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Abstract

Background: During generation of microarray data, various forms of systematic biases are
frequently introduced which limits accuracy and precision of the results. In order to properly
estimate biological effects, these biases must be identified and discarded.

Results: We introduce a normalization strategy for multi-channel microarray data based on
orthogonal projections to latent structures (OPLS); a multivariate regression method. The effect
of applying the normalization methodology on single-channel Affymetrix data as well as dual-
channel cDNA data is illustrated. We provide a parallel comparison to a wide range of commonly
employed normalization methods with diverse properties and strengths based on sensitivity and
specificity from external (spike-in) controls. On the illustrated data sets, the OPLS normalization
strategy exhibits leading average true negative and true positive rates in comparison to other
evaluated methods.

Conclusion: The OPLS methodology identifies joint variation within biological samples to enable
the removal of sources of variation that are non-correlated (orthogonal) to the within-sample
variation. This ensures that structured variation related to the underlying biological samples is
separated from the remaining, bias-related sources of systematic variation. As a consequence, the
methodology does not require any explicit knowledge regarding the presence or characteristics of
certain biases. Furthermore, there is no underlying assumption that the majority of elements should
be non-differentially expressed, making it applicable to specialized boutique arrays.

Background vast number of biological studies have utilized the tech-
The microarray technology [1] is now a standard tech-  nology to identify regulatory patterns in various organ-
nique in many genomics laboratories due to the high-  isms [2-4].

throughput capacities and relatively low cost in detecting
gene expression levels en masse. Since the introduction, a
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In the commonly used spotted microarray platform,
probes are attached to a solid surface on pre-defined posi-
tions. Sample RNA is reverse transcribed to cDNA, labeled
with fluorescent dyes and allowed to hybridize to the
probes. After washing away superfluous material, the
remaining fluorescence signal from the probes is assumed
to reflect the relative expression levels of the sample RNA.
Typically, two RNA samples, labeled with different fluor-
ophores (for instance Cy5 and Cy3), are measured in par-
allel on the same surface to partially compensate for
variability in probe dispersion and concentration. Exten-
sions from the current two-channel standard into a multi-
channel platform have recently been gaining in popularity
[5-7].

During data generation, numerous factors alter the out-
come through the introduction of systematic biases. Dif-
ferent properties of the dyes (such as degree of dye
incorporation and sensitivity to dye bleaching), irregular
or overall disparities of the slide surfaces, variation in
printing as well as scanner-introduced bias influence the
RNA quantification process. We will generally refer to the
main effects as dye, spatial and array bias in the following
sections, which have been shown to be the most influen-
tial forms of systematic biases present in data from the
spotted cDNA microarray platform [8,9].

As a means to identify and remove systematic biases, data
normalization is typically performed. A considerable
amount of published studies concern the subject of
microarray normalization, see for instance [10] for a com-
prehensive comparison of existing methods or [11] for a
review.

The most widespread normalization methods aim to
address the dye and possibly also spatial effects within
each array. We will refer to these methods as within-array
normalization methods in the following text. Global
median normalization is a straightforward normalization
method that addresses labeling issues by adjusting the
median intensity value within each array. Global loess
normalization [12] appeared early on as a means to
address intensity-dependent dye bias. Subsequently, the
loess method was applied locally within each print-tip
group to additionally assess fixed spatial effects [13]. The
methodology of local regression normalization has
recently been generalized to handle non-fixed dye and
spatial effects in the OLIN normalization method [14]. All
of the mentioned methods explicitly or implicitly assume
that the majority of the genes on the array (or in localized
regions) are unaffected, i.e. that the log-transformed ratios
M = log,(R/G) are centered at zero.

