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Abstract
Background: With the increased availability of high throughput data, such as DNA microarray
data, researchers are capable of producing large amounts of biological data. During the analysis of
such data often there is the need to further explore the similarity of genes not only with respect
to their expression, but also with respect to their functional annotation which can be obtained from
Gene Ontology (GO).

Results: We present the freely available software package GOSim, which allows to calculate the
functional similarity of genes based on various information theoretic similarity concepts for GO
terms. GOSim extends existing tools by providing additional lately developed functional similarity
measures for genes. These can e.g. be used to cluster genes according to their biological function.
Vice versa, they can also be used to evaluate the homogeneity of a given grouping of genes with
respect to their GO annotation. GOSim hence provides the researcher with a flexible and powerful
tool to combine knowledge stored in GO with experimental data. It can be seen as complementary
to other tools that, for instance, search for significantly overrepresented GO terms within a given
group of genes.

Conclusion: GOSim is implemented as a package for the statistical computing environment R and
is distributed under GPL within the CRAN project.

Background
Modern DNA microarray analysis has lead to an enor-
mous collection of experimental data. Different analysis
techniques are applied to gain insight into the underlying
biological processes: statistical tests are used to find signif-
icantly regulated genes. Other methods cluster genes
according to their expression profiles [1]. The hypothesis
is that genes with expression patterns similar to known
genes are involved in similar biological processes. In
either case, researchers often end up with long lists of

interesting candidate genes that need further examina-
tion. At this point, a second step is almost always applied:
biologists categorize these genes to known biological
functions and thus try to combine experimental outcomes
with biological knowledge. Such information is e.g. pro-
vided by Gene Ontology (GO). GO has become one of the
most widespread systems for systematically annotating
gene products within the bioinformatics community and
is developed by the Gene Ontology Consortium [2] with
the intention to describe gene products with a controlled
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and structured vocabulary. GO terms are part of a Directed
Acyclic Graph (DAG), covering three orthogonal taxono-
mies: molecular function, biological process and cellular com-
ponent. Two different kinds of relationship between GO
terms exist: the "is-a" relationship and the "part-of" rela-
tionship. By providing a standard vocabulary for all bio-
logical resources, GO enables researchers to use this
information for further data analysis.

The GOSim package provides the user with an easy to use
implementation of various information theoretical simi-
larity concepts for GO terms [3-9]. It additionally imple-
ments different methods for computing functional
similarities between gene products based on the similari-
ties between the associated GO terms. This can for exam-
ple be used for clustering genes according to their
biological function [10,11] and thus may help to get a bet-
ter understanding of the biological aspects covered by a
set of genes. GOSim can be seen as complementary to
existing tools that, for instance, search for significantly
overrepresented GO terms within a given group of genes
[12]. It extends methods like FuSSiMeg [8] by offering
additional similarity measures for GO terms and gene
products. With its specific focus, to our knowledge,
GOSim is the most comprehensive software package of
this kind.

Methods
GO term similarities
GOSim concentrates on similarity concepts for GO terms
derived from information theory. One of the most well-
known information theoretic similarity measures was
introduced by Resnik [3]. It relies on the notion of the so-
called minimum subsumer of two GO terms t and t', which
is the lowest common ancestor in the GO hierarchy (Fig-
ure 1). Its information content ICms, which can be under-
stood as a measure of similarity between t and t', is given
by:

Here Pa(t, t') denotes the set of all common (also indirect)
ancestors of GO terms t and t', while IC(t) denotes the
information content of term t. It is defined as (c.f. [7])

IC(t) = -log P(t) (2)

i.e. as the negative logarithm of the probability of observ-
ing t. The information content of each GO term can be
computed with GOSim for each of the taxonomies molec-
ular function, biological process and cellular component. The
calculation is based on counting, how many times a spe-
cific GO term or any of its direct or indirect offspring
appear in annotated gene products. The association
between gene products and GO identifiers is reported reg-

ularly by the GO Consortium [2]. The GO Consortium
further provides evidence codes on the annotations,
which can be used to calculate the information contents
of all GO terms on a different basis. GOSim stores the
information contents of all GO terms in data files to speed
up all following computations. By default, for some com-
binations of evidence codes the information contents are
already precomputed.

