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Abstract
Background: The Stanford Tissue Microarray Database (TMAD) is a repository of data serving a
consortium of pathologists and biomedical researchers. The tissue samples in TMAD are annotated
with multiple free-text fields, specifying the pathological diagnoses for each sample. These text
annotations are not structured according to any ontology, making future integration of this
resource with other biological and clinical data difficult.

Results: We developed methods to map these annotations to the NCI thesaurus. Using the NCI-
T we can effectively represent annotations for about 86% of the samples. We demonstrate how
this mapping enables ontology driven integration and querying of tissue microarray data. We have
deployed the mapping and ontology driven querying tools at the TMAD site for general use.

Conclusion: We have demonstrated that we can effectively map the diagnosis-related terms
describing a sample in TMAD to the NCI-T. The NCI thesaurus terms have a wide coverage and
provide terms for about 86% of the samples. In our opinion the NCI thesaurus can facilitate
integration of this resource with other biological data.

Background
Tissue Microarrays allow for the immunohistochemical
analysis of large numbers of tissue samples and are used
for confirmation of microarray gene-expression results as
well as for predictive pathology [1]. A single tissue micro-
array (TMA) paraffin block can contain as many as 500
different tumors, enabling the screening of thousands of
tumor samples for protein expression using a few array
sections [2]. Commercial digital-imaging systems can rap-
idly store thousands of images resulting from such sec-
tions. The Stanford Tissue Microarray Database (TMAD)

provides a central repository for data from TMA's akin to
the Stanford Microarray Database (SMD) for gene expres-
sion arrays.

Superficially the datasets generated from TMA and gene
expression arrays appear similar in that both are matrix
type data and each entry in the matrix provides informa-
tion about the expression of a biological entity (gene or
protein) in a particular sample. However, gene expression
arrays query a large number of genes in one sample or
patient, whereas Tissue microarrays query a large number
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of samples/patients for one protein. The key query dimen-
sion in TMA data is a tissue sample, rather than a gene. As
a result, queries such as 'find all genes that have a function
X' get morphed to a query such as 'find all tissue samples
that have a particular diagnosis'. Currently, because of the
lack of a commonly used ontology to describe the diagno-
sis or disease state for a given TMA sample in TMAD –
analogous to the Gene Ontology for the function of gene
products – it is not possible to perform such as query. The
lack of an ontology for diagnoses and disease states also
limits future integration of this resource with other public
genomic scale data, such as gene expression arrays [2,3].

For the purpose of this project, the key challenge was to
create consistent ontology/terminology labels for each
sample/record in the TMAD that would allow the identifi-
cation of all samples that are of the same type at a given
level of granularity. (e.g., All carcinoma samples versus all
Adenocarcinoma in situ of prostate samples, where the
former is at a coarser level of granularity). One mecha-
nism of achieving this objective is to map the text-annota-
tions describing the diagnosis of a particular sample to
ontology terms that allow us to formulate refined or
coarse search criteria [4].

In the current work, we map the text annotations for
records in the TMAD to terms from the NCI thesaurus,
present the results on the quality of the mapping effort,
describe the implementation of the mapping tools on the
TMAD website and explain how the mapping enables bet-
ter querying of the data in TMAD. To the best of our
knowledge this is the first work that describes the use of
the NCI thesaurus for this purpose.

Methods
Overview of data in TMAD
The Tissue Microarray Database (TMAD) contains data
from immunohistochemical and in situ hybridization
analysis of a large number of tissue samples that were
studied with tissue microarrays. The TMAD provides tools
for quick upload, storage and retrieval of the TMA images
and the analysis of immunohistochemical staining results
[5]. Each record, describing the sample donor tissue, in
the TMAD contains free-text annotations – entered by the
experimenter – for several fields such as the organ system,
the source of the sample, the antibody or probe used for
staining, and the staining result. Among these fields are up
to five diagnosis terms (one principal diagnosis field and
four sub diagnosis fields) describing the sample as well as
a label for the organ and organ system from which the
sample is derived. There are separate tables in the database
for keeping track of user logins, experiment details, array
constructions etc which are not relevant to the current
work.

