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Abstract

Background: Relating features of protein sequences to structural hinges is important for
identifying domain boundaries, understanding structure-function relationships, and designing
flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for
studying characteristics of hinges.

Results: Using the Molecular Motions Database we have created a Hinge Atlas of manually
annotated hinges and a statistical formalism for calculating the enrichment of various types of
residues in these hinges.

Conclusion: We found various correlations between hinges and sequence features. Some of these
are expected; for instance, we found that hinges tend to occur on the surface and in coils and turns
and to be enriched with small and hydrophilic residues. Others are less obvious and intuitive. In
particular, we found that hinges tend to coincide with active sites, but unlike the latter they are not
at all conserved in evolution. We evaluate the potential for hinge prediction based on sequence.

Motions play an important role in catalysis and protein-ligand interactions. Hinge bending motions
comprise the largest class of known motions. Therefore it is important to relate the hinge location
to sequence features such as residue type, physicochemical class, secondary structure, solvent
exposure, evolutionary conservation, and proximity to active sites. To do this, we first generated
the Hinge Atlas, a set of protein motions with the hinge locations manually annotated, and then
studied the coincidence of these features with the hinge location. We found that all of the features
have bearing on the hinge location. Most interestingly, we found that hinges tend to occur at or
near active sites and yet unlike the latter are not conserved. Less surprisingly, we found that hinge
residues tend to be small, not hydrophobic or aliphatic, and occur in turns and random coils on the
surface. A functional sequence based hinge predictor was made which uses some of the data
generated in this study. The Hinge Atlas is made available to the community for further flexibility
studies.
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Background

Motions play an essential role in catalysis and protein-lig-
and interactions. In particular, hinge bending motions
account for 45% of motions in a representative set from
the Database of Macromolecular Motions|[1] comprising
domain hinge motions (31% of the total) and fragment
hinge motions (14%) [2-4]. Thus understanding funda-
mental aspects of hinge bending mechanisms may lead to
an improved understanding of the relationship between
structure and function.

There are three levels of hinge prediction. The easiest case
occurs when the atomic coordinates are available for two
or more conformations of a given protein. In this case it is
possible to visually inspect the motion to determine the
hinge location, as we have done here. The process can also
be automated with various available packages, including
FlexProt[5,6], Hingefind[7] and DynDom|[8]. A much
more difficult problem is that of predicting hinges when
only one set of structural atomic coordinates is available.
Several algorithms have been developed for this purpose
[9-15]. The very hardest case occurs when the sequence is
known but no atomic coordinates are available at all.

The problem of finding flexible hinges between rigid
regions based on sequence is in some ways similar to the
problem of finding domain boundaries, which can be
flexible or inflexible. Although little work has been done
on the former problem, several algorithms exist to address
the latter. In one significant contribution, Nagarajan and
Yona[16] analyzed multiple sequence alignments and
were able to identify domains with some accuracy.
Marsden et al[17] focused on the case of proteins with no
significant sequence homology to well characterized pro-
teins and found that predicted secondary structure con-
tained information about domain boundaries. Jones et al.
combined PUU[18], DETECTIVE[19], and DOMAK[20]
to make a consensus-based domain boundary predic-
tor[21]. Heger et al. [22] created the Automatic Domain
Decomposition Algorithm (ADDA)[23] and associated
online database[22]. Murzin et al. created the SCOP
(Structural Classification of Proteins) database[24]. For
purposes of the above algorithms and classifications,
however, domains are defined as proteins or regions of
proteins having a common evolutionary origin[22,24];
flexibility is not a consideration. Indeed most small and
medium sized proteins, such as those prevalent in the
Hinge Atlas, consist of a single domain[24]. Therefore the
problem of finding flexible hinges is not solved by finding
domain boundaries as defined for these methods. Schless-
inger et al[25] developed a method to predict B-factors
from sequence, but it is not clear that B-factors obtained
in this way would yield accurate flexibility predic-
tions[26,27]. In light of the limitations of existing meth-
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ods, the prediction of domain hinges from sequence is
considered an open problem[16].

In this article we focus on the characterization of these
hinges based on sequence. To that end, we compiled the
Hinge Atlas, a manually annotated dataset of hinge bend-
ing motions, as well as a separate computer annotated
dataset, both available for further studies. The Hinge Atlas
has several applications. First, the statistical properties of
hinges can be studied (composition, sequence correla-
tions, coincidence with active sites, etc). Second, it can be
used to benchmark hinge prediction programs. Third, by
homology hinge annotations could potentially be trans-
ferred to proteins where the existence and location of a
hinge are unknown. Fourth, the annotations could con-
ceivably be used in future protein motion prediction pro-
grams. The first application was of most interest to us in
the current work.

Our molecular motions database serves a wide variety of
purposes, helping investigators understand the motion
characteristics of individual proteins, as well as statistical
properties of large groups of motions. It is the ideal plat-
form for the current study, since it contains over 19000
morphs. A morph is a set of atomic coordinates for two
homologous protein structures (usually obtained experi-
mentally), plus several structures which our morph server
generates as interpolations between the two[9,28]. Our
server displays these structures in succession as a "movie"
which suggests a possible trajectory of motion between
the two conformations. In this study we compiled two
representative sets of morphs with hinge annotation: a
computer annotated set and a manually annotated set, the
Hinge Atlas. Using mostly the latter, we addressed the fol-
lowing questions:

1. Are certain residue types differentially represented in
hinges?

2. Do certain pairs of amino acids coincide with hinges?
3. Can sequence be used to predict hinges?

4. Do hinges coincide with active sites?

5. Do hinges prefer certain secondary structural elements?

6. Do hinge residues share physicochemical or steric prop-
erties?

7. Are hinge residues conserved in evolution?
As our first task, we computed the rate of occurrence of

each residue type in the Hinge Atlas. Certain amino acids
were found to be differentially represented in hinges in a
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statistically significant fashion. We also investigated
whether certain consecutive pairs of residues were differ-
entially represented in hinges. In the course of the above,
we observed that one of the overrepresented residues (ser-
ine) is potentially catalytic; this was the original motiva-
tion for question 4 above. To answer that question, we
searched the Catalytic Sites Atlas (CSA)[29] for close
homologs to the proteins in our dataset, and extracted the
active site residue numbers from those proteins for com-
parison to the Hinge Atlas annotation.

Our next task was to investigate hinge coincidence with
secondary structure. Hinges are generally believed to
occur in disordered regions, but this belief has never been
tested or quantified rigorously to our knowledge.

Following up on our finding that hinges coincide with
active site residues, we went on to the question, are hinge
residues more likely to be conserved than other residues,
as active sites are? We ranked the residues by relative con-
servation and examined the differences between hinge
and non-hinge residues.

Significant correlations between sequence features and
hinges were found in the above analyses. We computed
Hinge Indices for each of these which may be used to
relate sequence features to flexibility. We then sought to
determine what predictive value sequence might have on
its own and whether various sequence features collectively
could be used for prediction.

We first made a simple GOR (Garnier-Osguthorpe-Rob-
son) [30,31]-like predictor. We computed the log-odds
rate of occurrence for residues located at the -8 to +8 posi-
tions along the sequence in the training set. We used this
table to make predictions on the test set and examined
their predictive power.

As a second approach, we made a composite Hinge Index,
which we call HingeSeq, from the Hinge Indices of each of
the sequence features found to be the strongest indicators
of flexibility. The statistical significance of this measure
was computed much as for the individual sequence fea-
tures. To show that the measure is predictive, we again
divided the Hinge Atlas into training and test sets and rec-
omputed the relevant Hinge Indices to include only train-
ing set data. We used the regenerated HingeSeq to predict
hinges in the test set and generated a Receiver Operating
Characteristic (ROC) curve.