Besides Resnik's GO term similarity measure, extensions
of Lin [5], and Jiang and Conrath [6] exist, which are
included into GOSim as well. Both only differ in the way
they normalize (Eq. 1). Jiang and Conrath's similarity
measure is defined as

sim(t, t') = 1 - min(1, IC(t) - 2ICms(t, t') + IC(t'))
(3)

i.e. the similarity between t and t' is 0, if their normalized
distance is at least 1. Lin's pairwise similarity between GO
terms is defined as:

GOSim also contains a similarity concept introduced by
Couto et al. [9], which is not based on the minimum sub-
sumer, but on the set of all so-called disjunctive common
ancestors. Roughly speaking, the idea is not to consider the
common ancestor having the highest information content
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Example of a GO graph starting with leaves GO:0007166 and GO:0007267Figure 1
Example of a GO graph starting with leaves GO:0007166 and 
GO:0007267.
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only, but also others, if they are somehow "separate" from
each other, i.e. there is a path to t and t' not passing any
other of the disjunctive common ancestors. In our exam-
ple from Figure 1 the set of disjunctive common ancestors
only consists of the minimum subsumer, because any
path from the other ancestors to GO:0007166 and
GO:0007267 would have to pass the minimum sub-
sumer. Based on the notion of disjunctive common ances-
tors Resnik's similarity concept can be extended by
defining:

Likewise, Jiang-Conraths's and Lin's measures can be
extended as well by replacing ICms(t, t') by ICshare(t, t').
Finally, it should be mentioned that also the depth and
density enriched term similarity by Couto et al. [8] has
been integrated into GOSim.

Functional gene similarities
The special strength of GOSim lies in the possibility not
only to calculate similarities for individual GO terms, but
also for genes based on their complete GO annotation.
For this purpose three basic ideas have been imple-
mented:

1. Computation of the maximum and average similarity
between any pair of GO terms.

2. Computation of a so-called optimal assignment of terms
from one gene to those of another one [11].

3. Embedding of each gene into a feature space defined by
the gene's similarity to certain prototype genes [10,11].
Within this feature space similarities naturally arise as dot
products between the feature vectors. These dot products

can be understood as so-called kernel functions, as used e.g.
in Support Vector Machines [13].

Especially the inclusion of the last two methods clearly
distinguishes GOSim from existing tools like FuSSiMeg
[8]. More information on these methods, including a
detailed evaluation, can also be found in our earlier pub-
lications [10] and [11].

Maximum and average pairwise GO term similarity

The idea of the maximum pairwise GO term similarity is
straight forward and is for instance employed in FuSSiMeg
[8]. Given two genes g and g' annotated with GO terms

t1,..., tn and  we define the functional similarity

between between g and g' as

where sim is some similarity measure to compare GO

terms ti and . In GOSim the resulting value can be fur-

ther normalized to account for an unequal number of GO
terms for both genes:

Instead of computing the maximum pairwise GO term
similarity one may also take the average here.

Optimal assignment gene similarities
Given a similarity concept sim to compare individual GO
terms, the idea of an optimal assignment is to assign each
term of the gene having fewer GO terms to exactly one
term of the other gene such that the overall similarity is
maximized (c.f. Figure 2). More formally this can be stated
as follows: Let π be some permutation of either an n-sub-

sim t t IC t t
DisjCommAnc

IC tshare
t DisjCommAnc

( , ) ( , )
| |

( )′ = ′ =
∈

∑1

(5) ′ ′t tm1,...,

sim g g sim t tgene
i n
j m

i j( , ) max ( , )
,,...,
,...,

′ = ′
=
=
1
1

(6)

′t j

sim g g
sim g g

sim g g sim g ggene
gene

gene gene
( , )

( , )

( , ) ( , )
′ ←

′

′ ′
(7)

Idea of an optimal assignment: each GO term belonging to gene 2 is assigned to exactly one GO term belonging to gene 1 such that the overall GO term similarity is maximizedFigure 2
Idea of an optimal assignment: each GO term belonging to gene 2 is assigned to exactly one GO term belonging to gene 1 such 
that the overall GO term similarity is maximized.
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set of natural numbers {1,..., m} or an m-subset of natural
numbers {1,..., n} (this will be clear from context). Then
we are looking for the quantity

The computation of (Eq. 8) corresponds to the solution of
the classical maximum weighted bipartite matching (opti-
mal assignment) problem in graph theory and can be car-
ried out in O(max(n, m)3) time [14]. To prevent that larger
lists of terms automatically achieve a higher similarity we
should again normalize simgene according to (Eq. 7).

