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Abstract
Background: Analyzing differential-gene-expression data in the context of protein-interaction
networks (PINs) yields information on the functional cellular status. PINs can be formally
represented as graphs, and approximating PINs as undirected graphs allows the network properties
to be characterized using well-established graph measures.

This paper outlines features of PINs derived from 29 studies on differential gene expression in
cancer. For each study the number of differentially regulated genes was determined and used as a
basis for PIN construction utilizing the Online Predicted Human Interaction Database.

Results: Graph measures calculated for the largest subgraph of a PIN for a given differential-gene-
expression data set comprised properties reflecting the size, distribution, biological relevance,
density, modularity, and cycles. The values of a distinct set of graph measures, namely Closeness
Centrality, Graph Diameter, Index of Aggregation, Assortative Mixing Coefficient, Connectivity, Sum of the
Wiener Number, modified Vertex Distance Number, and Eigenvalues differed clearly between PINs
derived on the basis of differential gene expression data sets characterizing malignant tissue and
PINs derived on the basis of randomly selected protein lists.

Conclusion: Cancer PINs representing differentially regulated genes are larger than those of
randomly selected protein lists, indicating functional dependencies among protein lists that can be
identified on the basis of transcriptomics experiments. However, the prevalence of hub proteins
was not increased in the presence of cancer. Interpretation of such graphs in the context of
robustness may yield novel therapies based on synthetic lethality that are more effective than
focusing on single-action drugs for cancer treatment.

Background
The "omics" revolution has dramatically increased the
amount of data available for characterizing intracellular
events at the cellular level. The main experimental meth-
odologies responsible for this development have included
differential gene expression analysis for recording mRNA
concentration profiles, and proteomics for providing data

on protein abundance [1,2]. Each technique generates
data related to a defined intracellular aspect, such as dif-
ferential-gene-expression profiles at the transcriptional
level, and currently the main focus is on interlinking the
various data sources generated by high-throughput
screening and array technologies. The concept of systems
biology is grounded on such heterogeneous data sources,
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and also includes the use of homolog information from
other systems [3]. Methodologies following the frame-
work of systems biology have increasingly been used to
study complex diseases. For example, Hornberg and col-
leagues discussed the importance of the network topology
of protein interactions to selecting drug targets for
improving cancer therapy [4].

We have recently outlined a computational analysis work-
flow aimed at characterizing cellular events at a functional
level, which includes the use of differential gene expres-
sion and proteomics data, analysis of transcriptional con-
trol, and coregulation via joint transcription factor
modules, further complemented by protein interaction
and functional pathway data [5]. A major goal of such
analysis workflows is to decipher biological functioning at
the level of protein interactions [6,7]; that is, to elucidate
concerted processes by integrating diverse data sources
that by themselves do not provide a functional context.

There are several experimental techniques for directly
addressing protein-protein interactions, with the yeast
two-hybrid system being the most commonly used [8].
The yeast two-hybrid approach can be used to identify
protein interactions in vivo, with other techniques such as
surface plasmon resonance being performed in a nonbio-
logical environment, but still being useful for providing
binding constants [9]. Other technologies involve protein
arrays for parallel screening of protein interactions [10]. A
recent review has discussed the different methodological
approaches [11].

Public-domain databases have been established for mak-
ing protein-protein-interaction data readily accessible.
The Online Predicted Human Interaction Database
(OPHID) is a collection of human protein-protein inter-
actions assembled from other databases and comple-
mented by homolog interactions identified in other
organisms [12]. The OPHID database used in the present
study (as at February 2006) included 41,785 interactions
covering 8487 unique proteins of the human proteome.
Unfortunately, the database contains only about 20% of
the human proteome (presently representing about
39,000 sequences with a unique GI number). Generally, a
literature bias is inherent in such interaction data due to
disease associated genes and proteins being subject to
more detailed analysis, also with respect to protein inter-
actions.