As a final step, we examined MolMovDB as a whole to
determine whether any particular database bias was in evi-
dence. We also used resampling[32] to check for sampling
artifacts in the Hinge Atlas. Lastly, we compared the Hinge
Atlas to our computer annotated dataset. The resulting
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work provides insight into the composition, physico-
chemical properties, geometry, and evolution of hinge
regions in proteins.

Methods

Preparation of computer annotated hinge dataset

Prior to generating the manually annotated Hinge Atlas,
we used computational methods to generate a dataset of
hinge residues for our statistical studies. We began by run-
ning FlexProt[5], a leading hinge identification tool, on
all morphs (pairs of homologous protein structures) in
the Database of Macromolecular
Motions[1,2,4,9,28,33,34] FlexProt works by matching
and structurally aligning fragments in one structure with
corresponding fragments in the other. The goal is to find
fragment pairs which (1) have minimal RMSD and (2) are
maximal in size. The hinges are then reported as the
boundaries separating those fragments. Goal (2) is equiv-
alent to minimizing the number of these hinges. Since
domains are never completely rigid, RMSD tends to grow
with fragment size and therefore goal (1) is in conflict
with goal (2). This conflict is dealt with by providing the
user with a series of adjustable parameters, and further by
reporting not one but several alternative hinge locations
from which the user can choose. We used a combination
of computer and manual culling to select those morphs
for which the identified hinges met the following criteria:

1. Motion was domain wise, i.e. two or more domains
could be observed moving approximately as rigid bodies
with respect to each other.

2. The identified hinge was located in the flexible region
connecting two rigid domains, rather than in the domains
themselves.

3. The morph trajectory was sterically reasonable, i.e.
chains were not broken in the attempt to interpolate
motion.

We found that FlexProt's Maximal[35,36] RMSD (Root
Mean Square Deviation) parameter had a strong effect on
the results. Therefore when FlexProt gave visibly incorrect
results for a given morph, we reran the program, system-
atically varying this parameter. If one of these runs gave
sufficiently accurate results, the annotation for that
morph was entered into the database. We discarded
immediately those morphs that did not exhibit clear
hinge bending motion. Lastly, we removed redundant
morphs using nrdb90[37].

Note that the definition of a hinge given in the introduc-
tion allows for a hinge of zero length. FlexProt indeed
often returned such hinges. To deal with this, in all cases
one residue on each side of the hinge, was taken to also
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belong to the hinge. Thus most hinges are two residues
long. At the end of this process, the computer annotated
set contained 273 morphs.

As described, the computer annotation of hinges requires
significant human intervention and the results were often
debatable. Many of the hinge annotations differed slightly
but visibly from the boundary between rigid domains,
such that the backbone flexions that could account for the
domain motion were not seen in the predicted hinge
region. In other cases hinges were missed, and some anno-
tations appeared where no hinge existed. The more fla-
grantly misannotated hinges were removed from the
dataset, but making the manual culling too stringent
would simply have resulted in a dataset too small to be
statistically meaningful. For these reasons, the computer
annotated dataset was not used in most of this work.
Nonetheless, the computer annotated dataset is arguably
more objective then the manually annotated set described
below, and so is made available to the community.

To address the accuracy issues, we decided to generate a
manually annotated set of hinges - the Hinge Atlas. To
generate this set we first created the Hinge Annotation
Tool which can also be used by the public as we will now
explain.

The Hinge Annotation Tool

The creation of publicly accessible tools for manual anno-
tation of hinges involved significant changes to the morph
page. The morph page is the primary point on Mol-
MovDB|1] for analyzing single morphs. It is accessible
from the "movies" page or through our search tool, both
linked to or visible on our front page. Our server also pro-
vides a link to this page in an email sent to the submitter
of each morph request. We added all of the new tools to
the "Hinge Analysis" tab on this page. The first of these is
the Hinge Annotation tool. Each of three rows of "arrow"
buttons on this tool move a highlighted window of two
residues along the protein chain, allowing the user to
highlight up to three hinges in a protein. The "Show all"
button then highlights all selected residues in the Jmol
viewer window. Once the user is satisfied with the hinge
selection, clicking "Submit" records this selection in the
database. Once the morph page is regenerated, a "Show
public hinge" button will be visible which, when clicked,
highlights the selected residues. Lastly, the user can use a
pointing device to reorient the protein in the Jmol win-
dow to his/her liking. A GIF image based on that view can
be generated by clicking on the "color by domain" link.
The animation will be rendered using VMD's[38] "new
cartoon" style, with the identified hinge region and two
rigid domains each colored distinctively. The hinge anno-
tations made in this way persist in our database for visu-
alization and use by others, until overwritten. With minor
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modification, these tools were used to generate the Hinge
Atlas dataset of manually annotated hinges. The criteria
we used for selection are described in the following sec-
tion.

Highlighting the Hinge Atlas hinges (described below) on
the animated morph movie is a matter of going to the
morph page and clicking on the "Hinge Analysis" tab as
above and clicking the "Show Hinge Atlas hinge" button.
The annotated hinge location will be rendered in green
spacefill style, which contrasts with the white trace used
elsewhere in the protein.

Construction of the Hinge Atlas

The tools described above answer only the technical ques-
tion of how we annotated hinges. In this section we clarify
the motivation for the Hinge Atlas and its applications
and answer the scientific question of how we decided on
the precise location of the hinge for each morph.

For each morph in the Hinge Atlas, we used the Hinge
Annotation Tool as described to select the hinge location.
Motivated in part by our long term goal of providing a
resource that could be used in motion prediction work,
and in part by a desire to deepen basic understanding of
protein motion, we asked ourselves the following ques-
tion:

Would it be possible to approximately reproduce the observed
motion by allowing flexure at the hinge points but keeping the
regions between hinges rigid?

In order for this question to be answered in the affirma-
tive, the hinge selection should be the one to best meet the
following criteria:

1. The ¢, v, and o (effective a-carbon to a-carbon)[39]
torsion angles of hinge residues may often (but not
always) be larger than those of their neighbors.

2. Amino acids on either side of the hinge residues must
be co-moving with their respective rigid regions.

3. Rotations of one of the rigid regions about the hinge
region must not result in significant and irreconcilable
steric clashes.

In order to use (1) as a useful guide to selecting the hinge
location, we made use of the torsion angle charts and
graphs in the structure analysis tools section on the morph
page. However often large rotations of the main chain are
induced by multiple cooperative torsions in the hinge,
and these may be individually small, particularly in a-hel-
ices[40]. The usefulness of this flexibility measure is fur-
ther limited by the frequent occurrence of large torsion
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angles which do not coincide with hinges[39]. Nonethe-
less, when the precise location of the hinge was otherwise
unclear, torsion angles were often examined to help adjust
the selection.

Criterion (2) is a definition of a hinge. Sometimes the
hinge was slightly longer than others, and in those cases
we added more residues to the hinge, up to a limit of
about five residues in total. If the hinge was distributed
over too many residues such that no one short stretch
could be said to constitute the entire hinge, then the
morph was discarded from the Hinge Atlas, since the
motion was not hingelike. Criterion (3) is a practical
requirement of a working hinge. If substantial flexure at
points outside the hinge is required to avoid domain
interpenetration, then the choice of hinge location is
incorrect, or the motion is not hinge but rather shear or
unclassifiable[40].

