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Abstract
Background: The availability of microarrays measuring thousands of genes simultaneously across
hundreds of biological conditions represents an opportunity to understand both individual biological
pathways and the integrated workings of the cell. However, translating this amount of data into biological
insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of
genes with similar behavior. A number of classical techniques are commonly used to perform this task,
particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently.
While these approaches are useful, they are not without drawbacks; these methods can find clusters in
purely random data, and even clusters enriched for biological functions can be skewed towards a small
number of processes (e.g. ribosomes).

Results: We developed Nearest Neighbor Networks (NNN), a graph-based algorithm to generate
clusters of genes with similar expression profiles. This method produces clusters based on overlapping
cliques within an interaction network generated from mutual nearest neighborhoods. This focus on
nearest neighbors rather than on absolute distance measures allows us to capture clusters with high
connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes
with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN
with those generated by eight other clustering methods. NNN was particularly successful at generating
functionally coherent clusters with high precision, and these clusters generally represented a much
broader selection of biological processes than those recovered by other methods.

Conclusion: The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively
groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its
success in the analysis of large datasets, and its ability to span a wide range of biological functions with high
precision.
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Background
The availability of DNA microarrays has made it possible
to monitor the transcript levels of every mRNA in an
entire genome simultaneously. This has allowed research-
ers to monitor global changes in gene expression that
occur in response to a cellular perturbation or the gene
expression profiles characteristic of a particular state, such
as a tissue type or a disease state. A major goal of integra-
tive genomics is to interpret these gene expression pat-
terns in order to define underlying signaling networks.

As the bulk of publicly available coexpression data has
grown, a variety of successful techniques have been pro-
posed for its analysis. In broad terms, these include nor-
malization and meta-analysis [1-4], detection of
differential expression [5-7], several forms of clustering
[8-11], and many others. However, each time a new
microarray data set is produced, it is ultimately in the
hands of the generating biologist(s) to inspect the data
and to determine what biological insights it might pro-
vide. This initial inspection is often aided by classical clus-
tering algorithms such as K-means [12,13] or hierarchical
clustering [8,14], both of which are intended to present an
intuitive, accessible view of genes whose coexpression
might indicate similar regulation or biological functional-
ity.

While these traditional algorithms can serve as a conven-
ient first tool for microarray analysis, they can also be con-
founded by certain characteristics of biological data. K-
means clustering, for example, requires prior knowledge
of the number of clusters to find, and it will find that
number of clusters even in random data [15]. Similarly,
hierarchical clustering is incapable of leaving any genes
unclustered, and its results can be driven by strong fea-
tures in a small number of initially clustered genes [16].
Many more recent clustering algorithms have been pro-
posed to overcome these limitations, with Aerie [17],
CAST [18], CLICK [19], GenClust [20], Quality Threshold
Clustering (QTC) [9], and SAMBA [21] representing a
small cross-section of the tools available for the purpose
of coexpression-based gene clustering.

These newer algorithms have overcome the drawbacks of
traditional clustering in a number of ways. SAMBA, for
example, represents a family of biclustering algorithms
capable of excluding conditions as well as genes from a
cluster; CLICK and QTC allow genes to remain unclus-
tered, and Aerie and other fuzzy clustering algorithms per-
mit genes to inhabit multiple clusters probabilistically.
However, it is unclear how these algorithms perform with
respect to their original purpose: providing biologists with
a view of coexpressed biological processes within microar-
ray data sets. Given a new data set containing a collection
of active biological pathways or functions, do these clus-

tering algorithms accurately group functionally related
genes?

We report below a clustering algorithm based on shared
nearest neighbors called Nearest Neighbor Networks
(NNN) intended to serve as a useful tool for biologists
when discovering functional activity in coexpression data
sets. Although NNN shares some features (such as the
identification of subgraphs with high connectivity) with
existing graph-theoretic clustering techniques [22,23], it is
unique in its focus on groups of genes sharing a mutual
nearest neighborhood (based on some distance or simi-
larity measure) rather than on groups of genes that are
tightly correlated in some absolute measure, and NNN
goes beyond simple clique finding to produce complex,
biologically relevant clusters. We present the results of a
functional evaluation [24] demonstrating NNN's ability
to retrieve precise clusters that represent the diverse bio-
logical activity present in six qualitatively different micro-
array data sets. This evaluation also examines the behavior
of the eight clustering algorithms discussed above to
determine their accuracy in producing related gene clus-
ters from many types of coexpression data and within
many biological processes. Additionally, we compare the
behavior of these clustering algorithms when presented
with random data and when extracting clusters from inte-
grated data (i.e. from a merged collection of all six micro-
array data sets). We believe that NNN represents an
intuitive, simple tool providing biologists with a way to
rapidly obtain and visualize a comprehensive collection
of the processes coexpressed in a microarray data set.