Feature space embedding of gene products
The idea of this method is to calculate for each gene g fea-
ture vectors φ(g) by using their similarity to certain proto-
type genes p1,..., pn:

φ(g) = (sim'(g, p1),..., sim'(g, pn))T (9)

By default the 250 best annotated genes, i.e. which have
been annotated with GO terms most often, are used as
prototypes, and sim' is the maximum pairwise GO term
similarity. Alternatively, one can use the optimal assign-
ment similarity for sim' as well. Both similarity measures
can by itself again be combined with arbitrary GO term
similarity concepts. The default is that of Jiang and Con-
rath.

Feature space constructions like in (Eq. 9) are known from
the literature on Support Vector Machines and other ker-
nel methods and give rise to so-called "empirical kernel
maps" [13].

Because the feature vectors are very high-dimensional we
usually perform a principal component analysis (PCA) to
project the data into a lower dimensional subspace (Fig-
ure 3). The number of principal components is by default
chosen such that at least 95% of the total variance in fea-
ture space can be explained (this is a relatively conservatve
criterion), and the feature vectors are normalized to norm
1. It should be mentioned that in principle one can com-
bine functional similarities between gene products with
regard to different GO sub-categories ("biological proc-
ess", "molecular function", "cellular component"). An
obvious way for doing so would be to consider the sum of
the respective similarities:

simtotal(g, g') = simOntology1(g, g') + simOntology2(g, g') (10)

Of course, one could also use a weighted averaging
scheme here, if desired.

Functional gene clustering
The calculated GO similarities between gene products can
be used to cluster genes with respect to their function. The
practical usage of this method is highlighted in more
detail in an example study on microarray data in the
Results Section of this paper.

Cluster evaluations
GOSim has the possibility to evaluate a given clustering of
genes or terms by means of their GO similarities. Sup-
posed we have decided to group genes into certain clusters
on the basis of other experiments (e.g. microarray). Then
we can ask ourselves, how similar these groups are with
respect to their GO annotations. GOSim uses the func-
tional similarity between genes to calculate for each clus-
ter the median within cluster similarity and the median
absolute deviation (mad). Moreover, a visualization via
cluster silhouettes [15] is provided by GOSim as well.
Likewise, different groupings of GO terms can be evalu-
ated in a similar manner. Again, the practical usage of this
method is highlighted in more detail in the example study
contained in the Results Section.

Implementation
GOSim is implemented as a package within the statistical
computing environment R and is distributed under GPL
within the CRAN project [16]. Functions of the following
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Genes embedded into a feature space defined by the GO similarity to certain prototype genesFigure 3
Genes embedded into a feature space defined by the GO 
similarity to certain prototype genes. principal components 
analysis was used to reduce the dimensionality of the feature 
space and the first two principal components are displayed.
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R packages are internally utilized and are hence required
by GOSim to work properly:

• GOStats (≥ 1.7)

• mclust (≥ 2.1)

• cluster (≥ 1.11)

Furthermore, Rgraphviz is recommended to visualize GO
graphs. To calculate functional similarities between gene
products GOSim needs their Entrez Gene IDs. The map-
ping of these IDs to the Gene Ontology is provided by the
R package GO, which is required by the GOStats package.
Genes without annotation are filtered out automatically,
when GOSim performs similarity calculations for gene
products. Their exists a function in GOSim to specify, on
which sub-category ("biological process", "molecular
function", "cellular component") all computations are
based on. Moreover, it is possible to restrict the GO anno-
tation of gene products to arbitrary user defined evidence
codes.