The next question was, how to select the morphs which
would be annotated and included in the Hinge Atlas. The
entire Database of Macromolecular Motions (Mol-
MovDB)[1] with (at the time) over 17000 morphs, could
clearly not all be annotated given limited manpower. Fur-
ther, only a minority of morphs (albeit a large one) exhib-
ited hinge bending motion, and even within this group
much redundancy existed.

To address these issues and make the annotation work
manageable, we first selected a nonredundant subset of
the morphs in MolMovDB by aligning all sequences to
NRDB90[37]. This reduced the dataset to 1000 morphs.
This was more manageable, but still the set contained
many proteins which did not exhibit hinge bending
motions. Fortunately we found that the score output by
FlexProt, normalized by dividing by the number of resi-
dues, provided an accurate measure of the degree to which
a protein exhibited hinge bending. High scores, close to
unity, indicated proteins more likely to exhibit hinge
bending motion. Lower scores, below 0.9 or so, were very
unlikely to do so. We sorted the 1000 nonredundant
morphs by descending normalized flexprot score
(described earlier) and annotated them in that order.
Those proteins for which we could find hinges allowing a
positive answer to the question above were annotated and
added to the Hinge Atlas. Those proteins which did not
exhibit hinge bending motion or for which no suitable
hinge could be found were discarded. At the end of this
culling and annotation effort, the Hinge Atlas contained
214 nonredundant annotated morphs. We also manually
annotated a small set of specifically fragment (rather than
domain) hinge bending motions which may be useful for
some studies, described below.
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Availability of datasets

In the course of this study we compiled a number of sets
of morphs which can be viewed on our online galleries
listed and linked to on our sets page[41]. The Hinge Atlas
and computer annotated sets are compared more rigor-
ously in the "Statistical comparison of datasets" section.
The galleries provide easy browsing and visual inspection
of morph movies sharing certain characteristics. The sets
offered include:

Nonredundant

No two morphs in this set have more than 90% sequence
homology. This set was compiled by alignment to pro-
teins in nrdb90.

Catalytic Sites Atlas
All morphs in this set have annotated active sites which
can be highlighted in the jmol viewer.

Catalytic Sites Atlas (nonredundant)
Same as above, but with redundant morphs removed by
comparison to nrdb90.

FlexProt Hinges

Computer annotated set used in parts of this study and
described above. We consider it to be less useful than the
Hinge Atlas, but the data is nonetheless made available.

Fragment Hinge Motions

A small set of hinge bending motions involving fragments
smaller than domains, as alluded to in the previous sec-
tion.

Hinge Atlas

Contains the manually annotated protein pairs used in
this study. A link on the sets page permits the download
of the sequence data (including residue number, residue
type, hinge annotation, catalytic site annotation, and sec-
ondary structure) in mySQL format. The same data is
available in tab-delimited text format which is human
readable and importable into MS Excel and other pack-
ages. Another link on the same page facilitates the down-
load of the interpolated structure files associated with
each morph in the Hinge Atlas set.

Clicking on the thumbnail image leads to the "movies"
page, where users can browse through the 214 proteins in
the Hinge Atlas. Clicking on any of the protein thumbnail
images, in turn, leads to the corresponding morph page,
where the hinge annotation can be viewed as described in
the "Hinge Annotation Tool" section

Method for analyzing relative frequency of occurrence
Throughout this study, we will be comparing how often a
particular entity (be it a certain amino acid, a certain pair
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of amino acids, a certain class of amino acids, a certain
secondary structural element etc.) occurs in hinges versus
everywhere in the Hinge Atlas or another of the datasets
described above. The statistical analysis will be the same
regardless of the particulars, so we will here present the
general approach and later only mention adjustments par-
ticular to the specific question addressed.

First we defined the following variables:
D = total number of residues in the dataset
H = total number of residues in hinges in the dataset

C = classification scheme used to create groups of residue
positions. For example, C could be secondary structure,
degree of conservation, etc.

¢ = a particular grouping of residues, where ¢ € C. For
instance, if C = secondary structure, then ¢ = helix is the
class of all residues in helices, ¢ = strand is the class of all
residues in strands, etc. Another example might be C =
evolutionary conservation, with ¢ = cons1 = top 20% most
conserved residues, ¢ = cons2 = second 20% most con-
served, etc.

a, = set of all residues of class ¢ in the dataset.

d, = number of times residues of class ¢ occurred anywhere
in the dataset.

h, = number of times residues of a particular class ¢

occurred in hinges.

These can be used to estimate various probabilities as fol-
lows:

p(a,) = d /D is the prior probability of ¢ - in other words,
the probability that residues of class ¢ occur anywhere in
the dataset.

p(a.h) = h/H is the conditional probability that a residue
belongs to class ¢, given it is a hinge.

A quantity that is of interest in hinge prediction is the pos-
terior probability p(h|a.), the probability that a residue is
a hinge given it is in a,.. We obtain this from Bayes' rule:

plac [h)-p(h) _ he

p(h|ac)= pa.) Q.
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Equation 1

Where the prior probability that a residue is a hinge is

given by p(h) = ().

We further define the hinge index HI, similar to the
domain linker index used in Armadillo[42]:

plac | h)

HI =]
(a;) =log; o(a.)

Equation 2

The argument of the log is the ratio of the observed fre-
quency of occurrence of classes of amino acids a, in

hinges, over the expected. Note that this argument is close

to the likelihood ratio p(ac—|h) used in Bayesian statis-
pla, |"’ h)

tics[43] because H is so small compared to D. The quan-
tity HI yields an intuitive measure of the enrichment of
certain classes of residues in hinges, with positive num-
bers indicating enrichment and negative numbers indicat-
ing scarcity. Just because the HI is nonzero, however, does
not mean that the differential representation has statisti-
cal significance. To establish the latter, we considered two
statistical hypotheses:

H: The null hypothesis.

Assume h, is a randomly distributed random variable with
mean z,. The null hypothesis states that:

dC
=2C.H
Hp D
If this is true, then the hinge set is chosen without replace-
ment in an unbiased fashion from the dataset, and p(a_|h)
is given by the hypergeometric distribution (Equation 3).

H,, The alternate hypothesis.

This states that:

d
#—<-H.
Hp D
It is equivalent to saying that p(a | h) is not p(a.), and there-
fore the null hypothesis can be rejected. We test this as fol-
lows. If it is the case that
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h. _d

e %

H D’

and if we choose a significance threshold of 0.05, we can

Y. HYP(H,D,x,d.) < 0.05.
x=h(a)y,
The left hand side of the latter inequality can be inter-
preted as the probability that h_ or more residues of class

reject H, iff our p-value

a, could be found in hinges, assuming H, and given H, D,
and d,. The argument of the sum is the hypergeometric
function, which gives the probability that d_residues taken

without replacement from a set of D residues of which H
are hinges, would contain exactly x hinges:

d. \ D-d,
X H-x

)

HYP(H,D,x,d,)

Equation 3

Otherwise, if it is the case that

h. d
— < —,
H D
then we reject H, iff our p-value
h(a)
Y, HYP(H,D,x,d(a;)) < 0.05.
X=—00
Results

Are certain amino acids more likely to occur in hinges?
We applied the described statistical formalism to the
problem of amino acid frequency of occurrence in hinges
by taking C = amino acid type, and ¢ to designate each of
the 20 canonical amino acids. HI scores and p-values were
thus calculated for each of 20 identifications of ¢ corre-
sponding to the 20 canonical amino acids.

