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Abstract

Background: Many crucial cellular operations such as metabolism, signalling, and regulations are
based on protein-protein interactions. However, the lack of robust protein-protein interaction
information is a challenge. One reason for the lack of solid protein-protein interaction information
is poor agreement between experimental findings and computational sets that, in turn, comes from
huge false positive predictions in computational approaches. Reduction of false positive predictions
and enhancing true positive fraction of computationally predicted protein-protein interaction
datasets based on highly confident experimental results has not been adequately investigated.

Results: Gene Ontology (GO) annotations were used to reduce false positive protein-protein
interactions (PPI) pairs resulting from computational predictions. Using experimentally obtained
PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular
function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset
and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of
these keywords applied to four predicted PPl datasets for each studied organisms, are 48.32% and
46.49% (by average of four datasets) in yeast and worm, respectively. Based on eight top-ranking
keywords and co-localization of interacting proteins a set of two knowledge rules were deduced
and applied to remove false positive protein pairs. The 'strength', a measure of improvement
provided by the rules was defined based on the signal-to-noise ratio and implemented to measure
the applicability of knowledge rules applying to the predicted PPl datasets. Depending on the
employed PPl-predicting methods, the strength varies between two and ten-fold of randomly
removing protein pairs from the datasets.

Conclusion: Gene Ontology annotations along with the deduced knowledge rules could be
implemented to partially remove false predicted PPl pairs. Removal of false positives from predicted
datasets increases the true positive fractions of the datasets and improves the robustness of
predicted pairs as compared to random protein pairing, and eventually results in better overlap
with experimental results.

Background in large scale, generating tremendous amount of protein
In recent years high throughput technologies have pro-  interaction data [1]. On the other hand, however, compu-
vided experimental tools to identify protein interactions  tational approaches for protein interaction inference have
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presented a growing number of inexpensive methods to
predict vast number of protein pairs on genome scale [2].
Both experimental techniques and computational
approaches are affected by high false positives and false
negatives that tend to result in poor agreement among
bench mark datasets [3]. On the experimental front, false
positives mostly stem from the technology involved.
Nonetheless, some techniques have been already pro-
posed to enhance the reliability of current high-through-
put screening datasets [4]. On the computational front,
most efforts have been focused on predicting more pro-
tein-protein interactions by means of various approaches
identifying true positives that bring along numerous false
positive and false negative predictions. Reduction of false
positive predictions in computational approaches has not
been adequately investigated.

So far, several computational approaches have been pro-
posed to predict protein interactions [5]. These
approaches can be grouped into six categories based upon
the hypotheses from which they originate. The first cate-
gory comprises the methods that utilize genomics infor-
mation to predict protein interactions. Conventional
phylogenetic profiles [6], gene fusion [7], gene neigh-
bourhood [8], and transgenic distance [9] are as such.
Availability of whole genome sequences has enabled the
genome scale homology search, resulting in the construc-
tion of protein profiles, discovery of fusion events, speci-
fying gene orders, and identifying genetic distances in the
above-mentioned genome-based methods. In second cat-
egory are the methods that rely on statistical scoring func-
tions such as mutual information [10], Jaccard coefficient
[11], and chance co-occurrence distribution [12] to calcu-
late the extent of similarity of protein phylogenetic pro-
files. These methods have been recently employed to
enrich conventional genomics methods by using score
functions instead of exact similarity of patterns or genetic
localizations. The third group is domain-based protein
interaction prediction methods. These methods postulate
that conservation of sequence properties such as domains,
motifs, and signatures over the course of evolution may
contribute to the interaction of proteins. Earlier studies
focus on an association method [13] which was improved
by considering the number of signatures in each protein
sequence [14]. The likelihood approach was also imple-
mented to enhance the feasibility of domain-based
approaches [15]. The fourth category consists of the meth-
ods in which structural similarities and prediction upon
structural models is the underlying hypothesis. These
methods range from the threading approach [16], dock-
ing methods [17], and the CAPRI experiment [18] to pro-
tein interaction prediction based on surface patch
comparison [19] and oligomeric protein structure net-
works [20]. The fifth category covers the methods which
employ machine learning techniques to predict protein-
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protein interactions. These methods use different infor-
mation to predict protein-protein interactions such as pri-
mary structures [21], and conserved network motifs [22].
Interaction mining was also used to train learning systems
to recognize correlated patterns within protein interaction
pairs [23]. Support vector machines (SVM) have been
used to construct supervised classifiers in order to identify
interacting proteins [24]. The effect of the training dataset
on the performance of SVM prediction has been studied
[25] to enhance the efficiency of predictions. The sixth cat-
egory includes the methods that use gene co-expression
information to predict protein-protein interactions [26].
These methods predict interacting proteins through inte-
gration of micro array data in different biological condi-
tions and construction of co-expression profiles for genes
[27].