The NCI Thesaurus for Annotating TMA Data
Most of the samples in TMAD are cancerous tissue sam-
ples and therefore we needed ontologies that provide a
broad coverage of the various cancers. The NCI Thesaurus
was thus a natural candidate to consider for annotating
the samples in TMAD. In previous work, we also included
the SNOMED-CT for consideration[6]. However, TMAD
would need a license to use the SNOMED-CT in their reg-
ular setup as they have non-US based users, therefore,
while deploying the final system on TMAD we decided to
restrict ourselves to the NCI thesaurus initially.

The NCI Thesaurus is an ontology providing broad cover-
age of the cancer domain, including cancer-related dis-
eases, findings and abnormalities [7]. In certain areas,
such as cancer diseases and combination chemotherapies,
the NCI Thesaurus provides the most granular and con-
sistent terminology available. The Thesaurus currently
contains over 34,000 concepts, structured into 20 taxo-
nomic trees. It is published under an open content license.
The NCI thesaurus can be obtained at ftp://
ftp1.nci.nih.gov/pub/cacore/EVS/. We downloaded ver-
sion Thesaurus-05.09 g in the tab delimited text format.
This text file contains columns for an id, name, parents,
synonyms and definition for each NCI thesaurus term.
The parents and synonyms columns contain the immedi-
ate parents of the term and its synonyms separated by '|'
respectively.

However, this format is not optimal for searching parent-
child terms rapidly as well as for the purpose of matching
against individual synonyms. Therefore we reorganized
the thesaurus into three separate tables which we named
nci_term, nci_children and nci_synonyms. The nci_term
table contains the Thesaurus-05.09 g as is. The
nci_children table contains one row for each direct par-
ent-child relationship and the nci_synonyms table con-
tains one row each for each synonym of a term. This
reorganization allows us to rapidly search the synonyms
of a term as well as identify the parents and child terms of
a given term. The tab-delimited files corresponding to
these tables as well as the scripts to perform this reorgani-
zation are available on request.

Mapping the TMA annotations to Ontologies
In order to map existing annotations of samples in the
TMA database to ontology terms during the test phase [6],
we created a database containing the TMAD data, the NCI
thesaurus and the SNOMED-CT (derived from UMLS).
We used Perl scripts to process the existing descriptions of
tissue samples and to generate strings for matching with
ontology terms. We identified several heuristics to
increase the accuracy of our matches. The Perl scripts used
for matching are available from the authors. After several
refinements to the matching methods, the final version of
Page 2 of 9
(page number not for citation purposes)

ftp://ftp1.nci.nih.gov/pub/cacore/EVS/
ftp://ftp1.nci.nih.gov/pub/cacore/EVS/


BMC Bioinformatics 2007, 8:296 http://www.biomedcentral.com/1471-2105/8/296
the mapping scripts and a copy of the NCI thesaurus are
deployed on the TMAD servers so that the text-descrip-
tions of new samples can be processed at regular intervals
and the ontology-based annotations can be kept up to
date.

Generation of annotation permutations
Each record in the TMA database has an organ, a diagnosis
and four sub diagnosis terms associated with it. For exam-
ple, a record might contain the entries breast, carcinoma,
ductal, <null>, in situ, <null> for the organ (O), diagnosis
(d0), sub diagnosis 1 (d1), sub diagnosis 2 (d2), sub diag-
nosis 3 (d3) and sub diagnosis 4 (d4) fields respectively.
We refer to the diagnosis related entries (d0, d1, d2, d3,
d4) as a term-set.