We found that glycine and serine are overrepresented in a
highly significant fashion. We also found phenylalanine,
valine, alanine, and leucine to be underrepresented, albeit
with lower significance (Figure 1, Table 1). We also inves-
tigated the frequency of occurrence of sequential pairs of
amino acids in hinges, but since 400 sequential pairs are
possible the significance of the results was much lower
and no conclusion could be drawn.

http://www.biomedcentral.com/1471-2105/8/167

Hinge Index and p-value for amino acid occurrence in

hinges
0.5 0.25
:-Ivalue 1 o2
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Figure |

Amino acids arranged in ascending order of Hinge Index (HI)
(orange line). Low p-values (vertical bars) indicate high statis-
tical significance. Legend information applies to similar graphs
in this work.

Are residues within a certain distance of an active site
more likely to be hinge residues?

As mentioned earlier, the fact that one of the overrepre-
sented residues is potentially catalytic led us to suspect
that hinge residues are more likely to occur in active sites,
or within a few residues of an active site, than would be
expected by chance. This would make sense from a bio-
chemical and mechanical perspective. Hinge motions are
often opening and closing motions of domains intended
to expose the active site, which often would be located at
the center of the motion, i.e. the hinge.

Prior work[44] shows that active sites are more likely to
occur at regions of low first normal mode displacement.
Such regions have been shown to coincide with
hinges[26]. Here we close the loop, comparing active sites
directly with the Hinge Atlas annotation and quantifying
the correspondence.

In order to annotate the active site locations, we
BLASTed[45] the morph sequences in the computer anno-
tated dataset against the sequences in the Catalytic Sites
Atlas and considered a morph in the hinge dataset to
match a protein in the CSA if they had sequence identity
> 99%. This high threshold was chosen to minimize the
possibility of incorrectly labeling a residue in the Hinge
Atlas and thereby diminishing the significance of the
results. For each such pair, we transferred the catalytic site
annotation to the morph. We described earlier how to
browse the CSA morphs online. Of the 214 proteins in the
Hinge Atlas, 94 were annotated with active site informa-
tion from the CSA; the rest had no close CSA homologs.
The 94 proteins comprised the dataset for this calculation.
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Table I: Amino acid frequency of occurrence in hinges.
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Residue

Occurrence in hinges Occurrence everywhere HI, mino acid p-value
ALA 56 4577 -0.114 0.019
ARG 40 2578 -0.011 0.475
ASN 39 2325 0.023 0.392
ASP 51 3173 0.004 0.492
CYS 9 909 -0.206 0.085
GLN 32 1970 0.009 0.479
GLU 51 3601 -0.051 0.213
GLY 108 4269 0.201 1-10-6
HIS 22 1166 0.074 0.238
ILE 38 3049 -0.106 0.064
LEU 62 4851 -0.095 0.035
LYS 48 3413 -0.054 0.207
MET 18 1229 -0.036 0416
PHE 20 2051 -0.213 0.010
PRO 50 2513 0.097 0.064
SER 89 3401 0.216 3-10-¢
THR 56 3248 0.035 0.287
TRP 7 672 -0.184 0.160
TYR 33 1829 0.054 0.255
VAL 44 4015 -0.162 0.004
Total 873 54839

We analyzed this set using the statistical formalism
described earlier, with the following variable definitions:

C = distance from the nearest active site, in residues.

¢ = successively: active site residues, amino acids 1 residue
away from the nearest active site residue, 2 residues away,
etc.

D = 28050 residues in the dataset of 94 proteins
H = 378 hinge residues in the dataset

d. = residues of class ¢ in the dataset

h. = residues of class ¢ in hinges.

The results are shown in Figure 2 and Table 2. At short dis-
tances from the active sites, hinge residues were overrepre-
sented. The active site residues and residues as much as
four residues away from the nearest active site were signif-
icantly overrepresented in hinges.

Are hinges segregated by secondary structure?

It is generally accepted that hinges tend to avoid second-
ary structure. However this belief has, to our knowledge,
never been tested on a quantitative basis, and indeed
numerous counterexamples can be found. For instance,
the hinge in calmodulin[13] and troponin C[26,46]
occurs in an a-helix, and in glutamine binding protein it

occurs in two parallel beta strands[26]. Thus we do not
know which particular types of secondary structure are
avoided or preferred, or to what degree. To obtain this
information, we tabulated the number of hinge residues
occurring in the various types of secondary structural ele-
ments, and compared this with the distribution of all res-
idues, proceeding as follows.

STRIDE[47] recognizes secondary structural elements
from atomic coordinates. We used this program to assign
secondary structural classes to all residues in the Hinge
Atlas. We then tabulated the number of residues assigned

Hinge and active site residues
0.6 4 0.5
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10
{-01
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o
w
HI

1-0.2
1-0.3
+-04
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0 1 2 3 4 5 6 T 8 9 10
distance from active site (residues)

Figure 2
Residues within four amino acid positions of the active site
are significantly more likely to be in hinges.
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Table 2: HI and associated p-value for hinge residue coincidence with active site, and with residues at certain distances from active site

residues.
m = distance from residues at positions m hinge residues at Hl, yyesite P-value
nearest active site positions m
(residues)
0 298 Il 0.44 0.0026
| 531 17 0.38 0.0010
2 487 17 0.41 0.0004
3 460 I5 0.38 0.0016
4 451 I5 0.39 0.0013
5 444 10 0.22 0.08
6 441 7 0.07 0.38
7 439 10 0.23 0.08
8 434 8 0.14 0.23
9 419 4 -0.15 0.33
10 406 3 -0.26 0.20

to each class, both in hinges and elsewhere in the dataset.
Lastly, we calculated the HI scores and the p-values as
before, letting C = secondary structural element type and
¢ designate e.g. helix, coil, etc.

We found that three types of secondary structure were dif-
ferentially represented in hinges with extremely high sig-
nificance. We conclude that hinges are less likely to occur
in a-helices, and are more likely to occur in turns or ran-
dom coils (Figure 3 and Table 3). For the user's conven-
ience, secondary structure assignments for individual
morphs can be obtained in the 'Hinge analysis tools' box
on the MolMovDB morph page[9] mentioned earlier.

Are certain physicochemical properties preferred in hinge
residues?

It is intuitive that certain physicochemical classes of resi-
dues (such as small and hydrophilic) would occur more
frequently in hinges, and this would help explain the
amino acid propensities reported earlier in this work. To
check and quantify this, we grouped amino acids into sev-
eral non-exlusive categories[48]. Following again our sta-
tistical treatment, we calculated HI scores and p-values,
letting C = physicochemical grouping, and ¢ = aliphatic,
polar, charged, etc. We discovered that aliphatic and
hydrophobic residues were very significantly underrepre-
sented. Overrepresented were small and tiny residues (Fig-
ure 4 and Table 4).

Are hinge residues conserved in evolution?

We next investigated whether hinge residues are con-
served. Since certain residue classes are preferred in
hinges, one might suspect that hinge residues would be
conserved. First, we BLASTed[45] each of the Hinge Atlas
sequences against nrdb90, a non-redundant sequence
database in which protein sequences have no more than
90% sequence identity with each other [37] Next we

extracted up to 50 top-aligned sequences to a given morph
to generate a multiple sequence alignment using Clustal
W][49]. For each position in the multiple sequence align-
ment, we used the formalism developed by Schneider et
al[50] to compute the information content associated
with a column in the multiple sequence alignment at this
position[50,51].