False positive prediction in all computational methods
and their limited overlap with experimental results are
post-genomic challenges. Computational PPI prediction
approaches consider protein-protein interactions in the
most general context and often refer to 'functionally inter-
acting proteins', implying that the proteins cooperate to
perform a given task without necessarily involving any
physical contact. Experimental PPI detection techniques,
such as yeast two-hybrid and large-scale affinity purifica-
tion with mass spectrometry, attempt to discover direct
physical interactions between proteins. However, there is
a limited overlap between sets of interacting proteins
identified by functional and physical relationships [28].
Given the incomplete coverage of experimental results,
there is clearly the need to develop large-scale robust com-
putational sets of interacting proteins validated by future
experiments. Furthermore, because of the lack of solid
information on protein-protein interaction, the accuracy
of different computational approaches remains uncertain.
Nevertheless, it is a common perception that if both
experimental results and computational predictions agree
on a link, the confidence level of that link would be high.
Therefore, one measure to evaluate the false positive con-
tent of computational predictions is the level of agree-
ment with experimental findings. Although high-
throughput screening techniques are affected by false pos-
itives, validation of computational pairs by experimental
results is widely acceptable.

To enhance the overlap between computational predic-
tions and experimental results, we need to find a system-
atic way to remove false positives, resulting in an
increased true positive fraction of every predicted PPI
dataset. In order to achieve this goal a common ground
upon which the predicted results can be evaluated is
required. Gene Ontology (GO) annotations may serve as
the common ground, even though annotation is an ongo-
ing process. Gene Ontology (GO) is the database that con-
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tains controlled vocabularies to annotate molecular
attributes for different model organisms. Annotations are
defined in three structured ontologies which allow the
description of molecular function (F), biological process
(P), and cellular component (C). Each ontology is struc-
tured in child-parent hierarchies in which a 'child' may
have many 'parents' and child terms are components of
parent terms. Thus, information provided by GO must be
useful in further assessment of predicted PPIs and may be
integrated with global filtering algorithms to reduce the
number of false positives in PPI predicted datasets. Cur-
rently, several attempts have been reported in construct-
ing functional association predictors solely based on GO
information. In some studies, associations between pro-
teins in a pair are assessed in terms of the similar GO
terms [29], while other studies evaluate functional associ-
ations based on either information content [30] or GO
structural hierarchy [31]. In a recent study, GO annota-
tions have been used to construct a PPI network for yeast
by measuring similarity between two gene ontology terms
with a relative specificity semantic relation [32].

Therefore, GO can be utilized as a useful informative
resource to either predict or further analyze the predicted
PPI datasets. However, ontology annotation is an incom-
plete process and suffers from inconsistency within and
between genomes. In some cases, two confirmed interact-
ing proteins are assigned two different GO annotations
which are not equivalent in terms of information content.
One protein is assigned a term that represents a broad
type of activity, and its interacting partner is assigned a
more specific term that represents a subtype of that activ-
ity. In other cases, some proteins have not even been
assigned all three ontologies which make the interaction
assessments more difficult without human intervention.
Thus, the molecular functions of GO annotations of
related proteins should be harmonized in relation to the
information content and compared on a more general
level. There are advantages and disadvantages associated
with the harmonization of GO terms. The advantage is
that the predicted relationship between proteins in a pair
can be detected systematically using some keywords and
it is not required to be verified manually. The disadvan-
tage is that the integration of GO annotations and pre-
dicted PPIs might not be able to reveal the specific
functions of the interacting proteins. However, knowing
the fact that PPI prediction techniques are merely capable
of specifying the general category of relationship between
two proteins, this disadvantage is not a great source of
concern.