Information on pairwise protein interactions as provided
by the OPHID can be used to delineate protein interaction
networks (PINs), which are usually represented as undi-
rected graphs. Routines have been published for automat-
ically generating and visualizing such interaction graphs
[13,14], where the nearest-neighbor expansion as pro-

posed by Chen and colleagues [15] is a useful approxima-
tion for extended graph construction when dealing with
the sparse data sets typical of biological systems. Such rou-
tines can be used to directly extract PINs utilizing a list of
proteins assembled on the basis of differentially expressed
genes. If the functional context at the level of protein
interactions is represented by the differential gene expres-
sion data, this should also be reflected by the characteris-
tics of resulting PINs. Characteristics in this context
include both quantitative measures (e.g., the number of
nodes found for the largest subgraph) as well as qualita-
tive measures in the biological context (e.g., the identifica-
tion of hub proteins).

Like many real-world networks, biological networks are
scale-free in nature, with the majority of nodes showing a
low degree of connectivity, complemented by some
highly connected nodes serving as hubs [16,17]. The con-
nectivity, size, and topology of individual PINs are mas-
sively influenced by the number of hub proteins involved
[18]. However, Lu and colleagues found in a murine
asthma model that gene expression of the hub proteins
tend to be less affected by disease [19]. The next-most-
important factor to determining the overall PIN topology
are the simple building blocks – such as a three-node
"feedforward loop" motif or a four-node "bi-fan" motif –
that have been detected more frequently in transcriptional
gene regulatory networks than in networks generated
from randomly selected genes [20]. PINs have been
recently reviewed by Barabasi and Oltvai [21].

Various groups have applied network analysis to gene
data sets associated with cancer. Jonsson and Bates
reported very recently that proteins associated with cancer
show an increased number of interacting partners in the
interactome, reflecting their increased centrality in the
PIN [22]. Wachi et al. specifically investigated the role of
the interactome of genes differentially regulated in lung
cancer [23]. That group found increased connectivity for
these genes, in agreement with the findings of Jonsson
and Bates. Tuck and colleagues analyzed transcriptional
regulatory networks consisting of transcription factors
and their target proteins [24]. Genes differentially regu-
lated between acute myeloid leukemia and acute lym-
phoblastic leukemia were significantly closer in the
network as compared to randomly generated gene lists.
The analogous result was observed for genes differentially
regulated in breast cancer patients. On a more general
level, Xu and Li showed that disease-associated genes as
listed in the OMIM database [25] tend to interact with
other disease-associated genes [26].

The present paper provides a systematic analysis of prop-
erties computed for PINs represented as graphs, as exem-
plified by an extensive set of differential gene expression
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profiles covering various tumors. The primary hypothesis
was that differential gene expression analysis provides sys-
tematic data on concerted events in malignant tissue [27],
and these systematic data should also be present at the
level of protein interactions, in contrast to network prop-
erties computed on the basis of randomly generated pro-
tein lists.

The formal representation of PINs as undirected graphs
makes it possible to utilize a variety of well-established
graph measures. Junker and colleagues recently presented
a tool for exploring centralities in biological networks,
named CentiBiN [28]. CentiBiN can calculate various
graph measures, including closeness, betweenness, and
eccentricity in protein networks. Jonsson and Bates dem-
onstrated that proteins mutated in cancer showed an
increased number of interactions [22]. Another study ana-
lyzed protein communities in PINs that were reported as
being involved in metastatic processes [29]. Also, Jeong
and colleagues were able to identify hub proteins in the
PIN that are centrally linked to cell survival [30].

We have computed 22 individual graph measures for 29
tumor-associated differential gene expression data sets
that reflect the following graph properties: size, distribu-
tion, relevance, density, modularity, and cycles. These
graph measures provide a detailed characterization of the
differential gene-expression data represented at the level
of protein interactions.

Results
A mean of 90 genes (SD = 74 genes, range = 13–300
genes) were identified as significantly differentially regu-
lated for each transcriptomics experiment, and these genes
were selected for constructing the entire graph for each
given data set. Table 1 lists the number of differentially
regulated genes (N), the number of nodes in graph (G), as
well as the number of nodes in the largest subgraph (G')
for the 29 studies. Furthermore, the characteristics of the
individual studies as included in the Oncomine database
[31] are listed, including study author, tumor type, class
comparison, and number of samples analyzed.

The mean number of nodes in G (after performing the
nearest-neighbor expansion) was 140 (SD = 120 nodes,
range = 14–469 nodes) for the 29 studies, with a mean of
109 nodes for the largest subgraph G' (SD = 110 nodes,
range = 3–409 nodes). For seven of the studies there were
less than 30 nodes in the largest subgraph. Measures
related to size, distribution, biological relevance, density,
modularity, and cycles were computed for each subgraph
G'.