As typical microarray experiments involve multiple arrays
to characterize multiple samples, systematic differences

http://www.biomedcentral.com/1471-2105/8/207

between the arrays (array bias) are frequently introduced.
Several normalization methods for independently
addressing this bias have been suggested in the literature
[15-17]. We will refer to these methods as between-array
normalization methods. Between-array normalization
methods are typically applied subsequent to within-slide
normalization methods. The general strategy has been to
normalize the empirical distributions of intensities across
arrays, such as the Aquantile normalization [15,17] that

ensures that distributions of A = log, (~/RG ) values are

maintained across the slides without altering the dye
ratios. Another, closely related approach is the Tquantile
normalization methodology [15,17] that performs quan-
tile normalization separately per group, where a group is
defined as an arbitrary collection of quantified RNA sam-
ples (such as technical replicates of the same biological
sample).

Different approaches to microarray normalization have
emerged that do not easily fall into any of these groups.
For instance, the VSN normalization method [18,19] per-
forms channel-wise linear and non-linear transformations
to reduce the mean value and variance dependence.
Potentially powerful is the analysis of variance (ANOVA)
approach [8,9] where all effects are assessed simultane-
ously in one global model. Wolfinger et al. explicitly used
two interconnected models; one for normalization pur-
poses and the later for identification of differential expres-
sion (DE). The ANOVA approach is conceptually related
to the presented methodology. Consequently, similarities
and discrepancies will be elaborated further in a suitable
context.

Orthogonal signal correction (OSC) [20] is a technique
originally developed and used for spectral data. The gen-
eral concept of OSC is straightforward: structured varia-
tion that is orthogonal (non-correlated) to a given
problem is identified and can subsequently be studied
and discarded. Formally rephrased, systematic variation
in the descriptor matrix X (containing, for instance, spec-
tral measurements or microarray signal intensities) is rec-
ognized by utilizing information in the response matrix Y
(containing, for instance, toxicity measurements or repli-
cate sample information). Orthogonal projections to
latent structures (OPLS) [21] was later introduced as an
extension to the supervised multivariate regression
method partial least squares (PLS) [22] featuring an inte-
grated OSC-filter. OPLS employs information in the Y
matrix to decompose the X matrix into correlated, orthog-
onal and residual structures of information, respectively.
Further details of the OPLS method and related methods
are described in the upcoming paragraphs.

Page 2 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:207

The following notation will be used throughout. Vectors
are denoted by bold, lower-case letters and are assumed to
be column vectors unless indicated by a transposition, e.g.
p'. Matrices are denoted by bold upper-case letters, for
instance X, with optional dimensionality information,
e.g. (N x K). Matrix inverses are denoted by X-1. All matri-
ces are assumed to be column-wise mean-centered unless
explicitly stated.

Linear regression methods
Linear regression relate two data matrices X (N x K) and Y
(N x M) on the general form in Equation 1.

Y=XB+F (1)

The difficulty in linear regression lies in identifying B (K x
M) while maintaining certain objectives, such as minimi-
zation of the residual F (N x K), high-quality predictions
of future (unknown) Y4 as well as high interpretability
of B. One of the most frequently employed methods for
estimating B is the multiple linear regression (MLR)
method. As MLR is a least-squares solution, B is resolved
so that the sum of squares of the residual matrix F is min-
imized (Equation 2A). The X* matrix denotes the general-
ized (Moore-Penrose) inverse (Equation 2B).

B=X+Y (2A)

X+ = (XTX)1XT (2B)
If X is rank-deficient, (X™X)-! will be undefined and, con-
sequently, the method inapplicable. This generally hap-
pens when there is strong multi-collinearity between the
columns (variables) in X. This scenario is typical for data
matrices in the areas of biology and bioinformatics as bio-
logical systems are inherently full of co-variance patterns
stemming from pathway regulations.

One alternative to traditional MLR is employing latent
variable regression (LVR) methods. The general assump-
tion behind LVR methods is that a system can be
described in terms of a small number of latent variables
that characterize the main properties of the system. Multi-
collinearity is, in such a system, both expected and han-
dled appropriately. This is, for instance, employed in the
PLS regression method [22] where X is decomposed into
latent variable structures T and thereby circumvents the
problems with potential rank-deficiency in X (Equation
3).