In this study a global framework to refine computation-
ally predicted datasets is developed. First, two experimen-
tal PPI datasets with high confidence were prepared for
two model organisms S. cerevisiae and C. elegans. Assum-
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ing the experimentally confirmed pairs are true, the GO
annotations of these interacting proteins were utilized to
extract keywords which represent general category func-
tions of the proteins. Then, a set of heuristic rules was
established to be satisfied by the predicted interacting pro-
tein pairs based on extracted keywords and the fact that
two proteins acting in the same cellular components are
more likely to interact than those located in different com-
ponents. Next, four computational methods representing
four out of six categories of prediction techniques, men-
tioned earlier in this section, were selected. Using these
methods, four predicted datasets were created for each
organism of interest. The heuristic rules were applied to
these predicted datasets. When a predicted pair of interact-
ing proteins satisfied the rules it was considered a true
positive, otherwise the pair was assumed false positive
and removed from the dataset. The results show that the
filtered datasets have higher true positive fractions than
non-filtered datasets and the improvement is statistically
significant.

Results and Discussion

Using information deposited in the UNIPROT and GO
databases, the experimentally obtained protein pairs for
yeast and worm were processed, resulting in 1042 non-
redundant GO term information (including 4391 yeast
proteins) and 748 non-redundant GO term information
(including 3390 worm proteins), respectively. These
pieces of term information were further clustered, result-
ing in 35 and 25 keywords for yeast and worm, respec-
tively (see Additional File 2).

Significant keywords

Low frequency of appearance of some keywords in the
training dataset indicates that all extracted keywords do
not contribute equally to discriminate GO annotations.
As listed in Table 1, the frequency of appearance of each
keyword was ranked in descending order. The eight top-
ranking keywords were chosen for the following analyses,
and the remaining keywords (27 in yeast and 17 in worm)
were grouped and called "RK". In order to evaluate the sig-
nificance of these top-ranking keywords, the sensitivity
and specificity analysis was conducted. Sensitivity (SN) is
the percentage of protein pairs that are recovered using a
certain keyword or a group of keywords when they are
applied back to the source (the training dataset). Specifi-
city (SP) is the percentage of protein pairs recovered when
keywords are applied to predicted datasets (the test data-
sets). The sensitivity of each keyword was calculated as:

L X
number of pairs represented by the keyword %100 = lz”i %100

i=1

SN of a keyword =

total number of pairs in the training dataset
where x is the total number of pairs in the experimental

dataset (the training dataset). If n; = 1, it indicates that two
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Table I: Frequencies of keywords extracted from experimentally
obtained yeast protein pairs

Keywords frequency
Binding 3337
ase activity 2797
Porter activity 397
Transcription activity 372
Ribosome 134
Translation activity 58
Structural activity 51
Receptor activity 23
Remaining keywords (27 keywords) 230

proteins in pair i are represented by a keyword; and n; =0,
otherwise. Cumulative sensitivity of all keywords was
obtained as:

X Z
Cumulative SN = lz z n;; X100

i=1 j=1
where z is the number of keywords. If n;; = 1, it shows that
two proteins in pair i are represented by the common key-
word j; and n;; = 0, otherwise. Cumulative sensitivity dem-
onstrates the recovery power of all keywords collectively
when they are applied to the source (training set). Specif-
icity of a keyword and cumulative specificity of all key-
words are similarly defined and calculated:

number of pairs represented by the keyword %100 = li"i <100

i=1

SP of a keyword =

total number of pairs in the test set

: 148
Cumulative SP = — 2 2 n;; X100
i=1 j=1

where y is the total number of pairs in the predicted data-
set (the test dataset). Cumulative specificity translates into
the recovery power of all keywords when they are applied
to a predicted dataset (test set).

Figure 1 illustrates the cumulative sensitivity variations
among extracted keywords in both studied organisms. The
cumulative sensitivity of all 35 yeast keywords is 64.43%.
When only the top 8 high-scored keywords are consid-
ered, the cumulative sensitivity is 64.21%, indicating that
the remaining keywords imposed relatively insignificant
contribution to the cumulative sensitivity. Similarly, in
the worm dataset the same eight keywords contributed to
80.83% cumulative sensitivity and the remaining key-
words increased that value to 80.88% (i.e. 0.05%
increase). Thus, in trade-off between the lowest number of
keywords and the highest cumulative sensitivity, it is
favourable to neglect 27 keywords in yeast (17 keywords
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Cumulative sensitivity of keywords for yeast and worm. Each
column indicates the sensitivity of a keyword in addition to
the sensitivities of previous keywords. The highest sensitivi-
ties are 64.43% and 80.88% in the yeast and worm training
datasets, respectively. Abbreviations for keywords are as fol-
lows: Bl (binding), AS (ase activity), PO (porter activity), TC
(transcription activity), Rl (ribosome), TL (translation activ-
ity), ST (structural activity), RE (receptor activity), and RK
(remaining keywords).

in worm) with the cost of only 0.22% (0.05% in worm)
lower sensitivity.

