
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Seahawk: moving beyond HTML in Web-based bioinformatics
analysis
Paul MK Gordon* and Christoph W Sensen*

Address: University of Calgary, Faculty of Medicine, Sun Center of Excellence for Visual Genomics, 3330 Hospital Drive NW, Calgary, AB, T2N
4N1, Canada

Email: Paul MK Gordon* - gordonp@ucalgary.ca; Christoph W Sensen* - csensen@ucalgary.ca

* Corresponding authors

Abstract
Background: Traditional HTML interfaces for input to and output from Bioinformatics analysis
on the Web are highly variable in style, content and data formats. Combining multiple analyses can
therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of
conceptual links between remote data analysis servers. A shared data ontology and service
discovery/execution framework is particularly attractive in Bioinformatics, where data and services
are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data
between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the
promise of seamlessly integrating multi-step analysis.

Results: We have developed a program (Seahawk) that allows biologists to intuitively and
seamlessly chain together Web Services using a data-centric, rather than the customary service-
centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk
concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology,
or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply
load Web pages and text files they already work with. Underlying the familiar Web-browser
interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and
XPath statements which import existing user data into the MOBY-S format.

Conclusion: As an easily accessible applet, Seahawk moves beyond standard Web browser
interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than
on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0
specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-
based analysis, which empower them to do more complicated, ad hoc analysis workflow creation
without the assistance of a programmer.

Background
The MOBY-S protocol
The MOBY-S Protocol [1] has been created by a commu-
nity of Bioinformatics developers wishing to simplify
Web-based analysis. Compatibility of services from differ-

ent providers is achieved primarily by two means: 1) the
ability to programmatically access analysis services (Web
Services), and 2) common object representation (com-
mon semantics). The former is achieved by using WSDL-
based technologies [2] and a service registry (a.k.a. MOBY

Published: 18 June 2007

BMC Bioinformatics 2007, 8:208 doi:10.1186/1471-2105-8-208

Received: 3 April 2007
Accepted: 18 June 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/208

© 2007 Gordon and Sensen; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577405
http://www.biomedcentral.com/1471-2105/8/208
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
Central), and the latter by creating ontologies. Figure 1
illustrates the key components of the MOBY-S system.

A key aspect to chaining together services is the ability to
directly use output from one service as input to another.
In the past, in order to achieve data compatibility between
programs, developers would modify existing analysis soft-
ware and repackage it, or develop completely new pro-
grams suites. The most prominent examples of these two
approaches were the command-line suites GCG [3] and
EMBOSS [4] respectively. In a Semantic Web approach,
MOBY-S defines a centralized, world-writable data-type
ontology to promote a comprehensive common semantic
for biological data. Actual data instances passed on the
Web have a standardized XML representation. Several
graphical utility programs exist [5] to allow developers to
easily browse and edit the service and data-type ontolo-
gies, and to register new services. The four MOBY ontolo-
gies (see Figure 1) are represented using a combination of
OWL and RDF (see [6]), the foundations for the W3C's
vision of the Semantic Web. For processing simplicity
MOBY uses only a small subset of OWL's expressive
power.

MOBY-S clients and their audiences
MOBY-S, as it approaches a stable 1.0 specification, has
the potential to unify analysis in ways other Semantic
Web efforts in the Life Sciences to date have not [7]. A
large amount of effort thus is being spent in making acces-
sible clients. Currently, there are at least 10 different
MOBY-S client programs. They serve a diverse range of
niche audiences, from programmers through to average
computer users. Programs can be subdivided into three
categories based on user skill they assume, from most to
least:

• Do construction of a workflow before data instances can
be created (visual programming)

• Dynamically build service options based on an entered
data instance (standalone browsers)

• Execute MOBY-S Services from within another applica-
tion (embedded browsers)

In the category of visual programming tools are Taverna
[8] and REMORA [9]. With its MOBY-S plug-in [10], Tav-
erna is a Java application which allows the user to build
MOBY-S workflows, and then execute the workflows on
data loaded from a file, or entered manually. The develop-
ment of workflows requires a degree of patience and vis-
ual programming skills, as the user is not logically guided
from one action to the next. Taverna's popularity stems
not from simplicity of use, but from its flexibility, robust-
ness, and support for invoking virtually any WSDL-

describe Web Service. Taverna provides the ability to exe-
cute the workflow over large lists of input, making it ideal
for "power-users" who want to process large datasets, but
lack traditional programming skills. Settings, such as the
time between successive calls to a service, can be set to pre-
vent overloading service providers. REMORA, on the
other hand, is HTML-based and acts somewhat more like
a browser than Taverna: services are added sequentially,
with a list of valid service options presented automatically
for every input/output in turn. The user selects the MOBY-
S data ontology type and namespace from a list, and
object details are filled in after the workflow construction
is complete. The workflow is executed, and the user is
notified by e-mail. In the results page, each octagonal
shape in the workflow is hyperlinked to a simple HTML
representation of the data at that stage.