Implementation
NNN algorithm
In designing a clustering algorithm that would allow us to
make highly coherent clusters, we were inspired by the
approach taken by Stuart and colleagues to define the
homologues of a specific gene in multiple species [25]. In
Stuart et al, a metagene was defined as a set of genes across
multiple organisms whose protein sequences are one
another's best reciprocal BLAST hits. These metagenes
were then grouped into an interaction network (without
being clustered) using an aggregate similarity score meas-
uring correlation under many diverse microarray condi-
tions. In contrast, the NNN clustering algorithm begins
with an interaction network defined by a standard similar-
ity measure (such as Pearson correlation or Euclidean dis-
tance between two genes' expression vectors) and finds
clusters by extracting small cliques of mutual nearest
neighbors (akin to best reciprocal hits). We then group
together cliques that overlap to form larger clusters of
genes.

NNN receives as input a set of genes of size m, a similarity
measure d(g1, g2), a clique size g, and a neighborhood size
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n. Its output is an assignment of each gene to zero or more
clusters.

For each gene gi, the n nearest neighbors N(gi) = {gi,1, ...,
gi, n} are calculated based on the similarity measure d. If
genes are considered to be vertices in a graph, this results
in a directed graph in which each node is of out degree n
(Figure 1A). An undirected graph is then constructed by
connecting any two genes gi and gj such that gi ∈ N(gj) and
gj ∈ N(gi), i.e. the two genes are mutual nearest neighbors
(Figure 1B). All cliques (complete subgraphs) of size g
within this graph are identified, and overlapping cliques
are merged to produce preliminary networks representing
potential clusters of related genes (Figure 1C).

A small number of genes in any genome often serve as
interaction hubs connecting a large collection of mini-
mally related partners [26], and these genes can cause
NNN to merge cliques to an undesirable extent. To
address this issue, NNN uses a well-established algorithm
to remove cut-vertices in its preliminary networks [27-29].
A cut-vertex is a node whose removal results in an addi-
tional disconnected component in a graph; in our prelim-
inary networks, such nodes represent genes connecting
clusters which share no other interactions and are thus
likely to be functionally irrelevant interaction hubs. Each
of our preliminary networks is divided at its cut-vertices
into multiple final networks, and the cut-vertices are
included in each of the two networks which they induce
(Figure 1D). Finally, to further ensure that cliques are not
merged undesirably, any network (at most one) contain-
ing more than half of the input genes is removed.

NNN runtimes are generally below five minutes with rea-
sonable parameter settings on a modern computer; with g
= 5 and n = 25, the Hughes data set (the largest used in our
analysis) is fully clustered in approximately three minutes
running in a single thread on a 2 GHz Core 2 Duo proces-
sor. Clustering with a worst-case g = 5 and n = 40 takes
approximately 11.5 minutes, and the lower bound g = 3
and n = 10 runs in under 2.5 minutes. In the latter case,
most of this time is spent calculating gene pair correla-
tions. See Supplementary Figure 1 for more information
on NNN runtimes.

Microarray data processing
To evaluate the abilities of NNN and other clustering algo-
rithms to accurately cluster functionally related genes
across a range of biological processes, we ran them on six
Saccharomyces cerevisiae microarray data sets [30-35]. The
data sets range from seven to 300 conditions, include Agi-
lent, Affymetrix, and custom cDNA arrays, include both
time course and isolated measurements, and span a wide
variety of biological perturbations and conditions.

In all cases save Haugen et al (who provide data that has
already been preprocessed), the data sets were filtered to
remove genes with more than 50% missing data. Any
remaining missing values were imputed using KNNIm-
pute [36] with k = 10, and replicated genes were averaged
to ensure that each data set contained at most one expres-
sion vector per open reading frame. For single channel
data, expression values less than two were considered to
be missing, and all single channel values were logarithmi-
cally transformed as a final preprocessing step. The two
replicates in Brem et al were averaged together.