X =TPT+E (3)
The definition and calculation of B is distinctly different

(Equations 4 and 5) by utilizing the latent variable struc-
tures in T.
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B = W(PTW)-1CT (4)
C=(T'T)'T'Y (5)

In Equations 3, 4 and 5, T (N x A) is the score matrix,
describing properties at a sample (observational) level, PT
(A x K) is the loading matrix, describing properties at a
variable (descriptor) level, W (K x A) is a weight matrix
describing covariance between X and Y, E (N x K) is the
residual matrix of X. N denotes the number of observa-
tions (microarray channels) and K the number of varia-
bles (microarray elements). A is the number of latent
variables and thus determines the latent variable rank of
the solution, which is typically far less than the algebraic
rank. A suitable value of A is determined using resampling
methods such as cross-validation [23] or similar. See the
supplied reference for further details.

The OPLS method

OPLS is a multivariate LVR method where the objective
function is to find predictive components that simultane-
ously maximize the covariance and correlation between X
and Y as in Equation 1. Compared to the PLS representa-
tion of X (Equation 3), OPLS utilizes information in the
response matrix Y to further decompose the X matrix into
three distinct structures as described in Equation 6. Here,
T, (N x A,) denotes the predictive score matrix for X, P,
(A, x K) denotes the predictive loading matrix for X, T, (N
x A,) denotes the corresponding Y-orthogonal score
matrix, P,T (A, x K) denotes the loading matrix of Y-
orthogonal components and E denotes the residual
matrix of X.

X =T,P,T+T,P,T+E (6)

Important to note from Equation 6 is that T,P,T contains
systematic covariance and correlation structures in rela-
tion to Y, T P.T contains systematic Y-orthogonal (bias-
related) variation and the residual matrix E contains the
remaining un-modeled variation. The A, and A, parame-
ters define the rank of the solution and will be discussed
in more detail at a later point. More explicit information
regarding the algorithm for identifying Tp, PpT, T,and P.T,
respectively, are described in [21,24].

Study summary

We will, in the upcoming sections, show how proper con-
struction of the X and Y matrices and subsequent use of
OPLS can be utilized as an efficient normalization step for
multi-channel microarray data. Dual-channel microarray
data will primarily be used in direct comparison with a set
of common normalization methods to highlight differ-
ences. Additional data sets, both dual-channel and single-
channel, have been evaluated and are presented in addi-
tional data file 1. The evaluation will primarily be based
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on differential expression for external controls where the
true ratios are known a priori.

Results

A brief summary of the outlined strategy is provided in the
next paragraphs; for a more comprehensive description,
consult the Methods section.

The presented methodology identifies joint variation
within biological samples to enable removal of sources of
variation that are mathematically independent (orthogo-
nal) to the within-sample variation. This ensures that sys-
tematic variation related to the underlying biological
samples is separated from the remaining, bias-related
sources of structured variation. The raw microarray data is,
in the following text, contained in the X matrix whereas
information regarding the different biological samples is
contained in the Y matrix. The systematic covariance and
correlation structures associated to the biological samples
are characterized by the predictive score matrix T, (N x A)
and predictive loading matrix P;T (A, x K) from the OPLS
model. Here, the Tp matrix describes relations at a sample
level whereas the P," matrix describes corresponding char-
acteristics at a variable (gene) level. The bias-related vari-
ation, henceforth referred to as the Y-orthogonal
variation, is captured in the Y-orthogonal score matrix T,
(N x A,) and the Y-orthogonal loading matrix P,T (A, x K).
In a similar fashion, the T, matrix describes relations at a
sample level whereas the P T matrix describes correspond-
ing characteristics at a variable (gene) level. Dimensional-
ity of the solution is primarily related to the data set
specific parameter A, that is estimated by means of Monte
Carlo Cross-Validation (MCCV) [25]. Please consult addi-
tional data file 1 for further information regarding the
cross-validation procedure.