In the category of standalone browsers, from most exten-
sive to simplest user interface, are Dashboard [11],
MOWserv [12], Ahab [13] and Gbrowse_moby [14].
Dashboard is a Java application to help MOBY-S service
providers register and deploy their services. It includes an
interface to create and display MOBY-S Objects, primarily
for service testing purposes. Dashboard is a developer-
centric interface, as it exposes many of the details of the
MOBY-S protocol (including the underlying XML), is serv-
ice-oriented, and does not choreograph multiple chained
invocations. MOWserv is an HTML-based browser where
users select data-types from the MOBY-S Data Type Ontol-
ogy, then fill in the required fields in a form. They proceed
to the "Objects" tab, and click on the data to display a list
of available services. Service executions are performed
asynchronously: they are stored in the "Tasks" tab, and the
user checks the status of submitted jobs periodically.
While MOWServ provides significant guidance to a user, a
drawback of the task queue and tab organization is that
the analysis has neither a direct workflow representation
for programmers, nor does it sequentially invoke a chain
of services as a biologists might expect.

Turning to more biologist-oriented clients, Ahab is an
HTML-interface, where available services are shown in a
hierarchy and interactive tips about namespaces, data-
types and services are displayed. Data entry is simplified
by Ahab's exclusive use of basic MOBY-S Objects (data-
base namespace + ID only) to seed the analysis, even if it
does somewhat limit the type of analysis available. It also
provides an intuitive service-selection hierarchy and logi-
cal service chaining. Unfortunately, both the directed
graph (default) and text views are cluttered by data struc-
tures and relationships only intelligible to those familiar
with MOBY-S's RDF [15] technical details. Compare this
with Gbrowse_moby, the original MOBY-S client: it pro-
vides the simplest interface of all the clients, using hyper-
links on data to chain services together in a Web browser.
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
Like Ahab, it is restricted to basic object input, but unlike
Ahab does not display any ontology hierarchies. The tex-
tual and sometimes graphical representation of
Gbrowse_moby's output is both succinct and sufficient
for the vast majority of Bioinformatics data (e.g.
sequences, their alignments and annotations).

In the embedded browser category, several applications
directly use the Java, Python or Perl MOBY-S libraries to
find and/or execute MOBY-S Services. They internally cre-
ate MOBY-S XML object representations for submission,
and parse the service results back into some native display
of the application. Such applications include BioTrawler
[16], which visualizes protein interaction networks, and
both BioFloWeb and AtiDB Client, which implicitly use
the European Plant Network's MOBY-S services [17].
Because the use of MOBY-S is programmatic, these types
of applications do not have data-type and service selection
interfaces, nor a MOBY-specific display interface. An
exception to this rule is Seahawk: it is a standalone
browser, but it can be easily embedded in existing Java
applications as a pop-up menu, as in the genome browser
Bluejay [18]. This functionality is described in more detail
in the Methods section.

Implementation
Defining the biologist's needs
Each of the clients described above serves a niche user
type, but how can we get even more biologists to adopt
Semantic Web Services? Based on the strengths and weak-
nesses of those client, a need was identified for an
improved way for biologists to access MOBY-S services.
The salient observations about existing software are:

• All of the interfaces either accept only simple objects
(namespace and id, in Gbrowse), or require a user to build
composite objects piece-by-piece. This somewhat limits
the type of analysis possible in the former case, and
requires an intimate knowledge of MOBY-S's ontologies
and data structures in the latter.

• All of the interfaces require a user to go to a particular
Web page (or a CVS download in the case of Dashboard),
and manually input data. This manual effort requires the
user to already be familiar MOBY-S's object and name-
space ontologies, in order to formulate the data. Users are
also required to break away from their other applications
to use MOBY-S.

• As most data in Bioinformatics is textually represented,
hypertext (HTML) interfaces are the most natural fit for
displaying data (and hence its popularity as a presentation

The MOBY protocolFigure 1
The MOBY protocol. Example service registration, discovery and invocation using the MOBY-S protocol. The three actors
are the client, MOBY Central, and the service provider. Service registration is "pushed" by the service provider, while service
discovery and invocation are "pushed" by the client.

MOBY Central

Data Type Ontology

Service Type Ontology

Namespace Ontology

Client software

Service Provider

What services take a
as input?