Size measures
We used three measures to characterize the graph size as
reflected by the number of vertices, the graph expansion,
and the length of the shortest path. All three measures –
Closeness Centrality, Graph Diameter, and Index of Aggrega-
tion – were different for networks generated from gene
lists derived from Oncomine than for randomly generated
protein lists (Figure 1A,B and 1C), with networks derived
on the basis of Oncomine data sets tending to be larger
than networks derived on the basis of randomly generated
protein sets.

Distribution measures
We used two distribution measures in our analysis: the
Assortative Mixing Coefficient and the entropy of the distribu-
tion of edges. The Assortative Mixing Coefficient uses the
edge-to-edge distribution, whereas the entropy of the distri-
bution of edges uses an entropic term reflecting the distinct
number of edges per node. We found that the Assortative
Mixing Coefficient was significantly higher in Oncomine
networks than in random networks (Figure 1D).

Biological-relevance measures
Three of the 22 computed measures focused on vertices in
the network that were biologically relevant. All of the
measures took the shortest path between two vertices in a
given network into account. Highly connected proteins,
frequently called hub proteins, usually show high
Betweenness. Joy et al. demonstrated the importance of ver-
tices with high Betweenness but low connectivity in the
yeast PIN [32]. Interestingly, none of the three computed
biological-relevance measures differed significantly
between Oncomine networks and randomly generated
networks.

Density measures
Eight of the 22 measures utilized in this study addressed
aspects of graph density, including Connectivity, Graph
Centrality, Community, and Sum of the Wiener Number. The
numbers of edges and vertices, lengths of shortest paths,
and walks on edges were key elements in calculating these
measures. Two of the eight measures (Connectivity and the
Sum of the Wiener Number) differed between Oncomine
and random data sets (Figure 1E and 1F), and these are
influenced by the size of the graph. Oncomine networks
are generally larger but less dense than randomly gener-
ated networks.

Modularity measures
We calculated three measures reflecting modularity,
mainly associated with the number of edges, dilation, and
shortest path lengths. One of the computed measures,
namely the modified Vertex Distance Number, differed
between Oncomine networks and randomly generated
networks (Figure 1G). This measure is highly correlated to
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Table 1: Gene-expression studies and graph measures

Study no. Study author cancer type class I class II No. of 
Samples

N G G' Size 
(3)

distribution 
(2)

relevance 
(3)

density 
(8)

modularity 
(3)

circles 
(3)

total 
(22)

1 Rosenwald et al. Leukemia Blood B cell, Blood T cells, Cell 
Line, Cord Blood B cells, Cord 
Blood T cells, Diffuse Large Cell, 
Follicular Lymphoma, Nonblastic 
Cell Line, Thymic T cells, Tonsil 
GC B

Chronic Lymphocytic Leukemia 118 264 426 384 3 2 3 6 3 1 18

2 Segal et al. Soft Tissue Cancer Cell Line Tumor 81 156 252 209 3 2 1 6 3 2 17
3 Rosenwald et al. Diffuse Large B- Cell 

Lymphoma – Dlbcl 
Subgroup

Activated B-Cell-like DLBCL, 
Type III B-Cell-like DLBCL

Germinal-Center B- Cell-like 240 115 189 165 3 2 2 6 1 2 16

4 Rosenwald et al. Diffuse Large B- Cell 
Lymphoma – Dlbcl 
Subgroup

Activated B-Cell-like DLBCL, 
Germinal-Center B-Cell-like

Type III B-Cell-like DLBCL 240 129 208 182 3 2 1 6 2 2 16

5 Welsh et al. Ovary – Type Normal Ovary Ovarian Adenocarcinoma 32 96 153 128 3 2 1 6 1 1 14
6 Beer et al. Lung – Type Non-neoplastic Lung Lung Adenocarcinoma 96 158 267 247 3 1 0 6 3 1 14
7 Notterman et al. Colon – Type Normal Colon Ovarian Adenocarcinoma 36 41 62 44 3 1 1 5 1 2 13
8 Higgins et al. Kidney – Type Normal Kidney Clear Renal Cell Carcinoma 29 62 96 76 3 1 2 5 1 1 13
9 Khan et al. Small Round Blue Cell 