We generated all possible permutations of the non-null
entries in every term-set. In theory, we would generate
over a million permutations for the 10734 records con-
tained in the TMAD at the time of this writing. However,
these 10734 records correspond to 1045 unique term-sets,
many of which contain fewer than five entries, and in
practice we ended up with about twenty thousand permu-
tations. We used the pair of a particular term-set permuta-
tion and the associated organ in the search for an
ontology term to associate with that TMA record

Heuristics for increasing match accuracy
When searching the NCI thesaurus, instead of searching
for an ontology term for each permutation-organ pair, we
first filtered out the non-informative permutations using
heuristics that identify such permutations. For example,
there are a number of uninformative records where d0 =
normal and d1 = 19w which we identify using regular
expressions. We also "tweak" a permutation to convert it
to the most useful form. For example, if the first word in a
permutation is carcinoma and the second word is adeno
then flip the order and merge the two words to make the
first word to be adenocarcinoma. In another example, if
the first word in a permutation is carcinoma and the sec-
ond word is squamous then flip the order but keep the
words separate.

We use such a processed permutation and search for an
exact match with a term or a synonym in the NCI thesau-
rus. If there is no match, then we drop the right most term
(similar to right truncation in the UMLSKSS search) and
repeat the search. When, during this process, the permuta-
tion contains two words or fewer, we add ' of <organ>' to
the search string where <organ> is obtained from TMAD.

We also use simple heuristics to weed out bad matches.
For example, if a matched term contains uterine but the
organ associated with the record is not ovary, uterus, or
fallopian tube, then we discard the match. If the matched
term contains mouse, then we discard the match.

Refining heuristics in consultation with pathologists
After initial success reported at AMIA Annual Symposium
in 2006, we examined the unmatched records and their
corresponding term-sets in collaboration with Inigo
Espinosa (pathologist) and Kelly Montgomery (research
staff member) from TMAD to refine our heuristics. For
example, if the permutation contains 'sertoli leydig' con-
vert it to Sertoli-Leydig. We also added exceptions to our
heuristics such as: if the permutation contains two words
or fewer and one of the words is 'cholangiocarcinoma' do
not add the 'of <organ>' to the search. Such consultations,
though time-consuming, turned out to be crucial in
achieving high match accuracy.

Deployment architecture
The setup, mapping to NCI terms and browsing are all car-
ried out using modular perl scripts that are used as shown
in Figure 3. The scripts are divided into three groups: 1)
Setup scripts (SetupNCITables.pl and SetupTMAforMap-
ping.pl) create the necessary tables to store the NCI the-
saurus in relational tables as well as create the tables to
store the NCI-term annotation of a particular tissue
microarray sample. 2) The update scripts (MapTermsToN-
CITerms.pl, doClosure.pl) are run once after the setup and
perform the mapping of user submitted annotation terms
to NCI thesaurus terms as well as index the particular tis-
sue sample with the parents of the assigned NCI term.
This enables a pheochormocytoma sample to be counted

Table 1: Precision calculation for three samples from the matched records

True Positive False Positive

Set-1 44 6
Set-2 42 8
Set-3 43 7

Total 129 21

Average (%) 43.0 (86%) 7.0 (14%)
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as a retroperitoneal tumor. 3) The browsing script
(BrowseTMAbyNCI.pl) drives the interface shown in fig-
ures 1 and 2. The directed acyclic graphs are produces
using the open source Graphviz library. A utility script,
CompileMappingResult.pl, gives summary statistics on
the number of mapped and unmapped samples.

Results
We mapped the term-sets corresponding to the 10734
records from the TMAD, which specified a diagnosis, to
ontology terms in the NCI thesaurus. Out of the 1045 dis-
tinct term-sets (corresponding to the 10734 samples) we
were able to match 902 term-sets to the NCI thesaurus. As
mentioned before, in our initial work we had also
mapped the term-sets to SNOMED-CT terms. TMAD
would need a license to use the SNOMED-CT in their reg-
ular setup because they have non-US based users; there-
fore, while deploying the final system on TMAD we
restrict ourselves to the NCI thesaurus only. In total we
were able to map 9283 (86%) of records in TMAD to one
or more terms from NCI-T.