,

Service Instance Ontology

I provide the service
It takes a as input,

and gives an
as output.

Run the service
on this particular

Step 1

Step 2

Step 3

Step 5

Step 4
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
medium for MOBY client software so far). While HTML
pages are easy for biologists to work with, for any given
hypertext client described here, there are different pages
associated with 1) MOBY data input, 2) MOBY data dis-
play and 3) MOBY service selection. Users must con-
stantly flip between service and data page "modes" to
chain together an analysis.

• Using visual programming tools creates reuseable work-
flows, but they are relatively difficult for biologists to use,
compared to browsing in the other clients.

To address these issues, Seahawk attempts to provide:

• Creating Input: The ability to modify and extend the
automated linking of existing Bioinformatics data to
MOBY-S Service (and seed analysis with composite
MOBY-S Objects).

• Embedding: The ability to easily link MOBY-S Services
into existing Bioinformatics software.

• Browser Interface: More interactivity versus the HTML
interfaces previously described, and improved usability
versus the visual programming tools for the most com-
mon types of analysis.

• Output: The ability to create workflows more easily than
the visual programming clients.

Creating input
With the exception of MOWServ (where objects with
many fields can be built manually), the HTML-based
interfaces for MOBY-S are all seeded with basic MOBY-S
Objects having a (namespace, id) tuple. This assumes first
of all that the user is accessing a piece of data already in
existence in a database, and that the database is connected
to MOBY. Unfortunately, both assumptions are often
false. Users may be interested in analyzing a new sequence
they have just elucidated in the lab, have yet to submit to
a public database (pre-publication), or any one of many
other reasons. Even if they are accessing a published piece
of data, it is quite possible that the database they are using
has not yet been "hooked into" MOBY-S by any develop-
ers.

The vast majority of Bioinformatics data is available as
formatted text, or HTML through Web sites. Seahawk
accommodates importing as many file formats as possible
for "seeding" the analysis, namely:

1. Plain text (e.g. a FastA formatted file)

2. HTML (e.g. an NCBI Entrez Web Page)

3. Rich Text (e.g. a conference proceedings)

4. MOBY-S object XML representation (e.g. output from a
MOBY-S Service)

Data can be loaded from file:, ftp:, or http: URLs using the
disk icon in Seahawk, or by simply using cut and paste, or
drag and drop facilities of the operating system. This input
flexibility means that the user's existing desktop files, Web
links, and highlighted parts of Web pages (e.g. an NCBI
Genbank entry page) can be directly manipulated and
used as Seahawk analysis input.

As we have already seen, MOBY-S Objects and their sub-
components can be selected using the hyperlinks availa-
ble in their HTML display. Seahawk imports several non-
XML data formats, and a user may want to analyze only
subsections of a MOBY-S Object's character string repre-
sentation. To accomodate such partial data usage, it was
important to provide a text-selection facility in Seahawk.
In Seahawk, a user can highlight any arbitrary text in the
display by a mouse drag, and have the text automatically
converted to MOBY-S Objects for service execution, as
illustrated in Figure 2.

There are 3 main mechanisms that can create MOBY-S
Object instances from selected character strings in Sea-
hawk:

1. Highlighted text is automatically turned into a MOBY-
S String

2. Seahawk will create a MOBY-S DNASequence, RNASe-
quence or AminoAcidSequence if 95% of the text charac-
ters are valid for that sequence type (the 5% exception is
meant to deal with formatting characters, such as position
numbers in the leading columns of GenBank records).
The invalid characters are stripped from the data.

3. The text is tested against a set of regular expression rules

The regular expression and XPath rules are specified in a
special rules file described in the Methods section. The
three sequence object types described above are the only
ontology terms hardcoded into Bluejay, but could be
overridden by new regex rules if these terms change.

Embedding Seahawk in other applications
When Seahawk is used as a helper application, the main
application may programmatically add data to Seahawk's
clipboard. In Figure 3, the Bluejay genome browser appli-
cation [18] creates a DNASequence object (using the Java
MOBY-S libraries) based on the glyph clicked in the dis-
play. This data can then be passed on to the clipboard
using the pop-up menu. Applications can therefore seed
Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
MOBY-S analysis with arbitrarily composite MOBY-S
Objects they construct themselves. More information on
application integration can be found in the Methods sec-
tion.

Using and improving the Web browser paradigm
In order to make the user experience as intuitive as possi-
ble, Seahawk uses the tabbed-Web browser user interface
design, which will be familiar to most potential users. The
tabbed interface (Figure 4) allows the user to branch off
different investigation paths by launching services in new
tabs. Within a tab, the linking from one service output to
the next is sequential, and stored in a history for back-and-
forward functionality (via arrows on the bottom tool bar).

