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Abstract

Background: Algorithmic approaches to splice site prediction have relied mainly on the
consensus patterns found at the boundaries between protein coding and non-coding regions.
However exonic splicing enhancers have been shown to enhance the utilization of nearby splice
sites.

Results: We have developed a new computational technique to identify significantly conserved
motifs involved in splice site regulation. First, 84 putative exonic splicing enhancer hexamers are
identified in Arabidopsis thaliana. Then a Gibbs sampling program called ELPH was used to locate
conserved motifs represented by these hexamers in exonic regions near splice sites in confirmed
genes. Oligomers containing 35 of these motifs have been shown experimentally to induce
significant inclusion of A. thaliana exons. Second, integration of our regulatory motifs into two
different splice site recognition programs significantly improved the ability of the software to
correctly predict splice sites in a large database of confirmed genes. We have released
GeneSplicerESE, the improved splice site recognition code, as open source software.

Conclusion: Our results show that the use of the ESE motifs consistently improves splice site
prediction accuracy.

Background

Alternative splicing is an important regulatory mechanism
for many species, allowing them to generate multiple var-
iant proteins from the same primary transcript. In order to
predict the complete protein complement of any eukary-
ote, we need to detect alternative splice sites and put them
together in the correct combinations. Algorithmic
approaches to splice site prediction have relied mainly on
the consensus patterns found at the boundaries between
protein coding and non-coding regions [1]. However the
sequence conservation found at the splice site junctions is
not strong enough to accurately differentiate between

introns and exons [2]. Additional sequences, residing at
variable distances from splice sites, have been shown to
function as cis-acting factor binding sites that regulate
splicing either in vivo or in vitro. Although such splicing
regulators have been identified in both exons and introns,
exonic splicing regulators (ESRs) are generally better char-
acterized, and are probably more common [3,4]. Such
ESRs either enhance or suppress the utilization of both 5'
and 3' splice sites. Much attention has been given to
exonic splicing enhancers (ESEs) which promote the
inclusion (as opposed to skipping) of the exons in which
they reside. The first ESEs to be characterized were short,
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purine-rich motifs containing repeated GAR (GAA or
GAG) trinucleotides, but subsequently many other
sequences have been shown to have enhancer activity
[5.6].

In animals, many exonic splicing enhancers are bound
and activated by one or more of several related splicing
factors known as SR proteins. The relationship between
sequence-specific binding by SR proteins and the activa-
tion of splicing by exonic splicing enhancers is complex
and incompletely understood. Although only a dozen or
so splicing events have been shown to be enhancer-
dependent, the existence of exonic splicing enhancers
within constitutively spliced exons [7], the frequency of
ESE motifs [8] and the absolute requirement for SR pro-
teins by in-vitro splicing systems suggest that ESEs are
ubiquitous, and required for all splicing events. It is esti-
mated that as many as 15-20% of randomly appearing
20-mers contain a splicing enhancer [3] and computa-
tional methods have predicted hundreds of ESE motifs
[9,10]. Thus, it appears likely that many sequences may
act to affect splicing. What is clear is that the motifs recog-
nized by SR proteins are short (8 or fewer nucleotides)
and degenerate [6,11,12].

Several computational approaches have been undertaken
to find the motifs characteristic of these splicing regula-
tory elements. In a recent study, Goren and colleagues
[13] introduced a computational method that identifies
ESRs based on conservation of wobble positions between
orthologous human and mouse exons. Their method
identified 285 putative ESRs, from which a sample of ten
elements were shown experimentally to induce different
levels of regulatory effects on alternative splicing. RES-
CUE-ESE, another computational approach, identifies
potential ESEs based on the theory that exons with weak
splice sites are more likely to require ESE activity for splic-
ing [9]. The original study identified 283 exonic hexamers
that were significantly enriched both in human exons rel-
ative to introns and in exons with weak splice sites relative
to exons with strong splice sites; in vivo tests of these hex-
amers confirmed ESE activity. In another study, Zhang
and Chasin [10] predicted human ESR motifs by compar-
ing the frequency of 8-mers in internal noncoding exons
versus unspliced pseudo exons and 5' UTRs of transcripts
of intronless genes.