In order to further examine the significance of the
extracted top-ranking keywords from the training dataset,
the cumulative specificities of the keywords applied to
four predicted protein-protein interaction datasets were
calculated. These four predicted datasets were obtained
using computational methods including phylogenetic
profiles (PP), gene expression (GE), maximum likelihood
estimation (MLE), and chance co-occurrence distribution
(CC). The implementation of these methods is described
in Additional File 1. As illustrated in Figure 2, the cumu-
lative specificity of yeast varies from 25% in PP dataset to
69% in MLE dataset. In all four predicted datasets specifi-
city changes very slightly when it is extended from eight
top-ranking keywords to all extracted keywords. Similarly,
in Figure 3, the worm dataset cumulative specificity ranges
from 32% in the PP dataset to 64% in the MLE dataset
using the eight top-ranking keywords. The remaining key-
words exert negligible changes to the cumulative specifici-
ties in all four datasets. Therefore, these top-ranking eight
keywords extracted from the experimental datasets of
both organisms are capable of representing the common
functions of interacting proteins either experimentally
specified or computationally predicted.
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Figure 2

Cumulative specificity of trained keywords, applied to the
four predicted PPl datasets in yeast. Each data point indicates
the specificity of a keyword in addition to the specificities of
previous keywords. Abbreviations for keywords are as fol-
lows: Bl (binding), AS (ase activity), PO (porter activity), TC
(transcription activity), Rl (ribosome), TL (translation activ-
ity), ST (structural activity), RE (receptor activity), and RK
(remaining keywords). RK includes 27 keywords with negligi-
ble contribution to cumulative SP.

Although the eight top-ranking keywords significantly
recover the experimental or predicted datasets, the cumu-
lative sensitivity or specificity is not distributed equally as
seen in Figures 1, 2, 3. Among the keywords "binding"
(BI) is an exception with the sensitivity of 53.22% in the
yeast dataset, for instance, compared to 8.20% for "ase
activity" (AS), 0.43% for "porter activity" (PO), and so on.
This drastic difference between the sensitivity or specifi-
city of this particular keyword and that of other keywords
stems from the fact that our experimental datasets are col-
lections of protein interactions detected mainly by the
two-hybrid technique. This high-throughput technique
detects physical interactions among proteins in which
binding of a protein to the active site of another protein is
a crucial step. Accordingly, most of these protein pairs are
assigned the "binding" molecular function annotation in
GO database. On the other hand, the contribution of key-
words such as "receptor activity" (RE) in the cumulative
sensitivity is 0.20% which is not a remarkable contribu-
tion; however, it is significant when it is compared with
0.22% increase in cumulative sensitivity by "remaining
keywords" (RK) which represents 27 keywords in the case
of yeast.
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Cumulative specificity of trained keywords, applied to the
four predicted PPl datasets in worm. Each data point indi-
cates the specificity of a keyword in addition to the specifici-
ties of previous keywords. Abbreviations for keywords are
as follows: Bl (binding), AS (ase activity), PO (porter activity),
TC (transcription activity), Rl (ribosome), TL (translation
activity), ST (structural activity), RE (receptor activity), and
RK (remaining keywords). RK includes 17 keywords with
negligible contribution to cumulative SP.

It should be noted that the highest obtainable cumulative
sensitivity, in yeast for example, is 64.43% by means of all
keywords and 64.21% by means of eight top-ranking key-
words. Currently, it is impossible to obtain complete sen-
sitivity (100%), as some experimental pairs do not have
consistent annotations. This inconsistency comes from
the fact that there are deficiencies in either annotation or
experimental techniques. In case of the worm dataset the
inconsistency is worse. Only 55% of worm genes are
annotated and many annotations are not consistent. It is
also notable that the GO molecular function annotations
can not be used directly as keywords. When the defini-
tions of the GO molecular functions were considered as
keywords, the cumulative sensitivity of the training data-
set was only 45.00%, comparing to that of 64.43% when
the keyword extraction approach was implemented.