This interface makes the inquiry task and data-centric,
rather than service-centric: the users ask themselves what
they should do next with the data, not what data do they
need to run a particular service. Seahawk improves upon
the other HTML-based MOBY-S clients by avoiding con-
stant browser-page changes. This is accomplished by dis-
playing service choices and input parameters as pop-up
menus and dialog windows respectively.

Providing service choices via pop-up menus has several
advantages. First, all browser window real estate can be
dedicated to displaying the scientist's data of interest.
Underlining hyperlinks provides a familiar yet unobtru-
sive visual clue for document navigation. Second, hyper-
links' negligible space requirement allows Seahawk to
specify links for all subcomponents of a MOBY-S data
document, making data decomposition intuitive. For
example, in Figure 5, a service options hyperlink is availa-

ble for the AminoAcidSequence object, but also for its
crossreference, and the data member SequenceString
(which will show the MOBY-S Services accepting the
String data-type as input). Third, when many service
options are available, pop-up submenus can hierarchi-
cally organize the services and ease the user's navigation of
the options. Services may also designate auxiliary param-
eters that control the service's behaviour; these are referred
to as secondary inputs. All secondary inputs must have a
default value, in order to make an uninformed user's sub-
mission process easier. They may also have a minimum
and maximum range if numeric (integer or floating
point), or an enumeration of choices (if a string). If a serv-
ice with secondary parameters is invoked in Seahawk, a
non-modal dialog box is dynamically generated and dis-
played to allow the user to change these secondary param-
eters, as shown in Figure 5.

By launching a dialog rather than loading an HTML-form
in the browser, Seahawk maintains its browser-display-
equals-service-results philosophy. Secondary input does
not enter the browser history, and because it is non-
modal, the user may defer service execution while they
explore other analysis choices. The user can avoid the dia-
log altogether, and simply use the default values, by hold-
ing down the Control key while selecting the service. This
feature makes service navigation even simpler.

While Seahawk has no facility to edit the MOBY-S Objects
displayed (as the edits might break logical or biological
constraints of the object), the user may put object collec-
tions, individual objects, or object members on the clip-
board using the "Add to clipboard" option available from

Seahawk's data-creation-by-highlighting capabilityFigure 2
Seahawk's data-creation-by-highlighting capability. Left: Selection of a GI number within an NCBI Entrez Web page for
pig ferredoxin (note hint in status bar). Right: MOBY-S Services associated with GI number input (as registered in MOBY Cen-
tral), listed in a hierarchical popup menu.
Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
every service selection menu. The clipboard allows the
user to pick salient data from any step of the analysis for
use later on, providing a way to arbitrarily combine infor-
mation from multiple services (pages) or analysis
branches (tabs).

Individual clipboard items, or the whole clipboard, can
also be cleared. The multi-item clipboard has no equiva-
lent in any major Web browser, but is a familiar concept
to most computer users. The MOBY-S Objects on the clip-

board can be used individually to launch services, or they
may be used as a MOBY-S Object Collection for input to
a service. The data-type of the MOBY-S Object Collection
is determined by finding the nearest common ancestor of
all objects in the data-type ontology, as demonstrated in
Figure 6. Dynamic collection data typing is an example of
domain-specific semantics automatically being applied to
the application interface. The "downgrading" of object
collection data types does not affect the individual mem-
bers of the collection: members are still passed to the serv-

Seahawk embedded in another applicationFigure 3
Seahawk embedded in another application. DNASequence constructed from Bluejay selection added to Web Service
pop-up menu. The DNASequence is added to the Seahawk Clipboard (top-left), an example of transferring a composite
MOBY-S Object to Seahawk from another application. The Bluejay user is exposed to Web Services without leaving the main
application.
Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
ice with all their fields (not just the common ones) intact,
in case the service can use them constructively.

Output
The user has several choices on how to save data from Sea-
hawk. First, the MOBY-S Objects on-screen can be saved
directly into an XML file. This allows a user to resume their
inquiry at a later date by reloading the saved document.
The on-screen data can also be saved in HTML format, for
sharing with colleagues, import into a word processor, etc.
Finally, the browsing history for a particular Seahawk tab
can be saved as a (linear) workflow. The browsing session
performed in this paper's figures can be abstracted into a
workflow as in Figure 7.