Tumor/Cell Line
Cell Line Tumor Sample 86 126 196 155 3 0 1 5 2 1 12

10 Lancaster et al. Ovary – Type Ovary Ovarian Adenocarcinoma 34 106 169 135 3 1 1 5 1 1 12
11 Welsh et al. Prostate – Type Normal Prostate Prostate Cancer 34 50 77 58 3 1 0 4 1 2 11
12 Singh et al. Prostate – Type Prostate Prostate Carcinoma 102 300 469 409 2 1 1 3 2 2 11
13 Liang et al. Brain – Type Normal Brain Glioblastoma Multiforme 33 53 86 70 3 1 0 5 1 1 11
14 Higgins et al. Kidney – Type Angiomyolipoma, Chromophobe 

Renal Cell Carcinoma, Granular 
Renal Cell Carcinoma, 
Oncocytoma, Papillary Renal Cell 
Carcinoma

Normal Kidney 44 55 87 64 3 1 0 4 1 1 10

15 Sperger et al. Germ Cell – Type Normal Testis Seminoma 37 219 342 279 3 1 0 4 1 1 10
16 Shai et al. Brain – Type Normal White Matter Glioblastoma Multiforme 32 56 84 63 3 1 0 4 1 1 10
17 Rickman et al. Brain – Type Normal Neocortex of Temporal 

Lobe
Glioma 51 46 67 42 3 0 0 3 1 1 8

18 Rosenwald et al. Lymphoid – Type Normal Blood CD19+ B-Cells, 
Normal Germinal Center B-Cells

Diffuse Large B-Cell Lymphoma 284 37 60 32 2 0 0 4 1 0 7

19 Frierson et al. Salivary Gland – Type Normal Salivary Gland Adenoid Cystic Carcinoma of 
Salivary Gland

22 70 104 72 1 1 0 2 1 1 6

20 Bhattacharjee et 
al.

Lung – Type Normal Lung Lung Adenocarcinoma 156 128 195 149 2 0 0 1 1 1 5

21 Bhattacharjee et 
al.

Lung – Type Normal Lung Squamous Cell Lung Carcinoma 38 111 167 123 0 1 0 0 1 1 3

22 Lenburg et al. Kidney – Type Normal Kidney Renal Clear Cell Carcinoma 18 13 14 3 0 0 0 1 0 0 1
23 Garber et al. Lung – Type Normal Lung Squamous Cell Carcinoma 19 26 34 5 0 0 0 0 1 0 1
24 Alon et al. Colon – Type Colon Colon Adenocarcinoma 62 13 16 3 0 0 0 0 0 0 0
25 LaTulippe et al. Prostate – Type Non-neoplastic Prostate Prostate Carcinoma 26 24 29 9 0 0 0 0 0 0 0
26 Iacobuzio- 

Donahue et al.
Pancreas – Type Normal pancreas Pancreatic Adenocarcinoma 17 80 106 35 0 0 0 0 0 0 0

27 Mutter et al. Uterus – Type Normal Endometrium Endometrioid Adenocarcinoma 14 16 18 5 0 0 0 0 0 0 0
28 Bhattacharjee et 

al.
Lung – Type Normal Lung Small Cell Lung Cancer 23 17 20 7 0 0 0 0 0 0 0

29 Garber et al. Lung – Type Normal Lung Lung Adenocarcinoma 46 45 58 9 0 0 0 0 0 0 0

Study number, study author, cancer type, class comparison, and number of samples for data from the Oncomine database. The number of differentially regulated genes (N), the number of nodes in graph G, the number of nodes in largest subgraph 
G', and the number of measures per category outside the 2.5% lower and upper confidence limits as derived on the basis of randomly generated gene lists, and the total number of graph measures per study that fell outside the defined significance 
limits are also listed.
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Graph measuresFigure 1
Graph measures. Graph measures (black dots) computed for the given differential gene expression data sets from 29 individ-
ual studies with between 10 and 300 genes. The following graph measures are presented: Closeness Centrality (A), Graph Diame-
ter (B), Index of Aggregation (C), Assortative Mixing Coefficient (D), Connectivity (E), Sum of the Wiener Number (F), modified Vertex 
Distance Number (G) and Eigenvalues (H). The mean value (black curve) and the 2.5% lower and upper confidence limits (fitted 
graphs) based on randomly generated data sets are given for each graph measure.
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Table 2: Formal representation of graph measures
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Closeness Centrality, which is also based on the sum of
shortest paths between two vertices.