We sorted the residues in Hinge Atlas morphs according
to the magnitude of the information content scores. We
then divided the residues into five bins of equal size. If
hinge residues are conserved, then there should be an
enrichment of hinge residues in the top bins, which corre-
spond to the most conserved residues. On the other hand,
if hinge residues are hypermutable, there should be more

Hinge coincidence with secondary structure

0.3 1 0.6
P-value
HI 0.4
0.2
o
= =
[ 0.15 0 I
a
-0.2
04
0 -06
Other Alpha helix Beta sheet Turn Random cail
Figure 3

Residues in alpha helices were less likely to occur in hinges,
with very high significance. Turn and coil residues, on the
other hand, were more likely to be in hinges, also with high
statistical significance.
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Table 3: Hinge frequency of occurrence in various types of secondary structure.

Secondary structure Hinge Residues (count) All residues (count) Hinge Residues (expected) Hlsecondarystructure P-value
a-helix 75 18210 290 -0.587 1-8-67
3-10 helix 27 1937 31 -0.0577 0.27
n-helix 0 5 0 0.92
Extended

conformation 160 11138 177 -0.0446 0.076
Isolated bridge 19 670 I 0.251 0.12
Turn 306 12472 199 0.188  5.9-10-17
Coil (none of the others) 286 10408 166 0237 1.2-102
Total 873 54840

of them in the bottom bins, corresponding to the least
conserved residues. Because it is widely agreed that active
sites should be conserved, we used the conservation of
active sites as a control.

To quantify the enrichment, we calculated the HI scores as
described previously. Here, ¢ is a label applied to residues
that ranked in a given percentile bin, e.g. the top 20%
most conserved. For that bin p(a.|h) = h/H is thus the
ratio of the number of hinge residues in the bin divided
by the total number of hinge residues. Similarly, p(a,) = d,/
D is the ratio of the number of residues in the dataset in
the bin divided by the grand total of residues in the data-
set. To determine the statistical significance of HI scores,
we calculated the p-values using the hypergeometric dis-
tribution with the d, h, D, H defined above.

Hinge coincidence with physicochemical property
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Figure 4

Size, aliphaticity, and hydrophobicity appear to account for
much of the segregation of residues along physicochemical
lines. In particular, the individually underrepresented resi-
dues (Gly, Ser, Ala) are classified as "tiny." Other underrep-
resented residues types (Leu, Val) are aliphatic, while still
others (Phe, and again Val) are hydrophobic.

For the control set, we performed the same calculation but
made the following changes to the variable definitions:

1. Our dataset was no longer the Hinge Atlas, but rather
the "Catalytic Sites Atlas (nonredundant)" set described
earlier. D is the total number of residues in this set.

2. a,still represents residues in the dataset belonging to a
given conservation rank bin. d, is the total number of res-
idues in that bin.

3. h,now represents the number of active site residues in a
given bin corresponding to c. Similarly, H represents the
total number of active site residues in the dataset.

We found that hinge residues distribute evenly in the top
80%, and have a slight but statistically very significant
enrichment in the bottom 20% bin (Figure 5 and Table 5).
Thus hinge residues are hypermutable. We observe a
highly significant enrichment of active site residues in the
top 20% bin, as expected. Among the 947 active site resi-
dues, 813 of them (86%) are in the highest bin, and the
numbers progressively decrease in lower bins.

The Hinge Atlas pools enzymes together with non-cata-
lytic proteins. We reasoned therefore that perhaps only
hinges in non-catalytic proteins are hypermutable, and
that if we analyzed a set consisting only of enzymes, then
the propensity of active sites to occur in hinges would lead
to conservation, rather than hypermutability of hinge res-
idues for that set.

To test this idea, we decided to calculate the propensity of
hinges to occur in specific bins of conservation score, for
the 94 proteins in the Hinge Atlas with CSA annotation,
rather than for the larger set of 214. For this set we also
found that hinge residues occur more frequently among
the 20% least conserved residues for each protein (Figure
6, Table 5). At a p-value of 0.003, the confidence in this
result is high.
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Table 4: Hinge frequency of occurrence in various physicochemical classifications

Category Amino acids Hinge Residues (count) All residues (count) Hinge Residues (expected) HI P-value

Aliphatic LLV 144 11915 190 -0.120 5.9-10-05

Aromatic H F WY 82 5718 91 -0.0454 0.14
A CGHILK

Hydrophobic M, F, T, W, Y,V 521 35278 562 -0.0326 0.0023

Negative D, E 102 6774 108 -0.0242 0.29

Charged R,D,E,H Y 212 13931 227 -0.0196 0.24

Positive R,H,Y 110 7157 114 -0.0153 0.37
R,N,D,E,Q,H,Y,

Polar SST,W, Y 488 29427 468 0.0178 0.096
A'N,D,CG,PS,

Small T,V 502 28430 453 0.0450 0.00041

Tiny G AS 253 12247 195 0.113  0.0000023

Even this test, however pools together hinges that are near
the active site (or contain one or more active site residues)
with hinges that occur at some distance from it. So we
selected from the 94 proteins a small set that had at least
one active site residue in the hinge, and removed the
active site residues themselves. We then calculated the
propensity of hinge residues to occur in the five conserva-
tion bins. This set was found to be too small, however,
and statistical significance was too low to draw a conclu-
sion (data not shown). A study using the set of fragment
hinge motions described earlier was similarly inconclu-
sive.

Hinge Atlas
i hinge occurrence vs. conservation bin i
5 - —_— .1
|
‘ p-value
HI
|
g 1
B 025 0 =
a
0— 0.1
Top 1/5th 2nd 1/5th 3rd 1/5th 4th 1/5th Bottom 1/5th
bins
Figure 5

The least conserved 20% of residues are significantly more
likely to appear in hinges.

The hypermutability of hinge residues that we found is
reasonable because hinge residues tend to be on the sur-
face of proteins (see below) rather than in the more highly
conserved core. Hinges are less likely to be buried inside
domains because they would then be highly coordinated
with near neighbors and hence less flexible. The apparent
contradiction of hypermutability on the one hand and
enrichment of active sites on the other is dealt with in the
Discussion section.

Are hinge residues more likely to occur on the surface?

To support our argument that hinge residues are hyper-
mutable partly because they occur on the surface, we
quantified the degree to which the latter is the case. To do
this, we used a solvent accessible surface area (ASA) calcu-
lation program [52,53] with a probe radius of 1.4A. The
ASA of each of the backbone heavy atoms (amide nitro-
gen, o-carbon, carbonyl carbon and oxygen) was calcu-
lated and summed for each residue in each protein in the
Hinge Atlas. We then binned the residues by this quantity.
Lastly, we counted the number of hinge residues in each
bin and calculated HI and p-value as before. As expected,
bin #1 (containing the 20% of residues with highest ASA)
was significantly enriched with hinges (Figure 7; Table 6).
Bin #2 was also highly enriched, while bins #4 and #5 had
fewer hinges, all with extremely high significance.

How many hinge sites appear in each protein?