The workflow is encoded by Seahawk code as a SCUFL
XML file that can be loaded into Taverna and re-enacted at
any point in the future on large lists of input data (see Fig-
ure 8). Building the example workflow directly in Taverna
requires at least 24 user actions, versus 8 actions (includ-
ing 3 hyperlink clicks) in Seahawk. This workflow export
feature of Seahawk constitutes a basic programming-by-
example functionality. The Gbrowse client has also just

recently implemented a simple workflow exporter. We
hope that use of workflows becomes more widespread as
they becomes more readily available, and programs such
as Seahawk can become a bridge for users into auditable
execution enviroments such as Taverna. The ability to
technically document the analysis process in a workflow
addresses two issues in Bioinformatics today: proper cita-
tion [19] and reproducibility of the results.

Results
The Seahawk software described here consists of approxi-
mately 15,000 lines of Java code. Seahawk also uses some
existing Java code from the BioMOBY public code reposi-
tory (hosted at cvs.open-bio.org). A theme throughout the
implementation of Seahawk is to lower the entry barrier
to the Semantic Web for users and developers. This is
achieved in practice via the use of several XML technolo-
gies (DOM, XSLT, XPath [20]) so that customization of
Seahawk can be done without Java coding. The use of
declarative programming (e.g. XSLT, XPath) for customi-
zation are numerous in the context of semantic data
manipulation (paper in preparation), such as modularity,
security, and low developer buy-in. The reader is directed

Seahawk's interface: tabs, hyperlinks and nested popup menusFigure 4
Seahawk's interface: tabs, hyperlinks and nested popup menus. In the compact tabbed Web-browser interface of Sea-
hawk, navigation and other browser functions are found at the bottom of the screen, and hyperlinks abound in the document.
Left: The 28 results of the getSHound3DNeighboursFromGi service invocation from Figure 2. The pop-up menu appears after
clicking one of the NCBI_gi hyperlinks, and presents services that take an object in the NCBI_gi namespace as input. Right:
Results of the Genbank record retrieval service for the selected NCBI gi number. Note that service hyperlinks appear for
crossreference and sequence subcomponents of the composite object AminoAcidSequence.
Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
to the BioMOBY Website [21] for complete, concrete
examples of the customization methodologies described
in this section.

Data display
Seahawk converts raw MOBY-S XML returned from serv-
ices into HTML suitable for display in a javax. swing.JEdi-
torPane. This conversion is done using an XSLT processor
(discovered at run-time using the JAX-T API), and an XSLT
style sheet. The conventions used for the transformation
and subsequent display are:

• Seahawk will interpret any URL with a numeric XPointer
(e.g. file:///foo.xml#/1/2/3/4/4) as a link to part of a

MOBY-S XML document, and hence will automatically
provide MOBY-S Service links when clicked, by parsing
the data at that XPointer

• Hyperlinks of the form http://moby/namespace
value?id=id_value will be used by Seahawk to construct
basic MOBY-S database identifier objects, for linking out
to relevant MOBY-S Services.

• All other hyperlinks will be launched into an external
browser (e.g. Firefox or Internet Explorer)

The underlying XML representation of the semantic data
is always retained, even if the HTML interface is changed

Example Seahawk service parameter dialogFigure 5
Example Seahawk service parameter dialog. Seahawk's auto-generated secondary input interface for a BLAST Web
Service. Enumeration parameters are represented as drop-down boxes, strings and integers as text fields.
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
via new style sheets. This means that there are no potential
risk of Seahawk inadvertently changing the data as it bro-
kers the passage of messages from one MOBY-S Service to
the next.

Creating MOBY-S data With a rules file
Seahawk provides the ability to map unstructured text, or
any XML document data, into MOBY-S semantic data via
a rules file. The rule set can be easily augmented as devel-
opers adopt Seahawk for their data. The rules file is writ-
ten in XML, with a base element called mappings, which
holds any number of object children.

The object elements represent templates for MOBY-S
Objects to construct. Tags nested inside the object tag pop-
ulate the various MOBY-S Object field instances. The sim-
plest MOBY-S Objects have just a (namespace, identifier)
attribute pair. For example, the example in Table 1 defines
one regular expression rule, to build a MOBY-S Object in
the NCBI global identifier namespace ("NCBI_gi" in
MOBY's Namespace Ontology).

XPath rules are used to build MOBY-S Objects from in-
memory XML Document Object Models (DOMs). In con-
trast to the regular expressions, which pick salient sub-

Seahawk's intelligent clipboardFigure 6
Seahawk's intelligent clipboard. Seahawk clipboard with a DNASequence and an AminoAcidSequence. By checking the
data-type ontology, Seahawk infers that it has a collection of 2 GenericSequences, their nearest common ancestor (as seen in
the tab title).
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
string from a simple text character sequence, XPath rules
search the highly structured data of a DOM. XPath rules
consequently are considerably more flexible and powerful
(see Table 2 for an example).