To summarize, GOSim provides R-methods for the follow-
ing tasks:

• low-level functions for GO graph traversal

• specification of the GO sub-category ("biological proc-
ess", "molecular function", "cellular component") and of
evidence codes

• calculation of the information content of GO terms and
of the similarity between GO terms (see last Section)

• similarity calculation between gene products based on
their GO annotations (see last Section)

• filtering and printing the GO annotation of a given list
of genes

• evaluation of a given clustering of genes or terms via
precomputed similarities (see last Section)

Results
Data
In this Section we show an example application of the
GOSim package to an analysis of DNA microarray data.
The data was taken from [17], who derived a gene expres-
sion profile for dilated cardiomyopathy based on cDNA
and Affymetrix microarray chips. The details of this study
can be found in the paper. The number of differentially
upregulated genes was 1107 on the cDNA and 336 on the
Affymetrix microarray data. The number of differentially
downregulated genes was 278 on the cDNA and 67 on the
Affymetrix chips.

Methods
The Entrez Gene IDs of differentially upregulated and
downregulated genes collected from the study were
treated separately for cDNA and Affymetrix chips. 677 of
the differentially upregulated genes on the cDNA chips
and 230 on the Affymetrix chips showed a mapping to the
GO category "biological process". 157 differentially
downregulated genes could be mapped on the cDNA and
43 on the Affymetrix chips. We used the GOSim package
to calculate gene similarities based on the feature vector
representation [10,11] (c.f. Section Background). This was
done by defining each gene by its maximum Jiang-Con-
rath similarity [6] to 250 prototypes genes. Prototype
genes were those 250 genes, which were most frequently
annotated with GO terms. The similarity between feature
vectors x, y was taken as their normalized dot product (c.f.
Section Background):

Prior to similarity calculation we performed a principal
component analysis (PCA) on the feature vectors to
reduce their dimensionality. The number of principal
components was chosen such that at least 95% of the total
variance in feature space could be explained (c.f. Section
"Feature Space Embedding of Gene Products"). This way
we obtained 29 principal components for the upregulated
and 23 principal components for the downregulated
genes on the cDNA chips. For the Affymetrix chips the
number of principal components was 24 for the upregu-
lated and 11 for the downregulated genes.

Having the functional similarities between regulated
genes, we used the GOSim package to compute a hierar-
chical clustering using Ward's method. We decided to cut
the clustering tree at height 0.05 and looked at the cluster-
ing silhouettes by employing the GOSim package (Figures
4, 5, 6, 7). Cluster silhouettes [15] are a classical way of
depicting the quality of a given clustering of objects. The
silhouette value for each point in a cluster is a measure of
how similar that point is to points in its own cluster vs.
points in other clusters, and ranges from -1 to +1. It is
defined as:

where W(i) is the average distance from the i-th point to

the other points in its own cluster, and B(i, j) is the aver-

age distance from the i-th point to points in another clus-
ter j. The quality for a given cluster can effectively be
expressed by the average silhouette value (= cluster silhou-
ette index) of points belonging to that specific cluster.
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Clustering silhouette of the downregulated genes (Affymetrix chips)Figure 7
Clustering silhouette of the downregulated genes (Affymetrix 
chips).
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Clustering silhouette of the downregulated genes (cDNA chips)Figure 5
Clustering silhouette of the downregulated genes (cDNA 
chips).
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Clustering silhouette of the upregulated genes (cDNA chips)Figure 4
Clustering silhouette of the upregulated genes (cDNA chips).
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Clustering silhouette of the upregulated genes (Affymetrix chips)Figure 6
Clustering silhouette of the upregulated genes (Affymetrix 
chips).
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Analysis results
The clustering silhouettes for up- and downregulated
genes show that there exists several functional groups with
silhouette cluster index greater 0.5 (upregulated genes in
clusters 9, 13, 14, 15, 16, 18, 20, 23, 28, 29, 30, 31, 33 on
the cDNA platform, upregulated genes in clusters 4, 5, 8,
12 on the Affymetrix platform, downregulated genes in
clusters 2, 4, 7 on the cDNA chips, downregulated genes
in cluster 2 on the Affymetrix platform – c.f. Table 1).
Upregulated genes on the cDNA chips are involved into
various forms of transport (clusters 9, 13), into the intrac-
ellular signaling cascade (cluster 13), cell adhesion (clus-
ter 14), transcription (clusters 15, 18), signal transduction
(cluster 15), cytoskeleton organization and biogenesis
(cluster 16), immune response (cluster 20), catabolism
(cluster 23), protein localization (cluster 28), protein
modification (cluster 29), chromatin assembly or disas-
sembly (cluster 30), mitochondrial electron transport
(cluster 31) and fibroblast growth factor receptor signal-
ing pathway (cluster 33). Upregulated genes on the
Affymetrix chips are involved into metabolism and trans-
port (cluster 4) blood coagulation and immune response
(cluster 5), transcription (cluster 8) and cell adhesion
(cluster 12).