Example Matches to the NCI Thesaurus
The NCI thesaurus has a wide coverage in providing
matching terms for associating with diagnosis term-sets
from the TMAD. Term-sets for a total of 9283 records
could be mapped to one or more terms from the NCI the-
saurus. The type (and the granularity level) of the ontol-
ogy terms that matched a given term-set varied over a wide
range. For example, there are records where the term-set
contained just four characters, such as MMMT (of ovary)
and matched a very specific ontology term such as
'Malignant_Mixed_Mesodermal_Mullerian_Tumor'. At
the same time, there are records where the term-set was
highly descriptive such as carcinoma adeno intraductal
(of prostate) which matched an ontology term such as
'Prostate_Ductal_Adenocarcinoma' and records where the
term-set was highly descriptive such as carcinoma transi-
tional cell in situ (of bladder) which matched two ontol-
ogy terms – 'Stage_0_Transitional_Cell_Carcinoma' and
'Bladder_Carcinoma' because no single term existed that
would capture all the information.

Evaluation of Precision and Recall
In our work, we mapped 9283 records from TMAD to one
or more ontology terms; it is extremely time consuming
for a domain expert to evaluate every matched term man-
ually. Therefore, we devised a sampling strategy where
from the records that had a match, we randomly selected
50 rows comprising a distinct term-set, the associated
organ, and the matched ontology term to determine the
percentage of matches that were appropriate (true posi-
tive) or inappropriate (false positive) on manual inspec-
tion. We do not consider high-level matches such as
sarcoma clear cell (of soft tissue) – which matches 'Sarcoma
of the soft tissue and bone' – and mucinous neoplasm papil-
lary intraductal (of pancreas) – which matches 'Mucinous
Neoplasm' – to be appropriate hits in this evaluation. We
repeated this procedure 3 times. The results of this exercise
are presented in Table 1. 14% of the reported hits were
deemed to be false positives, giving a precision of 86%.

For 1451 rows, corresponding to 143 term-sets (13.3%),
we did not have a match with any NCI term. Potentially
all of these are false negatives putting a lower bound on
the recall to be 86.7%. We adopted a similar sampling
strategy to select 3 sets of 50 records where no match was
found. A domain expert then examined the NCI thesaurus
attempting to find a match for those records. The results
are presented in Table 2.

We were manually able to find a match for 34% of those
records, meaning that for these records, a true match did
exist in the NCI thesaurus that our methods were unable
to find. Examples of such record is carcinoma conventional
granular pauci cellular area (of kidney) where a match exists
in the NCI thesaurus as conventional renal cell carcinoma or
clear cell renal cell carcinoma This fraction of the
unmatched records are false negatives, giving us an esti-
mated false negative rate of about 4.52 % and an esti-
mated recall of 95%.

For the remaining records, no good match exists and they
are true negatives. Among these true negatives, many
term-sets did not describe any cancer and consisted of

Table 2: False negatives for three samples from the unmatched records

True negative False negative

Set-1 36 14
Set-2 31 19
Set-3 31 19

Total 98 52

Average (%) 32.6 (66%) 17.4 (34%)
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words such as proximal area history of lymphoma (of Colon),
mesial schelorsis epilepsy (of brain) and no cancer in prostate.
It is not surprising that these term-sets did not match any-
thing in the NCI thesaurus because these are not cancer
related terms. In some cases the term-sets were contradic-
tory such as the diagnosis being leiomyosarcoma but the
organ specified as skeletal muscle, instead of smooth muscle.
There are several records that have words like 10w as the
diagnosis, these are skipped during matching and consid-
ered as true negatives.

We note that Metamap is considered the gold standard in
mapping medical text to UMLS concepts [8-10]. However,
Butte et al have previously applied Metamap (GenoText)
to determine the phenotypic and experimental context
from text annotations of GEO experiments [11]. They
report that text-parsing using Metamap is still an ineffi-
cient method to extract value from text annotations of
genomic datasets [12]. In subsequent work they have
explored much simpler methods such as ours and report
that simple heuristics outperform Metamap indicating
that the complexity of Metamap may not be essential for
processing text annotations of genomic datasets[10].