Note that the "./@id" in the namespace rule is another
XPath statement. Its context is the results of the xpath rule,
and fetches the id attribute of the AGAVE classification
element.

Embedding Seahawk in other applications
To simplify the use of Seahawk as a component inside
another program (such as the Bluejay example given ear-
lier), a specialized java.lang.ClassLoader was written. This
ClassLoader captures all of the classes required to run Sea-
hawk (determined by running a series of automated tests),
and puts them in one JAR file. This minimalist JAR builder

Seahawk as a workflow generatorFigure 7
Seahawk as a workflow generator. Abstract workflow
derived by Seahawk from the browsing done in Figures 2, 4,
and 5, followed by a PMUT [23] analysis of the BLAST
results.

Seahawk workflow being executed in TavernaFigure 8
Seahawk workflow being executed in Taverna. When
using Taverna, the object collection returned by the first
service causes an implicit for loop on the remaining servicse:
all 28 NCBI_gis (corresponding to ferredoxin-like proteins)
will have their sequence retrieved, BLASTed, and analyzed
for mutation sensitivity. The user's simple example browsing
has been used to generate a much larger dataset.

Table 1: Seahawk data rule format: regular expressions. Complete rules file, containing one regular expression rule for creating a basic
MOBY-S NCBI Global Identifier record from a string, such as "gi"122354" or "GI:636353". Captured groups from the regex can be
used to populate the MOBY-S Object fields using the standard Perl and Java syntax ($1, $2, etc.).

<?xml version="1.0"?>
<mappings>

<object>
<regex>(?:GI|gi) [:|](\ d+)</regex>
<namespace>

<ns value="NCBI_gi">$1</ns>
</namespace>

</object>
</mappings>
Page 10 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
allows any developer to include a single JAR file in their
program to access Seahawk. It is also used to minimize the
applet download size. The file contains just the relevant
classes to run Seahawk – such as those from the BioMOBY
CVS, and from The Apache Foundation's [22] Axis
(SOAP), Xalan (XSLT), Xerces (XML parsing) and XPath
packages. Whereas these packages in their totality consti-
tute about 20 MB in JAR files, the minimized package pro-
vides a standalone, fully functional MOBY-S Services
browser in less than 3 MB.

The definition of XPath rules requires greater skill set than
building regular expression rules, and is aimed primarily
at developers who will integrate Seahawk into their exist-
ing XML-based applications. The XPath rules provide the
bridge between the application's data and the MOBY-S
data format. As such, an application using a DOM needs
very few changes to embed Seahawk's functionality. The
code in Table 3 demonstrates how Seahawk is integrated
into a Java application.

Discussion
Improved features
Seahawk improves the user experience over existing
MOBY-S clients with two main features: pop-up menus
from hyperlinks and clipboard functionality.

Introducing hyperlinked pop-up menus to display service
options has several advantages. First, the user is not sent
to a new page to select the service (as happens in other cli-

ents). Treating services as hyperlinks between input and
output data maintains a data-centric browsing experience
for end-users. Second, the pop-up menu does not occupy
any screen real-estate when not in use, but still provides a
detailed (tool-tips) logical (ontology-based) hierarchy
when in use. Third, the hyperlinks allow for easy object
decomposition because they can be inserted for each
object member without affecting the display's readability.

The clipboard helps Seahawk cross over from purely a
browser to a browser/editor hybrid. The clipboard acts as
a collator to MOBY-S Object Collections, allowing users
to combine objects as they see fit. It also allows a user to
temporarily keep data from various steps of the analysis,
without keeping many tabs open. Individual members of
a composite object can be chosen and added to the clip-
board too, facilitating MOBY-S Object decomposition.
The clipboard, like any tab, can be saved to disk, and reo-
pened in another Seahawk session in the future.

Novel features
Seahawk introduces three novel features to Web Services
clients in general: data-creation-by-highlight, rule-based
systems for data mapping, and service-interface-as-com-
ponent for application integration. Data import and data-
creation-by-highlighting together provide an important
facility to the biologist: creating MOBY-S Objects with
semantic meaning out of plain text. This allows the user to
import an array of existing text-based data into a Semantic
Web Service system, including the many standard Web

Table 3: Integrating Seahawk into other Java code. Complete Java code required to integrate Seahawk into a DOM-based application.
The developer might also want to add rules specific to their application.

import ca.ucalgary.seahawk.util.MobyUtils;
import ca.ucalgary.seahawk.gui.MobyContentGUI;
MobyContentGUI mGUI = MobyUtils.getMobyContentGUI(null);
//Pick W3C DOM node 'contextNode' for rules eval, then...
popup = new JPopupMenu();
//Evaluate Seahawk's XPath rules, from that node
mGUI.addPopupOptions(contextNode, popup, true);//true=async
popup.setVisible(true);

Table 2: Seahawk data rule format: XPath expressions. XPath-based rule for creating a basic MOBY-S Gene Ontology record from a
DOM data source, in this case an AGAVE XML document. The DOM context node for the XPath evaluation is determined by the
application.