In order to construct a merged data set consisting of con-
ditions from all six individual microarray data sets, a data
matrix was constructed containing each gene present in
any of the data sets. Genes were assigned missing values
for data sets in which they were not present. This merged
data matrix was filtered to remove genes missing data for
50% or more of the resulting 664 conditions, and any
remaining missing values were imputed using KNNIm-
pute with k = 10. This left 6160 genes, each represented by
an expression vector of length 664 containing no missing
values.

Random data generation
Randomized synthetic data was generated to characterize
the behavior of NNN and other clustering algorithms
when presented with data containing clusters present only
by chance. Two sets of randomized data were generated,
both containing 6000 "genes" and 10 conditions. In the
uniform case, each data value was drawn uniformly from
the range [-1, 1]. In the normally distributed data sets,
each value was drawn from N(0, 1). Five data sets of each
type were generated and used for the evaluations dis-
cussed below.

Evaluation methods
In order to determine the accuracy and coverage of the
functional relationships predicted by these clustering
methods, we employed an evaluation method similar to
that described in [37]. Specifically, we used the same 200
functions drawn from the Gene Ontology [38] as sets of
"known" related genes; genes coannotated below these
terms were considered to be functionally related. To gen-
erate negative examples, any gene pairs not coannotated
below some GO term including at least 10% of the S. cer-
evisiae genome (roughly 645 genes) were considered to be
unrelated. This resulted in an answer set of 620854 related
and 8531975 unrelated pairs.

Each clustering method was evaluated by considering any
gene pair sharing a cluster to be related and any gene pair
clustered separately to be unrelated; unclustered genes
(when applicable) were neither related nor unrelated.
This process transforms any clustering result into a set of
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related and unrelated gene pairs from which we calculated
precision, recall, and/or area under an ROC curve (AUC)
relative to the answer set. When performing per-biological
function evaluations, these measures were calculated over

subsets of the global answer set relevant to each function
of interest; specifically, a gene pair was considered rele-
vant to some function if i) it represented a positive rela-
tionship and both genes were included in the function or
ii) it represented a negative relationship and one gene was
included in the function [24]. All AUCs were calculated
analytically using the Wilcoxon Rank Sum formula [39].

Evaluation parameters
Where possible, we evaluated each clustering algorithm
over a range of parameters, e.g. K-means for values of k
ranging from two to 30. By recording the most restrictive
parameter setting at which any gene pair clustered
together, we were able to generate full precision/recall
curves for most clustering methods. In cases where this
was not possible, a single clustering was generated per
data set, resulting in a point rather than a curve (but not
affecting AUC calculations). All applicable clustering
algorithms used Pearson correlation as a similarity meas-
ure.

Nearest Neighbor Networks was evaluated using our own
Java implementation with the neighborhood size param-
eter n ranging from one to 30 in increments of three. The
maximum neighborhood size used with the concatenated
data set for the per-function evaluation was increased to
40 in order to provide coverage of a greater number of
Gene Ontology terms. In all functional evaluations, the
clique size g was fixed at five. The effects of varying g can
be seen in Supplementary Figure 2, with larger values
slightly increasing precision while becoming more com-
putationally expensive ([40], Supplementary Figure 1).

The K-means, CLICK, and SAMBA algorithms were evalu-
ated using the implementation provided by the Expander
tool [19]. For K-means, k was varied from two to 30 by
increments of two. The CLICK and SAMBA algorithms
were run with the default parameters provided by
Expander, resulting in a single clustering. The predicted
cluster confidences produced by SAMBA were used in lieu
of a parameter setting to determine cluster specificity, with
a higher confidence indicating a more specific cluster.

TIGR MeV [41] was used to execute the CAST algorithm,
with the threshold parameter varied from 0.5 to 0.9 by
increments of 0.05. Our own C++ implementation of
Quality Threshold Clustering was used with a minimum
cluster size of five and diameters ranging from 0.05 to 0.8
by increments of 0.05. QTC was unable to evaluate the
concatenated data set due to its reliance on the computa-
tionally intensive jackknife distance measure [9]. Our
own implementation of Pearson correlation was used as a
representation of hierarchical clustering, with the raw
pairwise correlation value itself behaving as a parameter
over which precision and recall were calculated.