In contrast, downregulated genes on the cDNA chips are
involved into transcription (cluster 2), transport (cluster
4) and immune response (cluster 7). On the Affymetrix
chips there is just one identifiable cluster of downregu-
lated genes are involved into metabolism.

The whole clusters are also included in an additional sup-
plement as text files. In conclusion of this analysis one

could say that in this data upregulated genes are more
involved in protein modification, protein localization,
blood coagulation and cell adhesion while downregu-
lated genes are more related to metabolic tasks.

These findings can be seen complementary to those by
Bart et al., who found a significant enrichment of GO
terms related to protein biosynthesis in upregulated and
GO terms related to immune response in downregulated
genes. Both results are based on different statistical analy-
sis methods of the data. Functional gene clustering is
based on comparing the full GO term profiles for genes of
interest, while GO-significance analysis looks for the sta-
tistical over-representation of individual GO terms in the
full list of regulated genes. An advantage of a functional
gene clustering compared to a traditional GO-significance
analysis is that the complete list of regulated genes is struc-
tured into functionally related groups, which can help
later interpretation. This kind of analysis is possible for
very large as well as for very small lists. On the other hand
functional clusters may also contain several genes, which
are regarded as statistical significant, but are actually not
differentially expressed (false positives). Hence, the inter-
pretation of small functional clusters should generally be
taken with care.

Discussion
The GOSim package offers an easy and straight forward
way to gain insights into functional gene groups by using
the Gene Ontology. It offers a rich toolbox of similarity
concepts for GO terms as well as for gene products. The
present example study highlights the usefulness of GOSim
in a real life scenario.

Table 1: Functional groups found on the different chip platforms.

Clust. no. Clust. size sil. ind. platform regulation function

9 27 0.62 cDNA up transport
13 10 0.93 cDNA up intracellular signaling cascade, protein transport
14 16 0.82 cDNA up cell adhesion
15 38 0.51 cDNA up transcription, signal transduction
16 5 0.58 cDNA up cytoskeleton organization and biogenesis, behavior
18 74 0.74 cDNA up transcription
20 15 0.67 cDNA up immune response
23 2 0.67 cDNA up catabolism
28 22 0.54 cDNA up protein localization
29 16 0.61 cDNA up protein modification
30 8 0.54 cDNA up chromatin assembly or disassembly, protein complex assembly
31 2 1.0 cDNA up mitochondrial electron transport, NADH to ubiquinone
33 2 0.62 cDNA up fibroblast growth factor receptor signaling pathway
2 25 0.79 cDNA down transcription
4 23 0.51 cDNA down transport
7 12 0.58 cDNA down immune response
4 19 0.73 Affymetrix up metabolism, transport
5 4 0.66 Affymetrix up blood coagulation, immune response
8 45 0.54 Affymetrix up transcription
12 11 0.92 Affymetrix up cell adhesion
2 12 0.52 Affymetrix down metabolism
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Conclusion
The GOSim package integrates information theoretic sim-
ilarity concepts for GO terms and derived functional sim-
ilarity measures for gene products in a novel and unique
way. Applications thereof are clusterings of gene products
with regard to their function [10,11] or scorings of a given
grouping of genes or terms with regard to their GO simi-
larities. Both tasks can be performed with GOSim in a sim-
ple and straight forward way. It hence provides the user
with a flexible and powerful tool to combine biological
knowledge with experimental data. GOSim systematically
extends existing tools like FuSSiMeg [8] by integrating its
functionality and providing additional similarity concepts
for gene products [10,11]. GOSim is implemented as a
package for the statistical computing environment R and
has been integrated into the CRAN project. It is thus made
available for a broad community of potential users. More
documentation on the implemented methods can be
found in the user manual. Detailed quantitative results
can be found in [8-11].

Availability and requirements
• Project name: GOSim

• Project home page: http://www.dkfz.de/mga2/gosim

• Operating system(s): platform independent

• Programming language: R

• License: GPL

The software is also included as a supplement to this
paper.
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