<prefix value="agave">http://www.bioxml.info/dtd/agave.dtd</prefix>
<!-- Build a MOBY Object in the Gene Ontology namespace-->
<object>

<!-- Find gene elements w/GO classification children-->
<xpath>self::agave:gene//agave:classification [@system='GO']</xpath>
<namespace>

<!-- Find the ID attribute of the above xpath result-->
<ns value="GO">./@id</ns>

</namespace>
</object>
Page 11 of 13
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
resources the user is familiar with already. Such a bridge
from the existing Web to the Semantic Web is essential to
user adoption. Highlighting is also especially important
to biologists because it allows them to easily select subse-
quences of DNA and protein that they deem biologically
meaningful.

The unique regular expression and XPath based rule sys-
tem for creating MOBY-S Objects improves the user expe-
rience both directly and indirectly. In addition to being
the mechanism by which highlighting text generates struc-
tured data objects, it allows Seahawk to directly "hook
into" XML-based third-party applications. Users indirectly
benefit too: the rules system allows developers to easily
add new data mappings, and hence new analysis possibil-
ities.

The visual simplicity of pop-up menu service selection
helps make Seahawk blend in with external applications
that use it as a helper component. The focus on making
Seahawk a small JAR, with an easy to use API, is meant to
encourage the embedding of Seahawk within Java applica-
tions. By integrating Seahawk into their existing applica-
tions, Bioinformatics developers can provide the power of
Semantic Web Services to the end-user without making
them go to a separate application, and manually transfer
the relevant data.

Conclusion
Traditionally, Web Services have been oriented towards
developers, who predetermined the service to be called,
then wrapped the service execution and response within
another program. The real key to empowering the biolo-
gist is to have domain-specific ontologies that can help
the user, rather than the programmer, select appropriate
data and analysis options. The MOBY-S system provides
such ontologies for Bioinformatics.

Seahawk is a MOBY-S client built on the foundation of the
Web-browser interface, familiar to virtually all potential
users, not just developers. Seahawk hides all of the under-
lying implementation details of MOBY-S from the user,
lowering the barrier to using Semantic Web Services.
Many features of Seahawk can be classified as either
"improved" or "new" based on their degree of novelty
compared to other Web Services software and especially
other MOBY-S clients. To improve the end-user experi-
ence, the key on the front-end is the incorporation of UI
elements that keep the experience data-centric, treating
services as links between data. The key on the back-end is
making it as easy as possible to create semantic data from
data the user is already familiar with (primarily Web pages
and flat-file records), addressed with a novel regular
expression/XPath rule system, and application embed-
ding.

Much Bioinformatics analysis happens on the Web
because information and resources are scattered amongst
many labs. There are three key actors in the Semantic Web
for Life Sciences, users (biologists), application develop-
ers, and service providers. Seahawk lowers the barriers for
user and developer adoption. Adoption of MOBY-S by
service providers is gaining momentum as the protocol
approaches version 1.0. A critical mass of all three actors
will allow us to empower the biologist to seamlessly per-
form multi-step analysis in this largely Web-based field.

Availability and requirements
Project name

Seahawk

Project home page

http://moby.ucalgary.ca/seahawk

Operating systems

Platform independent

Programming language

Java 1.5 or higher

License

GNU Lesser General Public License (LGPL)

Any restrictions to use by non-academics

None

Authors' contributions
PG is responsible for all of the coding of Seahawk. PG
designed the novel user interaction paradigm of Seahawk,
in collaboration with CS. PG wrote the manuscript, with
critical review by CS. Both authors read and approved the
final manuscript.

Acknowledgements
This work was supported by Genome Canada through Genome Alberta's
Integrated and Distributed Bioinformatics Platform Project, as well as by
The Alberta Science and Research Authority, Western Economic Diversi-
fication, The Alberta Network for Proteomics Innovation and the Canada
Foundation for Innovation. CWS is the iCORE/Sun Microsystems Industrial
Chair for Applied Bioinformatics.