Perhaps the simplest hinge consists of a single point on
the chain separating two rigid regions. However it is also
possible for the chain to pass multiple times through the
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Table 5: Hinge frequency of occurrence vs. conservation bin.
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Active site residue propensity

Hinge residue propensity

Enzymes in Hinge Atlas Hinge Atlas Enzymes in Hinge Atlas
Conservation Active site HI p-value Hinge HI p-value HI p-value
score bin residues residues
Top 1/5th 813 0.63 <102 157 -0.045 0.057 -.0093 45
2nd |/5th 53 -0.55 <10-2° 162 -0.031 0.13 -.027 .30
3rd 1/5th 44 -0.63 <102 161 -0.034 0.11 -015 40
4th 1/5th 22 -0.94 <102 176 0.0050 0.44 -.086 .043
Bottom 1/5th 15 -1.1 <1029 213 0.090 0.00061 13 .0029

947 869

same region, or to have multiple independent hinge
regions. This leads to the question, how many proteins
had single hinge points, versus a larger number of hinge
points? We answer this question in Table 7. Most morphs
had three or fewer hinge points.

Can hinges be predicted by a simple GOR-like method?

GOR[30,31] method is useful for predicting secondary
structure from sequence with fair accuracy. We imple-
mented a GOR-like method to determine whether
sequence contained enough information for hinge predic-
tion. We divided the dataset into a training set and a test
set for this study. The log-odds frequency of occurrence of
amino acids in the training set were tabulated not only at
a given hinge residue, but also at positions ranging from -
8 to +8 from the given residue in sequence space. For sim-

Enzymes in Hinge Atlas
hinge occurrence vs, conservation bin
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bins
Figure 6

Since active sites residues are enriched in hinges, we per-
formed a separate conservation check on hinge residues in
the 94 Hinge Atlas proteins with CSA annotation. We found
that even in this set, the least conserved /5t of amino acids
in each protein tended to contain significantly more hinge
residues. The fourth bin was sparse in hinge residues, but ata
p-value of 0.043, the significance of this was marginal.

plicity, hinge residues at positions less than eight residues
from either end of the chain were not included.

Once the table was generated, it was used on the test set.
The score for a given residue was taken to be the sum of
the scores for the residues in positions -8 to +8 from that
residue. The scores were computed for all residues in the
test set, except those less than eight residues from either
end of the chain. The idea is that a threshold score can be

Hinge occurrence vs. solvent accessible surface area
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Figure 7

Hinge residues tend to be on the surface, since steric clashes
would often prevent them from being in the core. We com-
puted the solvent accessible surface area for the backbone
atoms of all residues in the Hinge Atlas and binned the resi-
dues by this quantity. Bin #| contains the 20% of all residues
with the largest solvent accessible surface area, and bin #5
contains the 20% of residues with the smallest solvent acces-
sible surface area. The first two bins (together representing
the 40% of residues with highest surface area) are enriched
with hinges in a highly significant manner. Conversely, the last
two bins (lowest 40% ASA) are significantly low in hinges.
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Table 6: Hinge Index and p-value for differential representation of residues binned by solvent accessible surface area (bin #1 represents

largest area).

Bin Hinge residues HIi p-value
| 277 0.200 I.1-10-16
2 246 0.149 3.3-100°
3 163 -0.030 0.849
4 121 -0.159 1.2-10-06
5 66 -0.422 6.6:10-5

873

Bins 1—4 contain 10968 total residues and bin 5 contains 10967.

chosen and residues scoring higher than this threshold are
considered more likely to be hinges. Note that where Rob-
son and Suzuki used a different fitting parameter for each
type of secondary structure, we used no fitting parameter,
since we were interested in only one "secondary struc-
ture": the hinges. The rates of true and false positives and
negatives were calculated for each choice of score thresh-
old over a range.

Our training set numbered 136 proteins from the compu-
ter annotated set. We tested the method on a test set of
137 proteins from the same set and obtained a ROC
curve[35] (not shown; ROC curves are explained later in
this work). The area under this curve was nearly 0.5, indi-
cating negligible predictive value.

Hinge prediction by combining sequence features

As the GOR-like method did not work well, we sought to
measure the predictive power of the various sequence fea-
tures studied above. The HI scores we have reported pro-
vide an intuitive means of weighing the relative predictive
value of each sequence feature. We show how to combine
the HI scores for several features in order to make a more
powerful predictor, which we call HingeSeq. We define
this predictor as follows:

pla; | Wp(a | W)p(ay | h) . . .
W = H’amino‘aﬁid (1) + H’semndmy»snumure (1) + Hlaﬁm/e»site (l)

Equation 4

HiS(i) = logyo

For simplicity, statistical independence of the various fea-
tures was assumed in creating this definition. Here the i's

Table 7: Number of hinge points per protein in the Hinge Atlas

Number of hinge points Number of protein pairs (morphs)

| 76
2 75
3 56
4 6

5 |
Total: 214

correspond to individual amino acids in the protein
sequence. For each i, j designates one of the 20 amino acid
types, k designates the secondary structural classification,
and [ designates active site versus non-active site classifica-
tion.

Thus HI ;... 4cia(7) is assigned according to residue type by
looking up the corresponding value in Table 1. Similarly,
Hloondary - strucuure(1)  isObtained according to secondary
structure type from Table 3. Following Table 2 approxi-
mately, we assign HI ;.. ..(i) as 0.4 for residues four or
fewer amino acid positions away from the nearest active
site residue, and 0.0 elsewhere. The highest values of
HS(i) correspond to residues most likely to occur in

hinges.

Clearly, extending this method is only a matter of obtain-
ing amino acid propensities to occur in hinges according
to additional classifications. The resulting index can then
simply be included as an additional term in the above for-
mula, with no need for adjustable weighting factors.

We evaluated the statistical significance of this measure
much as for the individual sequence features. We counted
the number of residues in the Hinge Atlas with a HingeSeq
score above 0.5, and within that set the number of hinge
residues. We compared this to the total number of hinges
and the population size of the Hinge Atlas (Table 8).
Using the cumulative hypergeometric distribution as
before, we computed a p-value of order 10-12, thus the
measure shows high statistical significance. However
since only about 5% of the residues scoring over 0.5 were

Table 8: Statistical analysis of HingeSeq predictor.

Total resid. in Hinge Atlas 54839
Hinges in Hinge Atlas 873
Total residues with HingeSeq score > .5 924
Hinge residues with HingeSeq score > .5 48
p-value 1.5-10-12

The low p-value indicates that the predictor results have high
statistical significance. However the low sensitivity limits its potential
predictive value.
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annotated hinges, HingeSeq is not likely to be sensitive
enough to be used alone for hinge prediction.

We nonetheless wished to show that HingeSeq is predic-
tive, rather simply reflectling peculiarities of the dataset.
To this end, we divided the 214 proteins of the Hinge
Atlas into a training set numbering 161 proteins, and a
test set numbering 53. Of the 214 Hinge Atlas proteins,
the 94 proteins with annotation from the CSA were
apportioned such that 71 were included in the training set
and 23 in the test set. We tested the performance of the
predictor by means of ROC (Receiver Operating Charac-
teristic) curves. We need to define a few terms in order to
use these:

Test positives: Residues with HS(i)greater than or equal to
a certain threshold.

Test negatives: Residues with HS(i)less than a certain
threshold.

Gold standard positives: Residues annotated as hinges in
the Hinge Atlas.

Gold standard negatives: Residues which are not in hinges
according to the Hinge Atlas annotation.

True positives (TP): Those residues that are both test pos-
itives and gold standard positives.

True negatives (TN): Residues that are both test negatives
and gold standard negatives.

False positives (FP): Residues that are test positives and
gold standard negatives.

False negatives (FN): Residues that are test negatives and
gold standard positives.