Previous computational work on detecting ESEs has
focused almost exclusively on mammalian species. There
are compelling reasons to believe that ESEs play an impor-
tant role in plants as well. Early research on plant pre-
mRNA splicing emphasized the role of AU-rich or U-rich
sequences within introns [14,15]. These U-rich sequence
elements play important roles in intron definition, and
plants lack the very large introns that are associated with
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the need for exon definition [16]. On the other hand, a
number of reports describe a role for exon sequences in
the selection of plant splice sites [17-19]. SR proteins, the
mediators of ESE activity in vertebrates, are highly con-
served in plants [20,21]. This pattern of conservation
includes reactivity with the monoclonal antibody
mAb104 [22] and extends to function. A mixture of Arabi-
dopsis SR proteins [23], and atRSZp22 in particular [24]
can complement SR-deficient mammalian splicing
extracts. Furthermore, plant SR proteins can influence
splice site choice in mammalian nuclear extracts [25], and
can regulate alternative splicing in planta [26,27].

The focus of this study is a new computational approach
to identifying ESE motifs in the model plant Arabidopsis
thaliana, and their use in improving splice site prediction
accuracy. First we apply a similar approach to RESCUE-
ESE to identify putative ESE hexamers in the flanking ends
of a large set of known internal exons from Arabidopsis.
Then we use a Gibbs sampling program called ELPH to
identify statistically conserved motifs representing these
hexamers in our data. In the end we show how these
motifs can be used to improve splice site prediction. A sig-
nificant improvement in specificity is obtained by incor-
porating the hexamer motifs into two leading splice site
prediction programs, GeneSplicer [28] and SpliceMachine
[29].

Results and discussion

Data sets

Our ESE analyses were done on several high-confidence
Arabidopsis data sets. The first set, ESEAra, was extracted
from a set of very high-quality gene models obtained from
5000 full-length transcripts sequenced released in 2001
[30] (These sequences are at [31] and at GenBank as acces-
sion numbers AY084215-AY089214.) Because internal
homology in the data set could influence the results, we
refined this reference set of gene models by using BLAST
[32] to perform pairwise alignments between all genes.
Sequences that aligned for more than 80% of their length
with a BLAST E-value of less than 10-1° were removed. The
resulting ESEAra set includes 4046 genes containing of
17410 coding exons with an average length of 194 base
pairs (bp). ESE motifs were determined on this data set.

A second data set was used to evaluate the accuracy of
SpliceMachine after introducing the ESE motifs found in
ESEAra. This data set consists of the 1323 A. thaliana genes
used previously in the evaluation of both GeneSplicer
[28] and SpliceMachine [28,29]. We will refer to this data
set as GSAra.

To test the accuracy of our splice site predictor outside the
gene sequences, we collected one additional data set con-
sisting only of intergenic regions situated between anno-
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tated A. thaliana genes. We used the highly curated, re-
annotated Arabidopsis chromosome II sequence (available
from [33]) and extracted regions located more than 500
nucleotides from any annotated genes. We called this data
set INTAra.

ESE motifs

We identified a total of 84 potential ESE elements in the
flanking regions of exons in the ESEAra data set [see Meth-
ods]. Out of these 84 ESEs, 44 tend to be overly repre-
sented at the 5'end, 18 at the 3 'end and 22 at both ends
(results shown in TableS1 [see Additional file 1]). The pre-
dicted ESE candidates contained the two hexamers
TGAAGA and TGAAGC, which are equally strongly repre-
sented by the motif found by ELPH in the 5'end data, but
they did not contain the consensus of the motif predicted
in the 3'end data (see Figure 1). To find the motifs that
were represented by these ESE hexamers we ran ELPH
using each of the 66 5' ESEs and 40 3'ESEs as input seeds
on the 5' and 3' flanking ends respectively of the internal
exons in ESEAra. Running ELPH in this way generated
position weight matrixes for all 84 input seeds but only 73
of the ELPH motifs found (62 at the 5'exonic ends and 30
at the 3'exonic ends) were significantly conserved in the
data (P-value < 0.05).

ESE activity has been shown for several of the hexamers
identified [34]. Out of the 84 hexamer motifs we identi-
fied as putative ESE elements, 35 (12 at the 5'end, 6 at the
3'and 17 at both ends) are included in a set of experimen-
tally confirmed 9-mers that function as exonic splicing
enhancers in A. thaliana (results shown in Table 1 and
TableS1 [see Additional file 1]). Most significantly, for 8
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Sequence logos for motifs detected in the ESEAra
exons. a) Motif detected at the 5'end of ESEAra exons, and
b) motif detected at the 3'end of ESEAra exons. Both logos
were computed with WebLogo [45].
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of these 25 9-mers, mutation of one base (in one or two
of our predicted ESE hexamers that are contained within
that 9-mer) resulted in reduced ESE activity for the mutant
ninemer (Table 1). It is also worth noting that the GAA-
GAA hexamer, the highest scoring ESE motif identified by
our method, has long been known to function (as part of
the 9-mer GAAGAAGAA) as an exon splicing enhancer in
humans [35].