Heuristic Rules

Protein interactions take place in either permanent or
transient complexes formed in a cell, suggesting that pro-
teins are required to exist in close proximity to interact
physically [33]. Hence, the concept of protein-protein
interactions in cellular systems is based on the following
two observations: (i) interacting proteins often perform
similar general functions, assuming that two proteins
functioning in the same general category are more likely
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to interact than two proteins involved in different func-
tions: (ii) co-localization may serve as an useful tool to
predict protein interactions. Physical interactions occur
when two proteins are located in the same cellular com-
ponent, either a permanent cellular location or a transient
complex. Motivated by the two observations, two heuris-
tic rules were set to be satisfied by predicted interacting
protein pairs. These rules are:

(I) Two predicted proteins in the pair should match one
of the eight trained function keywords.

(II) Two predicted proteins in the pair should be in the
same GO cellular components.

As many computational protein interaction prediction
techniques suffer from mass false positive predictions, sat-
isfying the rules filters the predicted datasets and removes
the false interactions to some extent.

Based on the algorithm depicted in Figure 4, these two
rules were applied to the four predicted PPI datasets for
each of the studied organisms. The algorithm reads PPI
pairs predicted by PP, GE, MLE, and CC sequentially. It
then examines if two proteins in the same pair possess the
GO annotations: molecular function and cellular compo-
nent. If so, such a pair with annotations is checked with
the proposed rules. Satisfying rule I and rule II, this pro-
tein pair is considered as an interacting one. Finally, the
filtered predicted dataset is compared with experimental
dataset to assess the level of agreement with experimental
results.

Statistical analysis

In order to evaluate the improvement made by applying
rules to the predicted PPI datasets, the signal-to-noise
ratio (SNR) [34] was employed. SNR is a measure of sig-
nal strength relative to background noise. In bioinformat-
ics, SNR is translated to the ratio of the capability of a
computational method in creating protein pairs to pairing
proteins on a random basis. Therefore, we define SNR as
the ratio of the true positive fraction of a predicted dataset
to the true positive fraction of a randomly selected dataset
with the same sample size. True positive fraction of a data-
set is the ratio of matched protein pairs with the experi-
mental dataset to the total number of pairs in the same
dataset:

(matched pairs | total pairs)pregicted dataset

~ (matched pairs | total DAITS)random dataset

SNR was calculated for all four predicted datasets for each
of yeast and worm in the following two circumstances:
before applying the rules to a dataset (raw dataset), and
after applying the rules to a dataset (filtered dataset). The
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Predicted PPI pairs

GO annotation Discard

Rule 1 AND Rule 2 Discard

Compare with experimentally
obtained PPI pairs

Figure 4
The flowchart of proposed algorithm to filter predicted PPI
pairs.

effect of the rules on the reduction of false positive predic-
tions was measured by the strength (S):

— SNRFiltered Dataset
SN RRaw Dataset

As seen in Table 2, SNR values for all filtered data were
larger than those for corresponding raw data, indicating
that the proposed algorithm can reduce false positive pre-
diction of PPI pairs. Depending on the PPI-predicting
method employed, the S value varies from 2.32 to 19.90
for the yeast datasets, and 1.96 to 3.94 for the worm data-
sets, implying that the proposed algorithm exerts a
stronger influence on improving PPI pairs predicted by
the PP method than those predicted by the MLE method.
In other words, the MLE approach predicts more robust
protein pairs than other three methods used in this study.

Given the fact that protein interactions are required for
cell functioning and permanent or transient interactions
between proteins are regulated under biological circum-
stances, this statistical analysis can well distinguish
between the predicted/filtered datasets and random selec-
tion of interaction. The predicted and filtered set of inter-
actions in a dataset is significant when the true positive
fraction of the dataset is greater than that in a randomly
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Table 2: Comparison of SNR and S value of predicted datasets before (raw data) and after (filtered data) removing false positive

protein-protein interaction pairs

Yeast Worm
Method SNR¥* (raw data) SNR* (filtered data) S SNR* (raw data) SNR* (filtered data) S
PP 1.59 1578 9.90 32.78 129.0 3.94
GE 1.89 8.83 4.67 27.36 66.0 2.41
CC 3.10 12.21 3.94 51.88 202.0 3.89
MLE 13.44 31.14 2.32 197.2 387.0 1.96

*SNR was calculated based on Equation (7). The size of the random dataset was the same as that of protein pairs predicted by each respective
method and their true positive fractions were obtained using the mean of 100 trials.

selected dataset. In other words, the selection of interact-
ing proteins is significant when the strength value is
greater than 1.