Cycles measures
The three measures implemented related to graph cycles
were the Cyclic Coefficient, Subgraph Centrality, and Eigen-
values. The Eigenvalues, calculated from the adjacency
matrix of the graph, differed between randomly generated
data sets and Oncomine (Figure 1H). Eigenvalues, like Sub-
graph Centrality, mainly depend on all cycles of the graph,
but the two methods differ in the scaling of cycle sizes.
The Cyclic Coefficient mainly depends on local short cycles.

To study the data sets at the level of the graph-measure cat-
egories, the 22 graph properties of each data set were
checked for measures that significantly deviated from
those of random graphs. Results of this evaluation are
listed in Table 1, where the individual studies are sorted
by the total number of graph measures that deviated sig-
nificantly from those derived from random gene selec-
tions. The study that deviated the most from random
selections related to leukemia, in which 18 of the 22 graph
measures were different. On the other hand, in six studies
none of the graph measures differed significantly from
random selections. Tests of the correlation between the
number of graph measures deviating from their respective
values for random selections and the total number of
genes differentially regulated (r2 = 0.34, p < 0.05), the total
number of nodes in graph G (r2 = 0.38, p < 0.05), and the
total number of nodes in the largest subgraph G' (r2 =
0.43, p < 0.05) revealed the dependence on number of
nodes selected and the degree of deviation from random
selections. This correlation was significantly affected by
the small graphs analyzed, since studies resulting in sub-
graph sizes of less than 10 do not provide conclusive
graph measures.

Interestingly, the number of samples analyzed for differ-
ential gene expression was not significantly correlated
with the number of statistically significant differentially
regulated genes found (r2 = 0.09, p = 0.12), nor with the
number of graph measures deviating from the randomly
generated reference sets (r2 = 0.11, p > 0.05).

Discussion
We characterized PINs derived from 29 gene-expression
profiles of various tumors (as listed in Table 1) by com-
puting 22 graph measures (as listed in Table 2). In gen-
eral, the values of the graph measures did not depend on
the type of microarray used in the analysis (cDNA arrays
or Affymetrix Gene Chips). The small number of individ-
ual data sets per cancer type made it impossible to deline-
ate a correlation between graph measures and tissue type.
Interestingly, the number of samples used was not corre-
lated with the number of statistically significant differen-

tially expressed genes, and also not with the number of
graph measures deviating from random selections. Under
the assumption of comparable sample processing, expres-
sion results are strongly affected by the tissue and cancer
type, and to a lesser extent on the number of samples per
group.

We assigned the graph measures to the following catego-
ries: size, distribution, biological relevance, density, mod-
ularity, and cycles. The individual graph measures that
showed significant differences (defined as identifying at
least 50% of gene-expression experiments outside the
2.5% lower and upper confidence limits computed on the
basis of randomly generated data sets) between cancer
networks and networks based on randomly generated
data sets were Closeness Centrality, Graph Diameter, Index of
Aggregation, Assortative Mixing Coefficient, Connectivity,
Sum of the Wiener Number, modified Vertex Distance
Number, and Eigenvalues.

All three measures associated with the size of the graph
differed significantly between tumor networks and ran-
domly generated networks. The Index of Aggregation was
on average higher in tumor networks, indicating depend-
encies between proteins involved in cancer, as also pro-
posed by Chen et al. in the context of Alzheimer disease
[15]. This increased connectivity is also consistent with
data obtained by Jonsson et al. [22]. However, it is likely
that the bias in OPHID interactions toward disease-asso-
ciated genes contributes to these findings. The values of
both Graph Diameter and Closeness Centrality were signifi-
cantly lower in tumor networks. This finding was also
reported by Yu and colleagues for networks solely includ-
ing highly expressed genes in the yeast interactome [33].
Low Closeness Centrality values for tumor networks may
initially appear surprising, but relative large size of the
largest subgraphs in tumor networks (on average close to
80% of all nodes of G are also part of G') makes higher
Closeness Centrality values harder to obtain. The largest
subgraph of tumor networks also more elongated shortest
paths between nodes.