NNN Algorithm overviewFigure 1
NNN Algorithm overview. An example of the Nearest 
Neighbor Networks operating on 14 genes with clique size g 
= 3 and neighborhood size n = 4. A. A directed graph is gen-
erated in which each gene is connected to its n nearest 
neighbors. B. An undirected graph is constructed from bidi-
rectional connections. C. Overlapping cliques of size g are 
merged to produce preliminary networks. D. Preliminary 
networks containing cut-vertices are split into final networks, 
with copies of the cut-vertices occupying both networks.
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Implementations of GenClust and Aerie were provided by
[20] and [17], respectively. GenClust was run for 1000
iterations with cluster counts k ranging from two to 30 by
increments of two. GenClust failed to produce any output
for the Hughes or concatenated data sets, apparently due
to their high condition counts. Aerie was executed with k
ranging from 10 to 40 by increments of two, as it failed to
produce results for any k below 10. Aerie would not oper-
ate on the Primig data set regardless of parameter settings,
and produced output for the Haugen data set only for k up
to 22. Since Aerie's k does not correspond to a final cluster
count, each gene was assigned a vector of centroid dis-
tances corresponding to different initial ks, and gene pair
similarities were calculated as correlations between these
vectors.

Results and discussion
As shown below, NNN succeeds in producing small, pre-
cise clusters from coexpression data, and these clusters
generally span a wider variety of biological processes than
those produced by the other clustering algorithms evalu-
ated. While NNN's recall is lower than that of clustering
algorithms in which all genes are always clustered, the
capability to leave genes unclustered allows NNN to
present an analyst with results consisting of only the high
precision results of biological interest. This is evidenced,
for example, in NNN's behavior when run on random
data, which is often left unclustered (Table 1, Supplemen-
tary Table 1). Furthermore, as described below, NNN pro-
duces clusters with substantial functional diversity;
particularly on larger data sets, NNN detects activity in
processes such as conjugation and phosphorus metabolism
not captured by other clustering algorithms.

Nearest Neighbor Networks
NNN is intended to be an accessible and convenient tool
for rapidly producing functionally coherent clusters from
coexpression data, and visualization is therefore an
important aspect of its results. Figure 2 demonstrates a
sample of the default NNN output format as visualized by
Java TreeView [42]. Here, each colored subtree represents
a cluster found by NNN; these have been internally hier-
archically clustered using standard correlation and aver-
age linkage for visual coherence, and the clusters centroids
have in turn been clustered to produce a full tree. Our
NNN implementation also provides a tabular output for-
mat assigning genes to numbered clusters for further com-
putational processing.

Global evaluation of clustering algorithms
A global evaluation of NNN and eight other clustering
algorithms (employing a wide range of parameter set-
tings) on each of the six microarray data sets appears in
Figure 3. As recommended in [37], we have excluded the
Gene Ontology term ribosome biogenesis and assembly dur-

ing these evaluations so as not to bias the outcome
towards this function. Myers et al discusses the problems
raised in coexpression analysis by ribosomal genes, in par-
ticular their tendency to correlate so strongly even across
conditions unrelated to ribosomal functions that they can
obscure other biological activity. Especially in data sets
eliciting strong stress responses (e.g. Figure 3B), this has a
substantial impact on many of the clustering methods,
accounting for a portion of their low performance and
indicating that they may be clustering more easily discov-
ered ribosomal genes at the expense of genes coexpressed
for other biological reasons. Similarly, Supplementary
Figure 3 details performance when gene pairs with high
sequence similarity are also removed, which has a negligi-
ble impact on the evaluation.

Although no one clustering algorithm is appropriate for
every situation, Nearest Neighbor Networks demonstrates
a clear advantage in precision in many of these data sets.
In particular, the Gasch, Haugen, and Spellman data sets
are perhaps best analyzed by NNN, demonstrating a
robustness to functional bias [37], low condition count,
and periodicity, respectively. NNN performs approxi-
mately equivalently to QTC and Pearson correlation on
the Brem data set, and the Aerie, CAST, and SAMBA algo-
rithms fall slightly beneath these due mainly to precision
issues at low recall. CLICK is difficult to evaluate in this
context due to its insensitivity to homogeneity parameter
changes, leaving no way to trade off between precision
and sensitivity. Thus, in a variety of contexts, NNN is best
able to extract functionally relevant clusters from coex-
pression data with high precision.