L P
sensitivity = ————
TP + EN
specificity = N
FP +TN
FP
1 - specificity = ———
pecificity FP +TN

The ROC curve is simply a plot of the true positive rate
(same as sensitivity) vs. false positive rate (1-specificity),
for each value of the threshold, as the threshold is varied
from +1 to -1, a range which included all possible values
of HS(i). For a good predictor, the true positive rate will
increase faster than the false positive rate as the threshold

http://www.biomedcentral.com/1471-2105/8/167
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Figure 8

The thick red trace represents HingeSeq performance
against the Hinge Atlas annotation in the test set of 53 pro-
teins. The diagonal black line represents the performance of
a completely random predictor, with area under the curve of
0.5. HingeSeq is seen to have substantial predictive power,
since it encloses significantly greater area.

is lowered, and the area under the curve will be signifi-
cantly greater than 0.5. The ROC curve is shown in Figure
8. Although work remains to be done before sequence-
based hinge prediction can be relied upon exclusively,
HingeSeq displays significant ability to detect potential
for flexibility.

Checking for dataset bias

These findings assume that the dataset used does not con-
tain significant bias or artifacts, either in the composition
of the entire dataset or of the hinges within it. To substan-
tiate this, we performed various studies as follows.

Bias in amino acid composition and functional
classification

In order to find out whether the MolMovDB database
contained any bias in amino acid composition, we
extracted the sequences of all the morphs in MolMovDB
and counted the total occurrence of each residue type. Sus-
pecting that redundancies might bias the result, we clus-
tered the sequences and recounted the amino acid
residues in the same way. We compared these numbers to
publicly available amino acid frequencies of occurrence
for the PDB (Protein Data Bank)[54] (Figure 9). The
amino acid frequency of occurrence for the clustered Mol-
MovDB morphs was found to be essentially that of the
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Single amino acid rate of occurrence in PDB and molmovdb
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Figure 9

To check for possible database bias, we computed the amino
acid composition of MolMovDB and found that it follows that
of the PDB, from which it is largely compiled.

PDB, from which it was created, therefore no particular
database bias is in evidence.

We also sought to determine whether there existed a bias
towards particular protein classes, in either the Hinge
Atlas or the nonredundant set of MolMovDB morphs
from which it was compiled. To do this, we first counted
the number of times each top-level Gene Ontology (GO)
term under the "molecular function" ontology was associ-
ated with a protein in the Hinge Atlas. Where the annota-
tion was given for deeper levels, we traced up the
hierarchical tree to retrieve the corresponding top level
term in the ontology. Thus we found, for example, that 14
proteins in the Hinge Atlas were associated with the term
"nucleic acid binding." We repeated this procedure for the
PDB as a whole as well as for the non-redundant set of
1508 morphs in MolMovDB from which the Hinge Atlas
was compiled. The results for the 10 most frequently
encountered GO terms are shown in Table 9.

To compare the Hinge Atlas counts to the PDB counts in
an overall fashion, we used the chi-square distribution

Table 9: Frequency of Gene Ontology terms in PDB vs. Hinge Atlas

http://www.biomedcentral.com/1471-2105/8/167

with 162 degrees of freedom (from 163 GO terms and 2
datasets) and obtained a chi-square value of 121.1. This
corresponds to a p-value of 0.9931, so there is no statisti-
cally significant difference in the distribution of these
terms in the Hinge Atlas vs. the entire Protein Data Bank.

Statistical comparison of datasets

The Hinge Atlas and computer annotated sets were com-
piled differently, therefore one might suspect that the
hinges from one set might comprise a statistically differ-
ent population from the hinges of the other set. If this
were the case, then one of the two sets would be preferable
to the other, otherwise if the populations were essentially
the same then the two sets could potentially be used inter-
changeably. It is therefore necessary to quantitatively
compare these two populations. It is also necessary to
confirm that within one set, the hinge residues are a statis-
tically distinct population from the rest of the set; if this
were not true then the amino acid propensity data
reported earlier would not be meaningful.

Although the Hinge Atlas and the computer annotated set
share a total of 16013 residues, only 106 (~0.7%) (Figure
10) of these are hinge residues. This is another reason to
suspect that the hinge population of the Hinge Atlas is sta-
tistically different from the hinge population of the com-
puter annotated set. To test this, we computed the chi-
square value for Hinge Atlas hinges vs. computer anno-
tated hinges, and obtained a p-value of 0.03. Therefore,
the Hinge Atlas hinges are different from the computer
annotated hinges. The chi-square value describing the dif-
ference between amino acid frequency of occurrence in
the hinge vs. non-hinge subsets of the Hinge Atlas was
99.01. With 19 degrees of freedom (from 20 amino acids
and 2 sets) this corresponds to a p-value below 104 (Table
10). Therefore, the hinge residues are shown with high
confidence to be different from non-hinge residues in the
Hinge Atlas. A similar calculation yielded a p-value of
0.017 for the computer annotated set. Therefore we con-

Counts in PDB

Counts in Hinge Atlas

Gene Ontology term

7110
3862
3721
3629
2848
2693
1748
1553
1088
929

32
16
14
23
I5
17
6

6
4
5

hydrolase activity
transferase activity
nucleic acid binding
ion binding
nucleotide binding oxidoreductase
activity
molecular_function
protein binding electron transporter
activity
lyase activity
etc
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Figure 10

Although the Hinge Atlas and computer annotated set have a
significant overlap, they are statistically different sets. Impor-
tantly, the hinge residues within these sets are different from
each other, despite sharing 106 residues.

clude that the hinge and non-hinge populations are differ-
ent for the computer annotated set, as well.

We conclude from this calculation for both the Hinge
Atlas and computer annotated set, the hinge population is
different from the non-hinge population, therefore statis-
tically significant information can be extracted from both.
However the hinge population of the Hinge Atlas is differ-
ent from that of the computer annotated set, albeit with
much lower significance. We argue that one of the two sets
should therefore be preferred for statistical studies. The
preferred set should be the Hinge Atlas since the computer
annotated set contains numerous annotations which are
slightly different from the correct and visually verifiable
hinge location.

http://www.biomedcentral.com/1471-2105/8/167

Similarity within morph pairs

We next asked the question, do the morphs in the Hinge
Atlas reflect intrinsic flexibility of the protein, or is the
apparent conformational change the result of sequence
differences between the two structures in the pair? That is,
do the morphs display motions observable in a single pro-
tein, or do they instead represent evolutionary change? To
answer this we counted the number of times both struc-
tures in the morph came from the same vs different organ-
isms. Of the 214 morphs, 123 had structures downloaded
directly from the PDB rather than uploaded by users, and
also had valid source organism data. For 109 of the 123,
both proteins in the pair came from the same species,
while for 14 the two proteins came from different species.
Of the 14, 11 pairs were of proteins that were somewhat
related to each other (7 pairs of bacterial, and 4 pairs of
mammalian), while only three pairs were comprised of
two proteins from different kingdoms. Thus the confor-
mational changes are likely to reflect experimentally
observable motions rather than evolutionary effects.

Resampling of hinge residues

As a further test of confidence in the Hinge Atlas, we
decided to look for sampling artifacts in the hinge set.
Resampling[32] or bootstrapping[55] is a technique
suited for this purpose. We bootstrapped the frequency of
occurrence of amino acid types. The method consists of
drawing random samples and computing the frequency of
occurrence of a given amino acid type in that sample. We
present the results for glycine, the residue type most over-
represented in hinges.