One measure of the distribution category, the Assortative
Mixing Coefficient, differed significantly in tumor net-
works. This coefficient is influenced by both the number
of hub proteins and the number of edges, and a large
number of hub proteins is correlated with an unequal dis-
tribution in the number of edges. The Assortative Mixing
Coefficient is directly proportional to the number of edges
and inversly proportional to the number of hub proteins.
According to Jonsson and colleagues, tumor networks
contain numerous hub proteins [22]. However, our data
generally indicate the presence of a small number of edges
per node, and no evidence for a large number of hub pro-
teins.
Page 8 of 11
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The Sum of the Wiener Number characterizes the density of
the graph. The significantly higher values of this measure
in tumor networks indicate larger graphs, which is consist-
ent with the observed Index of Aggregation. We found that
the Connectivity was lower in the largest subgraphs of
tumor networks. This may be also due to the largest sub-
graphs of tumor networks being on average larger than the
subgraphs of randomly generated gene lists, correspond-
ing to low values of Closeness Centrality.

The modified Vertex Distance Number is also influenced by
the sum of shortest paths between two vertices, but in con-
trast to Closeness Centrality, all vertices in the OPHID net-
work are considered. A higher modified Vertex Distance
Number in tumor networks indicates higher connectivity
and modularity in Oncomine networks. Finally, higher
Eigenvalues values indicate the presence of fewer cycles in
tumor networks.

Our analysis of 29 studies on differential gene expression
in cancer has revealed a general tendency toward large
subgraphs without the presence of explicit hubs. Compar-
ing the graph measures between the individual gene
expression studies and randomly selected genes provided
a heterogeneous picture. Gene-expression studies result-
ing in a low number of statistically significant differen-
tially regulated sequences (and consequently small
subgraphs) do not support an interpretation at the level of
PINs (see expression studies 22–29 in Table 1) as per-
formed in this study: for small subgraphs the variance of
graph measures determined for randomly selected gene
lists is high, which prevents identification of significant
differences of small subgraphs derived on the basis of dif-
ferential gene-expression data.

Conclusion
The usefulness of analyzing topological characteristics of
cancer networks for supporting drug targeting was
recently highlighted by Hornberg and colleagues [4]. We
based our study on a diverse set of cancer types, and have
identified characteristics of cancer networks from differen-
tial-gene-expression data. In particular, measures of graph
size deviated significantly from those for graphs con-
structed from random gene selections. Genes showing sig-
nificant differential expressions in cancer appear to be
interlinked also at the level of PINs. However, we were not
able to identify hub proteins from the given data, or nodes
exhibiting high Betweenness. Such nodes have been con-
sidered as primary targets for therapeutic interventions.

Extended graphs with a low density may indicate a net-
work with high robustness – in contrast to networks con-
taining hub proteins. This points to a different approach
for identifying therapeutic intervention, namely synthetic
lethality. This concept originates in classical genetics,

where only the combination of two specific mutations
leads to cell death. In metabolic networks a single node
deletion can often be bypassed by different routes in the
pathway. Combining this with a second deletion in that
alternative pathway may only then result in lethality [34].
Analysis of the given PINs with respect to functional path-
ways and their potential bypass routes has the potential to
identify synhetically lethal protein target combinations,
as has been shown experimentally in yeast [35].

Methods
Databases
We used the OPHID [12] to derive information on human
protein-protein interactions. This database contains infor-
mation on protein-interaction pairs, where each protein is
given by its Swiss-Prot identifier. We mapped the Swiss-
Prot identifiers on the corresponding Gene Symbols so as
to link gene-expression data sets, which mapped 8487
Swiss-Prot entries to 6033 different Gene Symbols.
Among the protein-interaction sources used by the
OPHID, we included HPRD (Human Protein Reference
Database) [36], MINT (Molecular Interaction Database)
[37], RikenBIND and RikenDIP [38], BIND (Biomolecu-
lar Interaction Network Database, [39], and MIPS
(Munich Information Center for Protein Sequences) [40].
These data sets are mostly based on experimental evi-
dence, which is further supported by expert reviews based
on the scientific literature. We did not include interactions
from other sources of low-to-medium quality that are also
listed and indicated as such in the OPHID.