Splice site prediction

As mentioned above, several recent studies have described
computational methods for identification of ESR ele-
ments. However few attempts have been made to improve
splice site prediction by using these elements; one excep-
tion is a method for exon prediction that uses ESEs and
ESSs [36]. One of the goals of our study was to provide a
way to integrate the motifs predicted as potential ESEs
into splice site prediction programs, in particular Gene-

Table I: Experimental evidence for predicted ESE hexamers.

9mer ESE ESE Mutant ESE Mutant  Contained
Score Score  Hexamer Motifs
GAAGAAGAA 5 GCAGAAAAA -1 gaagaa, aagaag
TGCTGCTGG 5 tgetge, getget
TGCAGCTGG 5 geagct, cagctg
GAAGATGGA 5 gaagat, aagatg,
gatgga
GAAGGAAGA 5 gaagga, aaggaa,
ggaaga
GAGAAGAAG 5 gagaag, gaagaa,
aagaag
TTGGAGCAA 5 ttggag, ggagca
AGCTGCTGG 4 agctge, getget
TGCTGGTGG 4 tggtgg
TGCTGCAGG 4 tgetge, ctgeag
TGCTGCTCG 4 tgetge, getget
TGCTGCTGC 4 TACTTCTGC -3 tgetge, getget
GAGGATTGA 4 GAGAATTGA -1 gaggat
TGCAGATGA 4 gcagat, cagatg
CAAGAAACA 4 aagaaa
GAAGAGAAA 4 GCAGAAAAA -1 aagaga
AAAGGAGAT 4 aaggag, aggaga,
ggagat
GAAGAAAGA 4 gaagaa, aagaaa
GAGCAGAAG 4 gagcag
TGCTGCCGC 4 tgctge
TTGAAGAAG 3 TTGAAAAAG -3 ttgaag, tgaaga,
gaagaa, aagaag
TTGAAGCTG 3 TTAAAGCTG -3 ttgaag, tgaagc,

gaagct, aagctg

GAAGATTGA 3 GAGAATTGA -1  gaagat

TTTGGTGGA 3 tggteg, gatgea

ATGGAGAAA 3 ATTGAGAAA -3 atggag tggaga,
ggagaa

Hexamer motifs that are contained within experimentally confirmed
9-mers with ESE activity (column 5). Experiments to confirm 9-mers
are described elsewhere (S. Mount et al., manuscript in preparation).
Column | shows the containing ESE ninemer, and column 3 shows
ninemers without ESE activity, which are situated within 1-2 bp edit
distance from the ESE ninemer. The ESE activity of each 9-mer in the
table is shown by a score equal to log,(inclusion/skipping) [34].
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Splicer. We used the 84 putative ESE motifs found by
ELPH (66 for the 5'end and 40 for the 3'end, 22 of which
appear at both ends) and the corresponding splice site
score predicted by GeneSplicer as features in a linear sup-
port vector machine (LSVM). The LSVM created this way
was integrated in the new splice site prediction system
GeneSplicerESE.

To evaluate the splice site prediction accuracy of Gene-
SplicerESE, we applied a 5-fold cross-validation procedure
on the ESEAra data set: the data were partitioned into 5
non-overlapping subsets, and each subset was held out
separately while the system was trained on the remaining
4. Training included all positive examples, and 50,000
randomly selected negative examples. As negative exam-
ples we considered all dinucleotides in the ESEAra data set
that matched the consensus splice site (AG for acceptors,
and GT for donors), but did not overlap the confirmed
splice sites. Accuracy was then measured on all positive
and negative examples from the held out data. All motif
position weight matrixes were recomputed on 50 bp
flanking exonic sequences from the training data, but the
length for the flanking sequence involved in equation (2)
[see Methods] was chosen between 45 and 80 bp. The
optimal length of this flanking region was chosen for each
splice site by applying a 5-fold cross-validation procedure
on the training data. Complete sensitivity vs. specificity
plots for the original GeneSplicer and GeneSplicerESE on
this data are shown in Figure 2. A significant increase in
accuracy of GeneSplicerESE vs. GeneSplicer can be
observed for both splice sites, with somewhat larger
advantages occurring for acceptor sites. At the 95% sensi-
tivity threshold (a threshold often used in splice site pre-
diction), the false positive rate of GeneSplicerESE is 2.9%
at the acceptor sites while GeneSplicer's false positive rate
is 4% (Table 2). For donor sites a 5% false negative rate
(equal to 95% sensitivity) corresponds to 2.2% and 2.9%
false positive rates for GenesplicerESE and GeneSplicer
respectively (Table 3).