In the presented study, we will explicitly illustrate the
effects of the suggested normalization methodology pri-
marily on a public dual-channel data set. This data set,
which we will refer to as the H8k data set, contains 26 two-
channel ¢cDNA microarrays from a previously published
study [26]. The experimental design is a traditional dye-
swap design containing a treated sample and a reference
sample measured using technical replication. Further
details regarding the data set are available in the supplied
reference.

We have further evaluated two different data sets using the
presented methodology. The first is an in-house produced
dual-channel data set (referred to as the POP2.3 data set),
whereas the second is a public single-channel Affymetrix
(HGU95) spike-in data set, available at the Affymetrix web
page [27]. Characteristics and results for these two data
sets are mainly available in additional data file 1.
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The data has been normalized in parallel using a set of
existing normalization methods of varying categories,
which we believe to be in common use. Properties of the
evaluated normalization methods and a list of abbrevia-
tions are available in Table 1. Note that we by no means
aim to provide a comprehensive comparison of normali-
zation methods; see [10] for such a study.

X and Y matrices for the H8k data set were constructed as
described in the Methods section and fitted with an OPLS
model with one predictive component and 10 Y-orthogo-
nal components (A, =1 and A, = 10) as recommended by
group-balanced MCCV. Consult additional data file 1 for
details regarding the cross-validation. The total number of
elements determined as differentially expressed for each
method based on all microarray elements is available in
Figure 1A. The TN and TP rates for each method, based on
the external controls, are available in Figure 1B. One can
see that the total number of identified differentially
expressed genes is highest with the OPLS method while
maintaining TN and TP rates at a high level. The TN rate
of the OPLS methods is lower than some methods (98.2%
as compared to 100.0% for raw data) but the TP rate is
100.0%.

The information in the Y-orthogonal TP, matrices is
readily accessible for interpretational purposes. Recall that
the T, matrix describes relations at a sample level whereas
the P,T matrix describes characteristics at a variable (gene)
level. For this particular data set, T, is composed of 10
score vectors that are orthogonal to Y and individually
orthogonal to each other. We will explicitly interpret a
selection of Y-orthogonal vectors to justify the discarded
variation as well as to demonstrate the powerful interpre-
tational alternatives available when employing OPLS as a
normalization method.

The first Y-orthogonal score vector t,, , is depicted in Figure
2 in parallel with the average A values, representing the
average intensity level of a slide, for each of the 26 slides.
The Pearson correlation coefficient between the two series
is 0.992, implying that the vector mainly identifies a base-
line difference between the arrays (i.e. array bias). The cor-
responding loading vector p, ;T displays no systematic
trends (not shown), which suggests that there are no evi-
dent array-dye or array-spatial interaction effects. The var-
iation captured in this vector account for 68.0% of the
total variation in X, which is by far the single highest
source of structured variation in the data set.

In the second Y-orthogonal score vector t,, ,, we noted that
the score value of the sample labeled with the Cy3 dye was
consistently higher than the sample labeled with the Cy5
dye placed on the same slide (see additional data file 1).
This suggests that an independent dye-effect is contained
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Table I: Overview of the evaluated normalization methods. The compared normalization methods and their corresponding
properties. 2 The spatial effect is constrained to print-tip based effects. » The method can be extended to support this feature.

Method name Short name Ratio-based Spatial Between-array
Global median Median Yes No No
Global loess Loess Yes No No
Print-tip loess PT-loess Yes Yes? No
Print-tip loess with Tquantile norm. PT-loess/Tq Yes/Yes Yes2/No No/Yes
OLIN OLIN Yes Yes No
VSN VSN No Nob No
Global loess with ANOVA ANOVA Yes/No No/Yes No/Yes
OPLS OPLS No Yes Yes
in this vector, which accounts for 7.8% of the total varia-
tion in X. Remaining score and loading vectors describe
A Number of DE elements various forms of dye-spatial effects which are primarily
. . . ' ! constrained to several problematic print-tip groups. This
Raw :l is most noticeable in the eighth Y-orthogonal loading vec-
VSN | tor p,¢", shown in Figure 3. The print-tip effect partly
Loess | explains the success of print-tip based normalizations as
Median | compared to global normalizations.
ANOVA | The encouraging results from the H8k data set are sup-
OLIN | ported by results from the dual-channel, in-house pro-
PT—loess/Tq | duced POP2.3 data set as well as the public single-channel
PT—loess | HGU95 data set (see additional data file 1 for details). For
OPLS the POP2.3 data set, OPLS-normalized data exhibits lead-
T T T T 1 ing average TP and TN rates. Furthermore, the first score
0 500 1000 1500 2000 2500  Vvector t,, characterizes a distinct array bias, consistent