NNN falls slightly short of QTC and, to a lesser extent,
Pearson correlation in the Primig data set, and QTC and
SAMBA are both strong performers on the Hughes data.
This latter effect might be attributable to the unordered
nature of the Hughes data (a deletion study rather than a
time course) from which SAMBA is able to bicluster corre-
lated conditions as well as genes, and the large condition
count likely benefits both SAMBA and QTC. NNN's per-
formance in the high precision/low recall region of the
Primig data set is impaired by the fact that the Gene
Ontology annotates MATALPHA1 and HMLALPHA under
the development term, STE14 under the protein processing
term, and STE3 and MF(ALPHA)1 under the reproduction
term. This results in our answer set considering their pair-
wise combinations (e.g. MATALPHA1 with STE14, STE14
with STE3, and so forth) to be unrelated, while NNN pre-
dicts them to be tightly clustered together.

While NNN is never more than slightly below the best
performing algorithms, certain specific issues with other
methods become apparent from this type of functional
analysis. For example, SAMBA has some difficulty with
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Table 1: Clustering algorithm summary statistics.

NNN g = 5, n = 25 CAST t = 0.8 CLICK h = μT QTC d = 0.5, n = 5 SAMBA

Brem 2005, 6162 genes, 131 conditions

Genes 1527 3410 6162 6137 2284

Clusters 54 800 82 127 113

Mean Size 28.4 4.26 75.1 48.3 102

Size Dev. 49.2 16.91 161 93.3 70.3

Gasch 2000, 6115 genes, 173 conditions

Genes 1142 4079 6115 6092 3120

Clusters 38 666 9 69 128

Mean Size 30.1 6.12 679 88.3 130

Size Dev. 62.5 35.58 787 220 101

Haugen 2004, 6256 genes, 7 conditions

Genes 64 6251 6256 6236 280

Clusters 11 45 16 56 5

Mean Size 5.82 138.9 391 11.4 88.4

Size Dev. 1.19 347.3 474 258 36.5

Hughes 2000, 6153 genes, 300 conditions

Genes 1996 2579 6153 6121 3375

Clusters 29 519 75 177 325

Mean Size 68.9 4.97 82.0 34.6 45.9

Size Dev. 245.4 11.95 107 57.8 44.1

Primig 2000, 6005 genes, 24 conditions

Genes 2247 5820 6005 5970 778

Clusters 27 687 46 110 25

Mean Size 83.2 8.47 131 54.3 139

Size Dev. 390 19.26 187 80.4 96.3

Spellman 1998, 5701 genes, 25 conditions

Genes 2050 5535 5701 5669 777

Clusters 28 616 47 100 32

Mean Size 73.3 8.99 121 56.7 69.0

Size Dev. 324 30.14 206 114 37.3

Concatenated Data, 6160 genes, 660 conditions
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Genes 694 6155 6160 - 4892

Clusters 29 7 5 - 609

Mean Size 23.9 879.3 1232 - 63.7

Size Dev. 34.7 2140 1768 - 82.0

Uniformly Distributed Random Data, 6000 genes, 10 conditions

Genes 0 (± 0) 5988 (± 0.89) 3600 (± 3286) 5964 (± 28.8) 0 (± 0)

Clusters 0 (± 0) 216.2 (± 2.95) 9.8 (± 9.81) 109 (± 4.72) 0 (± 0)

Mean Size 0 (± 0) 27.7 (± 0.38) 190 (± 175) 53.0 (± 1.39) 0 (± 0)

Size Dev. 0 (± 0) 21.86 (± 0.25) 48.8 (± 45.7) 35.2 (± 0.791) 0 (± 0)

Normally Distributed Random Data, 6000 genes, 10 conditions

Genes 0 (± 0) 5986 (± 3.58) 6000 (± 0) 5975 (± 4.77) 0 (± 0)

Clusters 0 (± 0) 231.6 (± 3.29) 28.8 (± 11.9) 124 (± 1.30) 0 (± 0)