Mapping to NCI enables better querying/analysis of TMA 
data
Once the mapping is accomplished, the simple assign-
ment of the ontology terms to tissue samples is still not
immediately useful to the end-user unless these ontology
terms are used to drive specialized query-interfaces. Plain
keyword-based querying of ontology terms is not very use-
ful. Therefore, we are developing a querying and browsing
interface (shown in Figure 1) where the user starts with a
term, visualizes the 'neighboring' ontology terms of that
term in a DAG view and browses up, and down the ontol-
ogy-term hierarchy to identify a term that is at the right
level of granularity. This term then can be used to pull out
all the TMAD records that are associated with that term or
its child-terms. This interface is similar in spirit to Amigo,
which is used for browsing the gene ontology (and GO
annotations) at the gene ontology consortium's website
[13].

Using this interface, a user can query a term such as "peri-
toneal neoplasm" to find that there are no samples corre-
sponding to that particular term, but at the same time, the
user can see that there are 12 samples corresponding to

NCI-thesaurus based browsing interfaceFigure 1
NCI-thesaurus based browsing interface. The figure shows our NCI-T based browsing interface. The user begins a query 
by typing a term in a text box. The same methods that map a sample's description to NCI terms will match the query words to 
NCI terms. Matched terms and the number of samples corresponding to each term are then presented in a graph view which 
explained further in the next figure.
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the parent term (peritoneal or retroperitoneal neoplasm),
and can click on the retroperitoneal neoplasm term to
find that these are adrenal gland neoplasms and that four
of them are from the medulla, and that eight are from the
cortex of which four are malignant (Figure 2).

The user can then choose to retrieve all 12 samples corre-
sponding to retroperitoneal neoplasm or retrieve the sam-
ples corresponding to specific terms such as adrenal cortex
neoplasm. Having annotations based on NCI-T also ena-
bles formulation of queries (by browsing) to pose
requests such as: 1) Show all retroperitoneal tumors 2)
How many skin neoplasms does TMAD have? 3) What
subtypes of malignant abdominal neoplasms does TMAD
have? These queries could not be posed with the standard
keyword based search interface.

Discussion
Currently there is a lot of effort directed towards classifica-
tion of tumors using gene expression data[14]. There are
significant efforts directed towards creating centralized
repositories of protein expression patterns observed on
tissue microarrays as well as the underlying images such as
the Stanford tissue microarray database and Tissue array
database at MD Anderson cancer.

DNA microarrays and tissue microarrays query two
orthogonal dimensions of the data. The former query the
expression of many genes for one patient in one experi-
ment whereas the latter query many patients for changes
in expression of one protein in a single experiment. The
results from such studies have to be integrated with each
other and with traditional histopathological diagnosis

Details of the NCI-thesaurus based browsing interfaceFigure 2
Details of the NCI-thesaurus based browsing interface. The figure shows a zoomed in region of the DAG view result-
ing from clicking on the term Adrenal gland neoplasm as described in the example in the main text. The red node is the term 
that has been clicked by the user, the yellow nodes are the child terms that have at least one sample in the TMA database 
assigned to that term, grey nodes are child terms with no corresponding samples in the TMAD and burlywood nodes are par-
ent terms with less than 50 samples. Samples can be retrieved for the selected node.
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methods in order to form testable hypotheses about the
underlying molecular mechanisms which determine
prognosis of a particular cancer. However, little attention
is being paid to the problem of developing mechanisms to
integrate the results from these two complementary data
types. Recent reviews have suggested that it is essential to
address this issue and synchronize the analysis, interpre-
tation and data standards for these data [15]

We believe such integration can be achieved via the use of
explicit ontologies to link specific histological features,
both morphological anomalies as well as IHC results, to
gene expression changes in specific biological processes
and pathways. The mouse pathology ontology is a signif-
icant first step in this direction and can potentially allow
systematic integration of expression data with histopa-
thology slides[16]. However, no such equivalent exists for

Schematic showing the need to integrate annotations of tissue samplesFigure 4
Schematic showing the need to integrate annotations of tissue samples. The figure shows a schematic of the need 
for a specific mechanism to identify relevant samples in tissue and gene expression databases to perform integrative analyses. 
The correspondence denoted by the red arrow is hard to establish with free text sample descriptions.