TP and TN rates (%)

PT-loess/Tq P ——————————————

PT—loess
OPLS | )

[ [ [ [ 1

80 85 20 95 100

Figure |

Normalization results for the H8k data set. In A, dif-
ferences in the total number of identified DE microarray ele-
ments between the different normalization methods are
displayed for the H8k data set. In B, the TP and TN rates for
the H8k data set are displayed based on the DE of the exter-
nal controls. The TP rates are presented using solid black
bars whereas the TN rates are presented using striped bars.
Raw refers to the un-normalized data.

with the behavior of the H8k data set. For the HGU95 data
set, OPLS-normalized data displays leading average TP
and TN rates; signifying that the method is applicable also
for single-channel data.

Discussion

Microarray measurements frequently host various forms
of systematic and data-set specific experimental errors that
limit the accuracy and precision of the results. We have
outlined a strategy based on recent advances in multivari-
ate regression for identification of such bias. Using the
OPLS method [21], information across biological samples
is employed to discard non-correlated information. With
a sound underlying experimental design, this Y-orthogo-
nal information will contain various forms of biases (such
as array, dye, spatial and batch-related biases), which can
subsequently be discarded from the data.

The general form of the methodology arguably makes it
likely to be of broad utility, which we discuss in more
detail in the upcoming paragraphs.

First, the methodology is intensity-based and thus not
restricted to two-channel data and the explicit formation
of ratios (M values). The main rationale behind usage of
ratios is related to biases originating from spot size and
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lllustration of the array baseline difference. The first
Y-orthogonal score vector t, | is shown together with the
average A values for each slide. The t, | values (averaged per
slide) are displayed using point-up, light gray triangles
whereas the average A values are displayed using point-
down, dark gray triangles. The Pearson correlation coeffi-
cient between the two series is 0.992, suggesting that the
score vector captures an array bias.

overall intensity baseline disparities across arrays, but this
effect is clearly captured with the present methodology
(Figure 2). The intensity-based approach has obvious aux-
iliary advantages, in particular when it comes to evalua-
tion of complex designs where treated samples are not
consistently hybridized against a reference sample. Fur-
thermore, the general arrangement supports normaliza-
tion of single-channel data; such a setup is shown in
additional data file 1 with promising results. Moreover,
the intensity-based approach enables future extensions to
data containing more than two channels, which is pre-
sumably becoming an increasingly attractive choice. The
extra information in the additional channel(s) could be
used to increase the number of measurements [6] or for
quality control [5].

Second, the methodology does not rely on assumptions
that the majority of genes on the array, globally or in
localized regions, are non-differentially expressed. Thus,
the approach is also applicable to custom-made arrays
where the majority of genes are in fact assumed to be DE
(commonly referred to as boutique arrays). This is not true
for the majority of the currently available methods,
although recent extensions of the loess normalization
method support such data [28]. There is an apparent dan-
ger in applying traditional normalization methods if this
underlying assumption of abundance of non-DE genes is
not met. Specifically, true biological effects will be elimi-
nated by the normalization to an unknown extent in such
situations, which may ultimately obscure the final inter-
pretation of the results. Furthermore, it is not always evi-
dent beforehand if the assumption is valid without prior
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Figure 3

lllustration of a print-tip group effect. The eighth Y-
orthogonal loading vector p, " displayed using a spatial rep-
resentation of the array layout. The 48 print-tip groups are
delimited using solid lines. Darker areas denote higher abso-
lute loading values whereas brighter areas denote lower
absolute loading values. One distinct print-tip group with
high-magnitude loading values can be seen in the upper right
corner of the figure (indicated by the arrow), capturing a
print-tip group effect.

knowledge of the studied system and the anticipated
effects.