Mean Size 0 (± 0) 25.85 (± 0.36) 235 (± 82.6) 48.3 (± 0.482) 0 (± 0)

Size Dev. 0 (± 0) 18.14 (± 0.15) 64.8 (± 46.3) 30.9 (± 0.374) 0 (± 0)

Brem 2005, 6162 genes, 131 conditions, randomly permuted

Genes 101.4 (± 28.85) 0 (± 0) 6162 (± 0) 5837 (± 260.6) 1061 (± 35.87)

Clusters 16.2 (± 3.96) 0 (± 0) 36.2 (± 28.99) 428 (± 33.88) 156 (± 4.85)

Mean Size 6.23 (± 0.78) 0 (± 0) 680.7 (± 864.7) 13.67 (± 0.46) 32.46 (± 1.35)

Size Dev. 1.64 (± 0.79) 0 (± 0) 884.5 (± 1179) 2.36 (± 0.52) 18.03 (± 1.13)

Gasch 2000, 6115 genes, 173 conditions, randomly permuted

Genes 19.4 (± 6.66) 0 (± 0) 4586 (± 3058) 5507 (± 47.19) 1382 (± 15.27)

Clusters 3.6 (± 1.34) 0 (± 0) 20.75 (± 33.71) 411.2 (± 5.12) 219.8 (± 15.27)

Mean Size 5.47 (± 1.04) 0 (± 0) 701 (± 941.3) 13.39 (± 0.058) 18.38 (± 0.35)

Size Dev. 0.66 (± 1.48) 0 (± 0) 950.8 (± 1197) 1.7 (± 0.03) 9.25 (± 0.38)

Hughes 2000, 6153 genes, 300 conditions, randomly permuted

Genes 20.2 (± 8.61) 572.8 (± 12.74) 4922 (± 2752) 4815 (± 76.96) 1808 (± 56.32)

Clusters 3.6 (± 1.82) 224 (± 8.22) 13 (± 10.84) 407.2 (± 7.56) 390.8 (± 5.67)

Mean Size 6.13 (± 1.64) 2.56 (± 0.044) 592.5 (± 826.8) 11.83 (± 0.038) 11.09 (± 0.39)

Size Dev. 0.53 (± 0.71) 0.82 (± 0.046) 101.7 (± 200.2) 1.15 (± 0.024) 5.59 (± 0.5)

Summary statistics detailing Nearest Neighbor Networks clusters formed from the data sets employed in this study, from their concatenation, and 
from two synthetic random data sets using default parameters (g = 5, n = 25). Results from other clustering algorithms with appropriate output 
formats (CAST, CLICK, QTC, and SAMBA) have been included, also utilizing default parameter settings provided by the algorithms' 
implementations. Random values are shown with standard deviations over five different seeds.

Table 1: Clustering algorithm summary statistics. (Continued)
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the extremely small Haugen data set (Figure 3C) and the
periodic Spellman cell cycle data (Figure 3F).

Table 1 provides summary statistics describing the output
of NNN using default parameters of g = 5 and n = 25 on
the six data sets evaluated more fully below, on the con-
catenation of those six data sets, and on random synthetic
and permuted data. For purposes of comparison, similar
statistics have been provided from other clustering algo-
rithms (where applicable) using their default parameter
settings. NNN, QTC, and SAMBA are capable of leaving
genes unclustered; CAST does not explicitly leave genes
unclustered, but it does generate clusters of size one, effec-
tively removing any such gene from the clustering. NNN
and SAMBA succeed in taking advantage of this trait to
recognize and ignore synthetic random data. Both NNN
and SAMBA also deal well with randomly permuted data,
the former responding particularly well (i.e. leaving most

genes unclustered) to data sets with many conditions and
the latter to data sets with few. CAST responds to large ran-
domized data sets extremely well, and while it still clusters
many genes in random or randomized data, it does gener-
ate characteristically small clusters that an analyst could
likely detect. With default parameter settings, NNN tends
to be conservative, generally producing fewer, smaller,
and (as evaluated above) more precise clusters than CAST
or SAMBA.

Note that the default parameters may not be appropriate
for all analyses; they are used here for comparison pur-
poses. For example, more clusters can be obtained from
the Haugen or concatenated data sets (if desired) by
increasing n. The global evaluation above and functional
evaluations below cover a wide range of parameter set-
tings for all clustering methods and show results largely
independent of specific parameter values.