Seahawk makes use of some jMOBY API code written by Martin Senger
(International Rice Research Institute) and Eddie Kawas (University of Brit-
ish Columbia). We would also like to thank Dr. Michael Shepherd of Dal-
housie University for his critical review of an earlier version of this
manuscript.
Page 12 of 13
(page number not for citation purposes)

http://moby.ucalgary.ca/seahawk

BMC Bioinformatics 2007, 8:208 http://www.biomedcentral.com/1471-2105/8/208
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Wilkinson M, Links M: BioMOBY: an open source biological

web services proposal. Briefings in Bioinformatics 2002,
3(4):331-341.

2. Web services description language [http://www.w3.org/TR/
wsdl]

3. Womble D: GCG: The Wisconsin Package of sequence analy-
sis programs. Methods in Molecular Biology 2000, 132:3-22.

4. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite. Trends in Genetics 2000,
16(6):276-277.

5. Moby registry clients [http://biomoby.open-bio.org/index.php/
moby-clients/registry_clients]

6. MobyServlets [http://mobycentral.icapture.ubc.ca/authority/
moby.jsp]

7. Good B, Wilkinson M, Links M: The Life Sciences Semantic Web
is full of creeps! Briefings in Bioinformatics 2006, 7(3):275-286.

8. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock M, Wipat A, Li P: Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20(17):3045-54.

9. Carrere S, Gouzy J: REMORA: a pilot in the ocean of BioMoby
web-services. Bioinformatics 2006, 22(7):900-1.

10. Kawas E, Senger M, Wilkinson MD: BioMoby extensions to the
Taverna workflow management and enactment software.
BMC Bioinformatics 2006, 30(7):523.

11. BioMoby Dashboard [http://biomoby.open-bio.org/
CVS_CONTENT/moby-live/Java/docs/Dashboard.html]

12. Navas-Delgado I, del Mar Rojano-Munoz M, Ramirez S, Perez A, Leon
E, Aldana-Montes JF, Trelles O: Intelligent client for integrating
bioinformatics services. Bioinformatics 2006, 22:106-11.

13. Ahab, a tool for surfing the BioMoby sea [http://bioinfo.icap
ture.ubc.ca/bgood/Ahab.html]

14. Wilkinson M: Gbrowse Moby: a Web-based browser for Bio-
Moby Services. Source Code Biol Med 2006, 1:4.

15. Resource Description Framework [http://www.w3.org/RDF/]
16. BioTrawler [http://llama.med.harvard.edu/~fgibbons/cgi/MG/

BioTrawler.pl]
17. Wilkinson M, Schoof H, Ernst R, Haase D: BioMOBY successfully

integrates distributed heterogeneous bioinformatics Web
Services. The PlaNet exemplar case. Plant Physiology 2005,
138:5-17.

18. Turinsky A, Ah-Seng A, Gordon P, Stromer J, Taschuk M, Xu E,
Sensen C: Bioinformatics visualization and integration with
open standards: the Bluejay genomic browser. In Silico Biology
2005, 5(2):187-198.

19. States D: Bioinformatics code must enforce citation. Nature
2002, 417:588.

20. Extensible Markup Language [http://www.w3.org/xml]
21. The Seahawk MOBY End-User Applet [http://biomoby.open-

bio.org/CVS_CONTENT/moby-live/Java/docs/Seahawk.html]
22. The Apache Software Foundation [http://www.apache.org/]
23. Ferrer-Costa C, Gelpi J, Zamakola L, Parraga I, de la Cruz X, Orozco

M: PMUT: a web-based tool for the annotation of pathologi-
cal mutations on proteins. Bioinformatics 2005, 21:3176-8.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://biomoby.open-bio.org/index.php/moby-clients/registry_clients
http://biomoby.open-bio.org/index.php/moby-clients/registry_clients
http://mobycentral.icapture.ubc.ca/authority/moby.jsp
http://mobycentral.icapture.ubc.ca/authority/moby.jsp
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16423924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16423924
http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Dashboard.html
http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Dashboard.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://bioinfo.icapture.ubc.ca/bgood/Ahab.html
http://bioinfo.icapture.ubc.ca/bgood/Ahab.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147784
http://www.w3.org/RDF/
http://llama.med.harvard.edu/~fgibbons/cgi/MG/BioTrawler.pl
http://llama.med.harvard.edu/~fgibbons/cgi/MG/BioTrawler.pl
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050633
http://www.w3.org/xml
http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Seahawk.html
http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Seahawk.html
http://www.apache.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879453
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The MOBY-S protocol
	MOBY-S clients and their audiences

	Implementation
	Defining the biologist's needs
	Creating input
	Embedding Seahawk in other applications
	Using and improving the Web browser paradigm
	Output

	Results
	Data display
	Creating MOBY-S data With a rules file
	Embedding Seahawk in other applications

	Discussion
	Improved features
	Novel features

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