The algorithm proposed here to reduce the number of
false positive predicted protein pairs could also be
extended to evaluate and compare the effectiveness of PPI
prediction among different computational approaches.
The algorithm is a post-prediction processing step that is
applied to the resulted predicted dataset when a computa-
tional method is implemented. Thus, it can be attached to
any computational approach for further analysis of pre-
dicted results. However, it should be noted that ontology
is an ongoing process. With more genes assigned with GO
terms, the proposed filtering algorithm is a promising
approach to reduce the number of false positive interac-
tions and thus to enhance the accuracy of PPI prediction.

UNIPROTIGO limitations and intrinsic deviation of the
analysis

UNIPROT and GO employ different strategies to annotate
proteins. In cases where experimental information is not
available, sequence homology is the strategy that is used
to assign biochemical information to proteins. Thus, there
is a concern that protein pairs detected by the proposed
algorithm as true positives may also be inferred by homol-
ogy which consequently demonstrates low accuracy of fil-
tered protein pairs. We compared our filtered datasets
with interacting proteins reported in KOG database pro-
vided by NCBI. This database includes orthologous and
paralogous proteins of eukaryotic species. Each group is
associated with a conserved and specific function. Our
examination shows that, on average, only 1.24% of the
protein pairs that satisfies the rules can be predicted
through homology. Refer to Additional File 1 for more
information.

Annotation is an ongoing process and there are many pro-
teins: i) to be annotated, ii) erroneously annotated, iii)

annotated but do not comply with experimental findings,
iv) with unidentified locations and ubiquitous status.
These proteins and their pair-wise interactions with other
proteins contribute to the intrinsic deviation of the pro-
posed approach to filtering false positive predictions. To
confine the bias caused by the above mentioned reasons
and decrease the deviation of the resulted filtered datasets,
the rules have been applied solely to those protein pairs
whose GO annotations are available. Furthermore, pro-
tein pairs with GO annotations suffer from inconsistency
among annotations. Extracted functional keywords
address this deficiency and can recover proteins pairs
whose general functions are similar, even though their
GO annotations are not in the same level of information
content. Nevertheless, the deviation resulted from this
inconsistency can be well represented by means of sensi-
tivity and specificity. For example, in Yeast high confi-
dence experimental dataset (training set), there are 16507
protein pairs of which 15748 protein pairs (95%) contain
GO annotation. This figure indicates that the coverage of
GO annotations for well-studied organisms is satisfactory.
Of 15748 protein pairs with annotations, 10146 pairs
contain similar function annotations accounting for
64.43% which is equal to the sensitivity of the extracted
keywords.

The intrinsic deviation partially depends on the precision
of annotation process. In fact, annotation process has
shifted from manual annotation to automated annotation
due to growing influx of protein information in the past
few years and time-consuming process of manual cura-
tion. Shifting from manual annotation to automated pro-
cedures decreased the accuracy of annotation process.
However, with the aid of powerful text-mining tools the
accuracy of annotation is now satisfactory. Based on an
investigation in 2002, Incellico Inc. reported that the
accuracy of GO annotation is 95% [49]. GOA is a project
aiming at providing high quality GO annotation to pro-
teins in UNIPROT knowledgebase [35]. Camon et al. [36]
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evaluated the GO annotation retrieval of GOA project and
reported 91% precision. Recently, Couto et al. [37] pre-
sented a text-mining technique with 93% precision in
annotation.

Conclusion

Gene ontology annotation was used as a common ground
to evaluate protein pairs predicted by four different PPI-
predicting methods. Molecular function annotations in
the Gene Ontology database were used to extract discrim-
inating keywords, upon which heuristic rules were set. The
rules were incorporated into an algorithm by which pre-
dicted datasets were filtered and false positive predictions
were partially removed from the datasets. When only
eight top-ranking keywords were chosen, over 99% of
molecular function could be recovered as indicated by the
cumulative sensitivity for both experimentally obtained
and computationally predicted protein pairs. The effec-
tiveness of the proposed algorithm to filter false positive
predicted protein pairs varies from one method to
another. The proposed algorithm is unbiased and could
be implemented on all computational methods to
increase the accuracy of PPI prediction. As more genes are
assigned with GO annotations, the proposed filtering
algorithm will become even more effective.