Third, the methodology does not assume presence or
absence of certain categories of biases (such as ANOVA
and print-tip based methods) or characteristics of these
biases. For instance, assume that there exists an
(unknown) structured variation related to the production
of the microarray slides in different batches. This variation
will not be captured by the general ANOVA model unless
such an effect is anticipated; which is not true for the
OPLS model. The only prerequisite for the present meth-
odology to fully identify and discard bias-related variation
is that it is orthogonal to the differences related to the bio-
logical samples and is systematic (structured).

The evaluation and rationale behind the potential
strengths of the method is, to a great extent, based on the
use of external controls to certify the reliability of the
results. We believe that the employment of external
(spike-in) controls is a very powerful approach as one esti-
mates the accuracy of the arrays, not only the precision
across replicates. See also [29] for useful discussions
regarding evaluation of microarray performance and
external validation.

One common criticism concerning the usage of global
models, such as ANOVA, for normalization purposes is
that the construction and evaluation requires statistical
expertise (see, for instance [14], discussion section, on
this subject). For the outlined method, the only prerequi-
site by the user is a specification of the sample groups. The
remaining tasks, including model fitting, are fully auto-
mated using MCCV and need not be any more compli-
cated for novice users than methods for within-slide
normalization based on local regression. Model evalua-
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tion, as described in the results section, is a recommended
but not mandatory step in the outlined strategy if high-
throughput is required.

One known limitation of the methodology arises in situ-
ations where the group information is unavailable. This
applies in unsupervised analyses, for instance when one is
interested in detecting subclasses of a particular cancer
type. As the true origin of the samples is unknown, this
information cannot be utilized for normalization pur-
poses.

In the main text, we have briefly discussed the similarities
of the outlined method as compared to a two-step
ANOVA approach as described in [9]. From a conceptual
point of view, the approaches are related as both tech-
niques aim to assess specific effects that can subsequently
be retained or discarded. In the first step (normalization
step) of the two-step ANOVA approach, various forms of
bias are explicitly characterized. In the second step, the
biological effects are estimated on the remaining sources
of variation (residual). The presented OPLS approach
roughly operates in the reverse order, as the biological
effects are estimated at an initial stage and the systematic
Y-orthogonal effects (bias-related) are discarded at a sub-
sequent step. The OPLS normalization procedure could
analogously be arranged to explicitly model unwanted
effects in Y (such as array and print-tip effects) and subse-
quently retain T,P,T + E posterior to modeling. Differ-
ences in the results are essentially related to overlapping
covariance structures. Assume that there exists structured
variation in a data set that is co-varying with both a bio-
logical effect as well as an unwanted effect. In the two-step
ANOVA approach, this variation will be identified and
discarded in the first (normalization) step. Consequently,
systematic biological information can be discarded if co-
varying with unwanted effects, which is a stringent nor-
malization criterion. In the presented OPLS approach,
only variation that is completely unrelated (orthogonal)
to the biological sample variation will be discarded. Using
the same hypothetical example as for the two-step
ANOVA approach, the OPLS method will thus retain the
biological variation in the data set after normalization.
We see that in some cases (as in the presented examples)
this approach can be more powerful in identifying differ-
ential expression. This is essentially a consequence of the
fact that if we are not aware of all the present bias-related
effects, then explicit modeling is not viable in practice.

One could easily imagine situations where one is inter-
ested in non-categorical information, for instance exact
spike-in sample concentration gradients for the single-
channel platform. It is certainly possible to use OPLS for
such purposes; specifically to calibrate the measured con-
centrations to the known concentrations and subse-
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quently predict the wunknown (but measured)
concentrations according to the same model. This is an
example of multivariate calibration [30], which is an
established field of linear modeling. However, since this
would involve a different setup, aim and partly also nota-
tion compared to the presented method, we will not dis-
cuss such a potential normalization strategy in detail.