The OPHID provides interaction information in the form
of object A interacting with object B. This information can
be used to derive interaction graphs when providing an
identifier list (A, B, ..., N), as resulting from the analysis of
differential-gene-expression data.

We used Oncomine as a central repository for differential-
gene-expression data [31]. This database provides an
extensive collection of gene expression data on cancer,
and compares various types and subgroups. A total of 962
raw data sets were identified in Oncomine (as at April
2006). We manually selected all gene expression studies
where the malignant tissue was compared to a reference
(either healthy tissue or a cell line). We initially selected
40 individual experiments covering tumors of 17 different
tissues (4 B-cell, 1 bladder, 2 colon, 2 endometrium, 2
ovary, 5 brain, 1 liver, 1 leukemia, 9 lung, 1 multicancer,
3 kidney, 1 pancreas, 4 prostate, 1 salivary gland, 1 testis,
1 thyroid, and 1 soft-tissue tumor), of which 17 used
cDNA arrays and 23 used Affymetrix Gene Chips. The
mean number of available features per study was 11459
(range = 1988–44928 features).
Page 9 of 11
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We extracted each file and processed the raw data accord-
ing to the following scheme: The two groups per study
were analyzed at the level of individual genes by comput-
ing a probability value for the differential expression of a
particular gene in that given experiment. Multiple testing
was accounted for by using the Holm-Sidak step-down
test and setting the significance level to 0.05 [41]. This
procedure yield a mean of 278 genes from each study
(range = 2–1838 genes). From the initial 40 gene expres-
sion data sets, 29 showed between 10 and 300 differen-
tially expressed genes (mean = 90 genes), and these
studies were included in subsequent analyses.

Each of the 29 selected differential gene expression studies
was represented by a list of genes exhibiting significant
differential regulation when comparing expression values
for the group of tumor samples and the group of reference
samples. Each gene on these lists was represented by its
Gene Symbol, allowing a direct match with the protein
interaction data as derived from the OPHID.

Graph construction
Protein interaction graphs (G) were constructed for each
gene list of the 29 selected gene-expression studies based
on OPHID interaction data utilizing the nearest-neighbor
expansion. This procedure built edges between the nodes
of entries A and B of a given gene list if the interaction
between A and B was directly encoded in the OPHID, or if
one element X was identified in the OPHID, allowing the
construction of an interaction of the type A - X - B, where
X was not listed in the gene expression data set [15].

For each gene list, entire graph G comprising n subgraphs
G' was constructed on the basis of genes in the initial list
and their nearest neighbors in the PIN. G' is defined as a
graph whose vertices and edges form subsets of the verti-
ces and edges of G.

Gene lists derived from analyzing differential gene expres-
sion might be linked on the level of coregulation and pro-
tein interactions. To quantitatively assess such
dependencies, the graph properties of PINs derived on the
basis of randomly selected gene lists were computed as
follows: Proteins encoded by randomly selected gene lists
exhibit a background level of protein interactions, and we
analyzed graph measures characterizing gene expression
data sets with respect to random data sets. One thousand
random gene sets containing between 10 and 300 genes
were picked in steps of 10. For each of these gene sets, the
largest subgraph G' was generated again following the
nearest-neighbor expansion as outlined above, and the
graph measures were computed for each G'. This proce-
dure yielded the mean value and 2.5% lower and upper
confidence limits for each graph measure for each data set
size represented by the 1000 individual data sets.

Graph measures and data evaluation
The graph measures for each largest subgraph G' were
then determined for each Oncomine data set as well as for
random data sets. Table 2 lists all of the applied graph
measures. (Software for computing these properties on
the basis of given Gene Symbol lists is available from the
authors upon request.) The graph measures derived for
Oncomine data sets were then interpreted in the context
of the measure scales based on random data sets. A graph
measure was considered as interesting in the context of
cancer associated networks if at least 50% of the 29
Oncomine experiments showed this measure to be out-
side the 2.5% lower and upper confidence limits as com-
puted on the basis of the randomly generated data sets.
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