Methods

Experimental datasets

The dataset containing experimentally obtained protein
pairs was used to extract the functional keywords from the
GO annotations. The yeast dataset was compiled from the
following three sources: (1) von Mering et al. [38]
reported high confident yeast protein pairs that were con-
firmed by at least two experimental methods, resulting in
1920 protein pairs; (2) the BIND database [39] contains
10618 yeast protein pairs that were experimentally con-
firmed and manually curated; and (3) CYGD [40] con-
tains 10472 experimentally verified yeast protein pairs.
Combining these three sources resulted in 16507 non-
duplicated yeast protein pairs, consisting of 4391 pro-
teins.

The worm dataset was constructed from BIND [39] and Li
et al., [41]. They reported 4960 and 6629 protein pairs,
respectively. These pairs were obtained by means of the
yeast two-hybrid technique and manually curated. After
removing duplicated pairs the dataset consists of 7081
pairs, comprising 3390 proteins in C. elegans.

Computational protein-protein interaction methods

Four PPI predicting methods from four out of six catego-
ries discussed in the Introduction section were chosen,
including phylogenetic profiles (PP), chance co-occur-
rence distribution coefficient (CC), gene expression pro-
files (GE), and maximum likelihood estimation (MLE).

http://www.biomedcentral.com/1471-2105/8/262

The criteria of choosing these methods were based on:
their genome-wide applicability and competitive results
in the category [42-45]. The implementation of these
methods is presented in Additional File 1.

Gene ontology and annotations

The GO annotations of proteins were retrieved from the
UNIPROT knowledgebase [46] which is collaborated with
the GO database [47]. Annotations in both the UNIPROT
and GO databases are updated on a regular basis. In this
study, the UNIPROT knowledgebase, Release 8 (June
2006) and the GO database, Version 1.362 (May 2006)
were used to extract keywords for the false positive reduc-
tion on the predicted protein pairs.

Keyword extraction

Proteins involved in experimentally verified protein pairs
were submitted to UNIPROT. Then GO and InterPro
cross-reference assignments of the protein were retrieved.
Through "interpro2go" (retrieved from Mappings to GO on
the GO website), all InterPro entries were mapped to GO
terms and the GO terms of each protein were searched
using AMIGO term search engine. The searched GO term
information of each protein was collected and redundant
information was removed. The remaining term definition
relevant to the molecular function annotation (a part of
term information) was compiled and used as a training
dataset. The dataset was further manually grouped into
different clusters according to their general molecular
activities; for instance, GO:0003723 and GO:0000166
were placed in the same cluster because of molecule-bind-
ing activities. Refer to Additional File 2 for a complete list-
ing of all clusters for S. cerevisiae and C. elegans.

In order to determine a representative keyword in a clus-
ter, the number of occurrences (n) of a word in a cluster
was counted, and the probability of finding that word in
the training dataset was calculated using Poisson distribu-
tion:

n
py=e 2
where A = N-f, in which N is the total number of words in
a cluster, and f is the relative frequency of that word in the
whole training dataset. To avoid floating point errors and
facilitate computation, n! was approximated by Stirling's
approximation, resulting in

Inp(n)=-A+nlnid-nlnn)+n-1

This calculation is valid when the total number of words
in the training dataset is much greater than N or when fis
small. In order to identify most comprehensive words in
each cluster, grammatical terms such as proposition, and
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chemical formulae were purposefully eliminated. In the
"enzymatic function" cluster, all enzyme activities were
considered as "ase activity" since enzymes are introduced
with "ase" suffix in biochemistry literature. In each cluster
the word with the most negative In p value was selected as
the representative keyword.

Additional material

Additional file 2

The complete listing of all GO molecular function clusters, their represent-
ing keywords, and corresponding In p values for both studied organisms S.
cerevisiae, and C. elegans.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-262-S2.txt]

Additional file 1

Description of the implementation of the four selected computational pro-
tein-protein interaction prediction methods including phylogenetic profiles
(PP), gene co-expression (GE), chance co-occurrence distribution coeffi-
cient (CC), and maximum likelihood estimation (MLE).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-262-S1.pdf]
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