Example NNN outputFigure 2
Example NNN output. A subset of the Nearest Neighbor Networks clusters produced from the [35] data set using the 
parameters g = 5 and n = 10, visualized using Java TreeView [42]. NNN clusters have been colored, internally hierarchically 
clustered, and the cluster centroids have in turn been hierarchically clustered to provide an easily interpretable tree.
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Global evaluation of clustering algorithmsFigure 3
Global evaluation of clustering algorithms. Evaluation results for eight clustering algorithms and six microarray data sets 
based on the global answer set (employing 200 GO terms of functional interest and discarding ribosome biogenesis and assembly 
[37]). Performance has been measured using log2(TP) on the horizontal axis and log-likelihood score LLS = log2((TP/FP)/(P/N)) 
for P total positive pairs, N total negative pairs, and TP and FP the number of true and false positives at a particular recall 
threshold. A. Brem 2005. B. Gasch 2000. C. Haugen 2004. D. Hughes 2000. E. Primig 2000. F. Spellman 1998. G. All six data 
sets concatenated.
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Behavior on random data
It is of interest to note that only Nearest Neighbor Net-
works, SAMBA, and, in one case, CAST succeed in exclud-
ing randomized data from their clustering output. SAMBA
achieves this by computing the statistical significance of
bicluster weights and retaining only those unlikely to
occur by chance [43]. NNN instead takes advantage of the
fact that random data of this form tends to over-cluster,
i.e. for an appropriate neighborhood size, all or nearly all
genes cluster together. Since substantially overlarge clus-
ters are eliminated by NNN, this results in the removal of
randomized data from the functional clusters provided to
the user.

Behavior on concatenated data
Only NNN and Pearson correlation succeed in extracting
functional relationships from the concatenated data sets,
with NNN achieving somewhat better recall. As discussed
in [24], algorithms relying solely on correlation measured
over a long expression vector can be easily misled. This
can be caused by differences in normalization between
the data sets making up the concatenated vector or by
overriding "global" signals providing high correlation
among only a small set of ubiquitously coexpressed genes
(e.g. the ribosomal genes discussed above). This has the
effect of producing a small number of very highly corre-
lated genes and relegating most of the correlations of
functional interest to near-background levels. NNN
avoids this problem by regarding both tight and diffuse
clusters as equally valid, so long as cliques of mutual near-
est neighbors are present.

For example, consider a group of ribosomal proteins coex-
pressed across all conditions with a mutual correlation of
0.9. A group of meiotic genes only activated under specific
circumstances might achieve a correlation of 0.3 when
tested across many conditions, since they will not usually
be coregulated. If functionally unrelated genes tend to cor-
relate at a level of 0.2, the ribosomal cluster will be far eas-
ier to discover. However, NNN will not distinguish
between absolute correlation levels so long as the genes in
each group are within each others' nearest neighborhoods
– which will likely be the case, since their mutual correla-
tions remain above background. Meta-analytic normali-
zation techniques provide another solution to this
problem; correlations combined by z-scoring substan-
tially outperform raw correlations, and these z-scores are
in turn outperformed by NNN clustering using z-scores in
place of Pearson correlation as input (data not shown).

Functional evaluation of clustering algorithms
A global evaluation such as the one described above does
not reveal the functional diversity of the predicted interac-
tions; even with ribosomal interactions removed, it is pos-
sible for an algorithm to perform well by accurately

predicting only a few biological processes. A complemen-
tary functional evaluation demonstrates that Nearest
Neighbor Networks not only performs approximately as
well or better than other clustering methods in global
evaluations, it produces clusters which capture a wider
array of biological functions. The heat map in Figure 4
indicates AUC scores for a variety of Gene Ontology terms
within each data set. NNN succeeds in accurately predict-
ing clusters for several terms poorly analyzed by other
algorithms, particularly within the Brem and Gasch data
sets (Supplementary Figure 4).