Several remaining features of the OPLS methodology,
when utilized for normalization purposes, are left un-
evaluated in this study. As the normalization is model-
based, a finite model space is covered where the regression
is defined to be valid. This implies that one can test for
model outliers, which can for instance be exploited as a
quality control step to detect flawed hybridizations. Fur-
thermore, the outlined strategy makes no explicit use of
the predictive information in T,P,T, reflecting biological
differences at a sample (T,) and variable (P,T) level. In
relation to the two-step ANOVA method, this would
roughly correspond to the second step where biological
effects are differentiated. The OPLS method host numer-
ous capabilities for interpretation of this information (see
for instance [31] on this subject), but remains the scope of
a future paper.

Conclusion

Presented is a methodology for normalization of microar-
ray data using multivariate regression as implemented in
the OPLS method. The strengths of the strategy are dem-
onstrated based on both public and in-house produced
data, where identification of known differential expres-
sion is shown to be augmented compared to other evalu-
ated methods. Illustrated examples are based on data
from the dual-channel microarray platform but the gen-
eral setup of the strategy allows simple extensions to
multi-channel platforms as well.

Methods

Constructing the data tables

The following text refers to the two-channel platform but
can easily be generalized to single-channel or multi-chan-
nel data. Let X consist of the log,-transformed intensity
values from each channel, i.e. not using ratios for the
intensity estimate within the same array. If we are measur-
ing intensity values on S arrays on array layouts contain-
ing K elements, the dimensionality of X will thus be (28 x
K).

Now let us assume that the data consists of L groups,
which are measured in replicates. In the demonstrated
examples, L is the biological replicates of different treat-
ments, which are measured several times, but could also
be some other effect of interest. Y is constructed as a sparse
binary matrix of dimensionality (2S x L), where each ele-
ment in Y is either O (sample does not belong to group) or
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1 (sample belongs to group). For the sake of simplicity, we
will assume that no sample belongs to multiple groups,
which implies that the algebraic rank of Y is L-1 when Y is
mean-centered, but this is not a general restriction. In the
H8k and POP2.3 data sets, one treated sample and one
reference sample have been used with a varying number
of biological and technical replicates. Each measured
channel will denote one row in the Y matrix. In this par-
ticular case, Y will consist of two columns (one for each
treatment) and will, posterior to mean-centering, have the
algebraic rank L-1 = 1. The readers that are familiar with
discriminant analysis theory will note that the structure of
Y essentially describes a classification problem [32].

An example of the Y matrix is provided in Equation 7,
where four slides, containing the samples S, - S,, have
been hybridized in a dye-swap fashion. Columns in the
un-centered Y, (8 x 4) correspond to samples; rows corre-
spond to channel-wise measurements whereas the ele-
ments conceptually correspond to presence or absence of
the sample in the channel. Note that the demonstrated
example matrix Y, is un-centered and thus has algebraic
rank L; but will after column-wise mean-centering achieve
the algebraic rank L-1 (not shown). The mean-centered Y
matrix is subsequently used in OPLS modeling. Note also
that no information regarding the utilized array or fluoro-
phores is explicitly used; sound underlying experimental
design is required to separate array and dye effects from
sample effects. See [33] for an excellent review on the sub-
ject of experimental design for the two-channel microar-
ray platform or [34] for design issues regarding multi-
channel data.

