells show each metabolite value of
every sample.

In the true significant example the effect δ is designed to
be different. The top half of figure 1b has more red colored
cells while the bottom half has more blue colored cells.

Example study to certify the validation procedure, it consists of one significantly different and one nonsignificantly different data setFigure 1
Example study to certify the validation procedure, it consists of one significantly different and one nonsignifi-
cantly different data set. Figures A and C show the SSQ reference distribution found by permuting the data. If the red dot 
is outside most the reference distribution and is on the right side, the group is significantly different. The figures B and D show 
the data from this example experiment. Careful inspection of figure B reveals the top half differs from the bottom half, it is 
more yellow and red then the bottom half. The D figure lacks this property.
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Figure 1a shows the reference distribution of randomized
SSQ's, using a vertical line to show the SSQ of the original
grouping.

Following the proposed validation procedure, the conclu-
sion is clear: the halves are unlikely to be the same because
all the permuted SSQ's are smaller than the original SSQ
(p = 0.00012, SSQ = 57.96). Conclusion: the difference in
levels is significant. This model validation used 100,000
randomization iterations taking about 5 minutes of com-
puting time.

Repeating the validation procedure on data without a
designed difference between the two dosage levels, serves
as a negative control. The level averages will differ a little,
but these differences are sampling fluctuations.

Figure 1d is similar to figure 1b but without the designed
differences in the dosage levels. Figure 1d does not show
a seeming difference between the top and bottom half.
Figure 1c shows the reference distribution for the data set
equal level averages.

Following the proposed validation procedure, the conclu-
sion is clear: the halves are likely to be the same because
many (19.46%) of the permuted SSQ's are larger than the
original SSQ (p = 0.19463, SSQ = 15.91). Conclusion: the
difference in levels is not significant. This model valida-
tion used 100,000 randomization iterations taking about
5 minutes of computing time.

To test if the proposed validation procedure rejects the H0
in the fraction of the significance threshold, the model
from equation 10 was used with 1000 different realisa-
tions of white noise (σ = 1, μ = 0). With an significance
threshold of α = 0.05, 50 of the 1000 H0's are expected to
be rejected. The number of rejections were in the expected
range, given a 95% confidence interval from a binomial
distribution with α = 0.05 for n = 1000.

3.2 Experimental results: Rats dosed with hep-atotoxicant 
bromobenzene
In this experiment there are five groups of rats; a control
group, a corn oil (the toxin vehicle) control group and a
low, medium and high dosage of bromobenzene. The col-

Validation of the ASCA model for bromobenzene treated rats, validation of the dosage and the dosage-time interaction and the Xδ + Xτδ score plotFigure 2
Validation of the ASCA model for bromobenzene treated rats, validation of the dosage and the dosage-time 
interaction and the Xδ + Xτδ score plot. This experiment deals with the urine analysis of bromobenzene treated rats, the 
experimental design includes two types of controls and 3 dosage levels of the hepatotoxicant bromobenzene. The dosage and 
the interaction models are both significant as is clear from the reference distributions (p ≤ 0.0001). Because the dosage and the 
interaction models are significant they are superimposed and analyzed by SCA. The score plot of the SCA solution is shown. 
From this plot it is clear by visual inspection that the average dosage levels differ and that the interaction effect exists.
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lected urine from three individual rats of each treatment
group is measured on the NRM platform, at 6, 24 and 48
hours after the toxin administration [7,18]. The rats are
sacrificed after each sampling to collect tissue sample for
histology and transcriptomics analysis.

One sample from the highest dosage group is missing. To
avoid unbalanced ANOVA issues we assume this missing
sample equals the average of the two samples collected
and measured from that group at the same time point.

The main effects and the interaction effect of the 2-way
ANOVA models were tested by the ASCA validation. Here
the focus is on the factor dosage and dosage-time interac-
tion. The models are significant, with a drug dose differ-
ence p ≤ 0.0001, SSQ = 3.181 (figure 2a) and dosage-time
interaction p ≤ 0.0001, SSQ = 1.344 (figure 2b). The inter-
action significance was calculated on the residuals, thus
after removing the time and dosage effect (equation 16).
The not nested experimental design allows the use of a
simple two-way ANOVA permutation scheme.

The dosage and the interaction effect are significant, com-
bining the dosage and interaction gives a data set that
describes all effects that depend on dosage (equation 17).
SCA helps to reduce the dimensionality of this data set.

Xδ+τδ = Xδ + Xτδ (17)

SCA summarizes the validated toxin and interaction vari-
ation. Grouping the scores (T in equation 18) according
to the factor levels gives figure 2c. The conclusion is the
treatment with the hepatotoxicant differs between dosage
groups and the dosage responses change over time. Addi-
tionally, the results suggest the animals treated with the
lowest dosage fully recover or go back to the state of the
controls. The animals dosed with the medium dosage
need more time, but also go back to the control state. The
animals given the highest dosage do not recover to the
control state. Histological liver examination revealed
extensive damage caused by the bro-mobenzene, corrob-
orating these findings.

4 Conclusion
Extending ASCA with a permutation procedure enables
validation of ASCA models. Referencing the ASCA models
to the permutation based reference distribution gives val-
idation statistics. If the model is significant, the following
SCA decomposition describes the validated induced
effects.

The proposed method gives validation statistics to the
ASCA models. ASCA itself allows for summarizing the
designed experimental data. Combining ASCA and the
ASCA model validation forms a powerful summary of
designed experimental data.
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