The high predictive power of Nearest Neighbor Networks
in the Brem data set likely reflects the unique nature of
these microarray conditions. This data set includes gene
expression profiles from the segregants of a cross between
two different strains of yeast. As opposed to most data
sets, in which haploid yeast of one mating type are pro-
filed, segregants with both the MATA and the MATALPHA
phenotypes were present in the Brem data, making it pos-
sible to identify other genes correlated with mating type.
In addition, there is a polymorphism between the paren-
tal strains in the pheromone response G protein GPA1,
which is expected to result in differences in expression of
effector genes among the segregants. Further, an interac-
tion between the mating-type locus MAT and the pherom-
one response gene GPA1 has been detected [35]. The
expression profiles of genes in the response to pheromone,
sexual reproduction, and conjugation functions are conse-
quently related in this data set and provide an opportunity
for identifying high precision networks of genes with
these Gene Ontology annotations.

NNN clusters tend to describe a broader array of biologi-
cal processes than those of previous methods, and they
often relate functional information that might otherwise
remain undetected. Figure 5 summarizes each clustering
algorithm's maximum performance for each biological
function across all six data sets. Of the 88 functions eval-
uated in this manner, 40 are predicted at biologically
uninformative levels (AUC < 0.65) by previous methods.
NNN improves 18 of these functions to an AUC greater
than 0.65 (as high as 0.9 in several cases). It further
improves performance in an additional 21 functions also
predicted well (AUC > 0.65) by other algorithms. In the
concatenated data, NNN improved the best AUC above
0.65 in 14 functions and was the best predictor of an addi-
tional 10 beyond those. As Figure 5 indicates, NNN is gen-
erally able to recover information about more biological
processes with higher precision than other clustering algo-
rithms.

By considering the detailed functional breakdown in Fig-
ure 4, it is possible to comment on some qualitative
aspects of this improvement. For example, there are sev-
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eral small groups of related GO terms for which NNN pro-
vides a consistent improvement across two or more data
sets. These include the mating response (membrane fusion,
conjugation, sexual reproduction, and response to pheromone),
metabolism of various nutrients (phosphorus, sulfur, and
alcohol metabolism) and cellular building blocks (amine,
amino acid, organic acid, and nucleotide metabolism), and
cellular respiration (electron and hydrogen transport and cel-
lular respiration), among others. A unifying theme among
these processes is that they are all carried out by relatively
small sets of genes coexpressed only under specific condi-
tions. Only a small number of the Brem segregants or
Hughes deletion mutants, for example, might disrupt the
60 genes annotated to sulfur metabolism, and despite being
coordinately disrupted, this will only change the affected
genes' pairwise similarities by a small amount. This small

change is difficult to detect by clustering algorithms that
consider absolute similarities, but because these genes
have all moved mutually closer together, NNN is more
likely to place them in each others' nearest neighborhoods
despite the "diffuse" quality of those neighborhoods. Par-
ticularly since specific functions such as these can repre-
sent the most biologically interesting effects of a
microarray experiment, it is critical to provide a method
such as NNN which will extract the most precise and func-
tionally diverse clusters from a data set.

Conclusion
We present the Nearest Neighbor Networks clustering
algorithm as an efficient and convenient tool for extract-
ing precise, functionally diverse clusters from coexpres-
sion data. NNN leaves less active genes unclustered and

Functional evaluation of clustering algorithmsFigure 4
Functional evaluation of clustering algorithms. Function-specific evaluation results for each clustering method on a per 
data set and GO term basis. Each cell represents an AUC score calculated analytically using the Wilcoxon Rank Sum formula; 
below baseline performance appears in blue, and yellow indicates higher performance. Data set and term combinations for 
which ten or fewer pairs were able to be evaluated are excluded and appear as gray missing values; functions for which less 
than 10% of methods were available due to gene exclusion by NNN, QTC, or SAMBA were removed. Visualization provided 
by TIGR MeV [41].
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focuses on networks of potential interaction rather than
on minimizing distances; this results in smaller clusters
with a high degree of functional relationship as measured
by known annotations in the Gene Ontology. Particularly
in complex data sets for organisms without comprehen-
sive reference data readily available, NNN's more precise
clusters should be beneficial in coexpression analysis (see
Supplementary Figure 5 for a sample clustering of human
data). Moreover, these clusters span a wider range of bio-
logical processes than those typically extracted from
microarray data sets by other clustering algorithms. We
hope that these features will allow NNN to serve as a use-
ful method for biologists to obtain an overview of the
genes and processes active in new data sets.
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