We randomly chose 1/8 of the 214 proteins in the Hinge
Atlas. The sample was labelled with an index j. Within that
sample we counted the following:

H; : the number of hinge residues of all amino acid types

in sample j,

H; : the number of NON-hinge residues of all amino acid

types in sample j,

Table 10: The hinges within the computer annotated set comprise a distinct population from the rest of the set (p-value = 0.017).

Computer annotated set
Hinge vs. non-hinge residues

Hinge Atlas Hinge vs. non-
hinge residues

Hinge Atlas hinges vs.
Computer annotated hinges

Chi-square 34.37
DOFs 19
p-value 0.017

99.01 31.84
19 19
<104 0.03

The same is true for the Hinge Atlas set.

Hinges in the Hinge Atlas are likely to be a distinct population from hinges in the computer annotated set (p-value 0.03); therefore for future
studies one or the other should be used, and we recommend that it be the Hinge Atlas.
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h; (acry) : the number of glycine residues in hinges in

sample j,

ﬁ; (agLy) : the number of glycines in NON-hinge residues

in sample j,

h:(a
fj* (agry) = ](—G*LY) : the sample frequency of occurrence
j
of glycines within hinges within sample j, and

- hj(acLy)

filagy) ==
Hj

of glycines among NON-hinge residues in sample j.

: the sample frequency of occurrence

We repeated the above for forj = 1 to 10000, randomizing
the sample each time. For the case of a;y = glycines, we

generated bins 0.02 wide and counted the number of

times values of f; (a¢;y) and ff (acry) occurred in each

interval.
Glycine content by resampling
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Histogram of ff (agiy) (sample frequency of glycine among

NON-hinge residues, blue trace) and fj* (agiy) (sample fre-

quency of glycine among hinge residues, dashed red trace).
The sample frequency of glycine residues among NON-hinge
residues in bins containing |/8th of all Hinge Atlas proteins
was found to average 0.078. The sample frequency of glycine
among hinge residues in bins containing 1/8th of all Hinge
Atlas proteins was found to average 0.124. The standard
deviation was considerably larger for the hinge set, since this
is a small subset of the Hinge Atlas.

http://www.biomedcentral.com/1471-2105/8/167

The results for glycine are shown in Figure 10. If sampling
artifacts were present in the dataset, these might manifest
themselves as departures from the Gaussian distribution.
This was not observed; the distribution is approximately
normal. As a further measure of our confidence in the
overrepresentation of this particular amino acid, we can
obtain the significance by an alternate (conservative) test
as follows.

Since the distribution is approximately Gaussian the
standard deviation of the difference between means
should be obtainable by summing the standard devia-
tions of the two sample frequencies in quadrature[56].
The z-score of the difference is obtained by dividing the
difference between the average sample frequencies by the
the thus-obtained standard deviation:

o Jov—Fo
\/ (ocry )2 +(Scry )2

From the cumulative Gaussian distribution[57], events
1.42 or more standard deviations from the mean have a
probability of occurrence of 0.077, giving us an additional
measure of confidence that the distribution of glycines is
different in the hinge vs. non-hinge sets. Note that we
would expect this to be a conservative estimate of the sig-
nificance (p-value is actually much lower, since the proc-
ess of resampling subdivides the dataset). The main point
of this analysis is that the sample is not biased by particu-
lar anomalous proteins.

=142

Discussion

Correlations were found between hinges and several
sequence features. We found that some amino acid types
are overrepresented in hinges, and much of this can be
explained on the basis of physicochemical properties.
Small residues appear to be preferred, especially the "tiny
Ser, Gly, and Ala. Aliphatic and hydrophobic residues
tend not to be in hinges. We found that residues within
four amino acid positions of an active site are significantly
more likely to be hinges. This is most likely related to the
fact that hinge bending motion is often related to the cat-
alytic mechanism of the enzyme. Active site residues most
logically occur inside the binding cleft and therefore are
likely to be in the hinge or close by. Some of these results
are intuitive, but are nonetheless useful in buttressing the
less expected results. Further, even the intuitive results
have in many cases never been rigorously tested or put on
a quantitative footing,.

Surprisingly, hypermutable residues are more likely than
conserved residues to occur in hinges. This was found to
be true not only for the Hinge Atlas set of 214 proteins
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(which includes proteins with no annotated active sites),
but also for the subset of 94 enzymes with CSA annota-
tion (Figure 5, Figure 6). This may appear to contradict
our earlier result that active site residues and their near
neighbors are enriched in hinges. However although the
catalytic residue enrichment has very high statistical sig-
nificance, the number of active site residues in hinges is
still small compared to the total number of residues in
hinges. Thus their presence is insufficient to counter the
wider tendency of hinge residues to be hypermutable.
Also, the near neighbors of active site residues have no
particular reason to be conserved and thus their enrich-
ment in hinges seems unlikely to counter the tendency
toward hypermutability.

This raises the question, why would residues that are func-
tionally important not be conserved? The answer may be
that it is the intricate network of interactions within the
hydrophobic core of rigid regions on either side of the
hinge that needs to be conserved[58], and not the hinges
themselves. The importance of the stability of these
domains rather than of any detailed properties of the
hinges themselves is underscored by the significant suc-
cess of structure-based hinge predictors which analyze the
interactions within the domains and between the
domains and the solvent, but which pay no particular
attention to the hinge region itself (Flores and Gerstein,
submitted), or which implicitly[59] or explicitly[60] find
highly interconnected regions of the protein.

One might also ask, is it possible that co-evolution (alter-
natively called compensatory mutation or mutational cor-
relation) occurs in hinge residues even in the absence of
independent (single-site) conservation? Repeatedly inves-
tigators have found that co-evolving residue pairs tend to
be proximal in space[61] and stabilize proteins, for
instance by periodically bridging consecutive turns of o-
helices or by interacting across the contact interface
between two such helices[62]. This is an active area of
research with possible future implications on hinge find-
ing.

Sequence in the immediate neighborhood of a hinge was
not found to be sufficient for substantive hinge prediction
by a GOR-like method, although the latter is successful at
predicting secondary structure. Similiarly, no particular
sequential pairs of amino acid types were found to be
overrepresented in hinges. However, we did find that
combining amino acid propensity data with hinge pro-
pensities of active sites and secondary structure yielded
some predictive information. The prediction method we
present can easily be extended as additional hinge pro-
pensity data is reported. Indeed the publicly available
Hinge Atlas can be used not only to obtain such data but
also to test the resulting predictors. As an additional appli-
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cation, the Hinge Atlas can potentially be used to help
find hinges by homology. We note, for instance, that a
hinge occurring (unusually) in the helix connecting the
two EF hands of calmodulin has also been found in the
evolutionarily related Troponin C.

Conclusion

We found that the amino acids glycine and serine are
more likely to occur in hinges, whereas phenylalanine,
alanine, valine, and leucine are less likely to occur. No evi-
dence was found for sequence bias in hinges by a GOR-
like method, nor for propensity towards sequential pairs
of residues. Hinges tend to be small, but not hydrophobic
or aliphatic. They are found less often in a-helices, and
more often in turns or random coils. Active site residues
were found to coincide significantly with hinges. Interest-
ingly, however, the latter were not conserved. Lastly,
hinges are also more likely to occur on the protein surface
than in the core.

A consistent picture of hinge residues is suggested. In this
view, hinges often occur near the active site, probably to
participate in the bending motion needed for catalysis.
They avoid regions of secondary structure. They are hyper-
mutable, possibly due to the fact that they occur more
often on the surface than in the core. These correlations
yield insights into protein flexibility and the structure-
function relationship. Strong sequence-based hinge pre-
diction, however, remains a goal for future work.
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