9%}
7

Sy 83 84
0 0]

1

(7)

o
Il
S O O » O O O +

c O = O O O
o = © © © ~ O
— O © © ~» O O
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As previously stated, the objective function of OPLS is to
find predictive components that simultaneously maxi-
mize the covariance and correlation between X and Y. As
a consequence of the structure of Y, the predictive infor-
mation in T,P,T describes the maximum difference
between the groups, which is the main biological discrep-
ancies given that the groups denote different biological
samples as in the presented examples. In relation to the
ANOVA strategy outlined by [8], the information in T,
resembles what is characterized by the V (variety) term

http://www.biomedcentral.com/1471-2105/8/207

and P,"what is characterized by the G (gene) term (see
also discussion on this subject). The Y-orthogonal varia-
tion in T, P.,T will then portray the remaining structured
variation, which is independent of the sample groups.
Array effects, dye effects, spatial effects and possible inter-
actions between these effects will all fall into this category.
Fundamental to the concept is that these effects are not
confounded with the sample group effects in Y due to
improper experimental design. Note also that we are not
using degrees of freedom to explicitly distinguish these
sources of systematic biases from each other.

The normalized data matrix X, ;. (2S x K) is subsequently
reconstructed as in Equation 8, i.e. without the Y-orthog-
onal structures.

Xporm =ToP, T+ E (8)
Model estimation
In OPLS modeling, two parameters A, and A, need to be
estimated, which are related to the dimensionality of
T,P,"and T,P,T, respectively. For the problems described
here, we will set A, to the algebraic rank of the mean-cen-
tered Y, i.e. to L-1. This corresponds to the fundamental
assumption that discriminatory variation between the
groups is present in X. The remaining parameter A, deter-
mines the amount of variance that is peeled off from the
X matrix (in this case, microarray signals). The value of A,
is essentially dataset-specific. A too low value of A implies
that there is still systematic variation in X that is unrelated
to Y, which lowers the possibilities of identifying differen-
tial expression (increases type II errors). A too high value
of A, will, on the contrary, increase the risk of false posi-
tives (type I errors) due to the decrease in variance in
T,P,T. For the data set described here, we have utilized
group-balanced Monte Carlo Cross-Validation (MCCV)
[25] to estimate a suitable value of A,. More detailed
descriptions of the employed MCCV strategy, which is
fully automated, are available in additional data file 1.

External controls

The demonstrated H8k data set contain external (spike-
in) controls, based on the Lucidea Universal Scorecard
(GE Healthcare, Uppsala, Sweden) system where expres-
sion ratios are known beforehand. The external controls
are essentially of two different types. The calibration clones
are printed at a 1:1 ratio in various concentrations on the
slide. As these clones are known not to be differentially
expressed (DE), any erroneous assessment of DE will yield
false positives (FP). We will utilize the calibration clones
to determine the true negative (TN) rate, where TN = 1 -
FP. The ratio clones are printed at ratios of 1:3, 3:1, 1:10
and 10:1 in different concentrations on the slide. As these
clones are known to be DE, we will use these clones to
determine the true positive (TP) rates. Other capabilities
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of the Lucidea scorecard system, such as the utility clones,
have not been utilized in this study. The calibration and
ratio clones are spatially scattered across the arrays and
constitute a representative subset of approximate two per-
cent of the total number of elements on the microarrays.

Differential expression

The results of the normalization methods based on the
true negative (TN) rates from the calibration controls, the
true positive (TP) rates from the ratio controls and the
total number of differentially expressed genes are illus-
trated. Differential expression was set at p,gj,geq < 0.05
based on Student's t-test after employment of the step-
wise false discovery rate method of Benjamini and Hoch-
berg [35] to account for multiple testing inflation. All
available clones were employed for multiple-test correc-
tion, not only the external (spike-in) control subset. All
calculations of differential expression are, for consistency,
based on the log,-transformed ratios (M values) within
each slide, even for methods that do not employ ratios for
normalization purposes.

Implementation and availability
A R package [36] including all required sources is availa-

ble on request from the corresponding author.
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OLIN Optimized local intensity-dependent normaliza-
tion

VSN Variance stabilization

OSC Orthogonal signal correction

OPLS Orthogonal projections to latent structures

MCCV Monte Carlo Cross-Validation

MLR Multiple linear regression

LVR Latent variable regression

DE Differential expression

TN True negative

TP True positive
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