Overview of the process of annotating TMAD samples with NCI termsFigure 3
Overview of the process of annotating TMAD samples with NCI terms. The figure shows the workflow for setting 
up TMAD to use NCI thesaurus for annotating tissue microarray samples. The scripts in the grey boxes have to be run once; 
they create the necessary tables to load the NCI-T in relational form as well as the tables storing the mapping b/w a sample id, 
its user specified annotation and the matched NCI term. The scripts in the blue boxes are run every time new samples are 
added to TMAD. The Browsing script (yellow boxes) is run when a user navigates TMAD using the NCI-T terms.
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describing human histopathology and IHC studies as well
as for combining their results with analyses of gene
expression studies. The current work – where we have
automatically mapped approximately 86% of diagnoses-
related annotations for the samples in the Stanford TMAD
to terms in ontologies – is a step in that direction. Though
detailed morphological annotations might not be cur-
rently feasible, simple annotations using terms from the
NCI thesaurus provide a specific mechanism to identify
relevant samples in tissue and gene expression databases to
perform integrative analyses (Figure 4).

It is possible to perform a similar procedure for microar-
ray data sets corresponding to disease samples in the Stan-
ford Microarray Database (SMD) and/or the Gene
Expression Omnibus (GEO). If the microarray samples
are similarly annotated with the diseases and/or tissue
they are derived from, that will enable integrated analysis
of protein and mRNA expression datasets. In follow up
efforts to the current work, we have applied our methods
to text annotations of GEO and are able to identify disease
related experiments with high precision and recall as well
as identify candidate datasets for integrated analysis of
protein and mRNA expression [17]. We note that though
the coverage of NCI-T was adequate for the current work,
it might not be so for other situations. Therefore we have
made our methods available as a PERL module that can be
used to annotate samples using terms from any ontology
that is in the UMLS.

This also presents an exciting research opportunity for
specific cancer types, such as lung cancer, where integra-
tion of these data is needed for better tumor profiling
[18]. Such integration, can drive further research to
develop formal guidelines for classifying and profiling
tumors as well as making predictive pathology recom-
mendations for customized chemotherapeutic interven-
tion based on constraints defined on gene expression and
histopathological phenotypes [1,3,19].

Conclusion
We have demonstrated that we can effectively map the
diagnosis-related terms describing a sample in TMAD to
the NCI-T. The NCI thesaurus terms have a wide coverage
and provide terms for about 86% of the samples. We
deployed a set of mapping scripts at TMAD that will
update the ontology annotations as new records are
entered, ensuring that the structured annotations using
NCIT terms are always up to date. We have developed and
deployed a graphical interface to browse the sample col-
lection in TMAD using the NCI thesaurus terms and their
hierarchical organization. We described how such a map-
ping allows a rich querying facility and offers the ability to
identify "similar" or "related" tissue microarray samples,
even though they may be described by different terms. For

example, the four neoplasms of the adrenal medulla and
eight neoplasms of the adrenal cortex (four of which are
malignant) are all related to each other by the fact that
they are all retroperitoneal neoplasms. Finally, we note
that such ontology based annotation can enable better
data integration across diverse repositories similar to how
GO has enabled such integration across model organism
databases.

Availability and Requirements
Source code for both, the mapping scripts and the brows-
ing interface is available as additional files [see Additional
files 1 and 2]. The main functionality of the mapping
scripts – of generating permutations of text-annotations
and mapping them to UMLS terms – is also made availa-
ble packaged as a PERL module (called UMLSQuery) from
[20].

Operating system(s): Windows XP, Linux;

Programming language: PERL;

Other requirements: PERL 5.6 or higher, Graphviz 1.2 or
higher;

License: GNU GPL;

Any restrictions for non-academics: none.
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NS conceived of the project, developed the mapping
method and wrote the code. DL, IE, KM participated in the
evaluation of the method. IE, KM helped refine the match
heuristics. All authors have read and approve of the man-
uscript.

Additional material

Additional file 1
Mapping Code. This zipped file contains the Perl scripts to perform the 
mapping of the TMA annotations as described in the methods section.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-296-S1.zip]

Additional file 2
Browsing Code. This zipped file contains the Perl scripts to create the 
browsing interface shown in Figure 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-296-S2.zip]
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