Since the putative ESE motifs were identified from hexam-
ers that more frequently appear near weak splice sites than
strong splice sites, it is likely that the improvement in
accuracy obtained by GenesplicerESE is due primarily to
an improvement in weak splice site recognition. Our
results show that, with the addition of ESEs, we recover
~20% of all the weak splice sites of either type (acceptor
or donor) that were missed previously (assuming a
threshold of 25% false negatives). Figure 3 shows that the
main contributor to GeneSplicerESE's improved predic-
tion accuracy is its better performance on weak splice sites.
Almost all of the false positives that are eliminated by use
of GeneSplicerESE rather than GeneSplicer are associated
with weak splice sites and this is true across a range of false
negative rates.

http://www.biomedcentral.com/1471-2105/8/159

Table 2: False negative (FN) vs. false positive (FP) rates on test
and intergenic data sets for acceptor sites

FN(%) FP(%)
GS-test GS-intg GSESE-test GSESE-intg

0.5 14.27 29.58 12.47 20.67
| 10.03 23.39 8.09 15.74
2 7.11 18.51 5.80 11.30
3 5.64 15.76 4.21 9.00
5 4.00 12.41 2.94 6.56
7 3.13 10.43 2.18 520
10 2.32 8.4| 1.62 401
15 1.55 6.20 1.05 2.74
20 1.10 4.86 0.71 2.01

Rates on test data are obtained from a 5-fold CV procedure on the
ESEAra data set, while FP rates on intergenic data are averages of the
FP rates obtained on INTAra by setting a threshold that would
produce the same FN rate on each of the 5 fold test data.

Our experience with GeneSplicer revealed larger false pos-
itive rates on intergenic data than on sequences contain-
ing coding genes. By using our predicted ESE elements we
hoped that these false positive rates could be decreased in
GeneSplicerESE. Indeed GeneSplicerESE's false positive
rates are significantly reduced on the INTAra data set, even
more than on the ESEAra data set, probably due to the fact
that the predicted ESE elements are more likely encoun-
tered into coding regions. At a threshold corresponding to
a 5% false negative rate on the ESEAra data set, the accep-
tor sites' false positive rate for INTAra is almost twice as
big in GeneSplicer vs. GeneSplicerESE (12.4% vs. 6.6%,
Table 2), and significantly bigger at the donor sites (5.9%
vs. 3.8%, Table 3).

Our efforts to improve splice site prediction by introduc-
ing putative ESE scores have been focused on improving

Table 3: False negative (FN) vs. false positive (FP) rates on test
and intergenic data sets for donor sites

FN(%) FP(%)
GS-test GS-intg GSESE-test GSESE-intg

0.5 11.06 17.99 9.11 12.84
| 7.58 13.11 6.24 9.35
2 5.33 9.75 4.10 6.34
3 4.21 7.99 325 5.08
5 2.94 5.86 2.20 3.77
7 222 4.65 1.62 2.95
10 1.6l 3.58 I.15 227
I5 1.03 248 0.74 1.58
20 0.73 1.86 0.52 1.20

(b) Rates on test data are obtained from a 5-fold CV procedure on
the ESEAra data set, while FP rates on intergenic data are averages of
the FP rates obtained on INTAra by setting a threshold that would
produce the same FN rate on each of the 5 fold test data.
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Figure 2

Sensitivity versus specificity rates for GeneSplicer
and GeneSplicerESE. Sensitivity is defined as the fraction
of all true splice sites found by the splice site predictor; spe-
cificity is the fraction of the predicted elements labelled cor-
rectly as splice sites. Rates are shown for a) donor sites (GS
don and GSESE don), and b) acceptor sites (GS acc and
GSESE acc). Results are obtained using a 5-fold cross-valida-
tion procedure on the ESEAra data set. Weight matrices for
the selected motifs to describe each of the splice sites were
recomputed on each training data set from the 5 partitions of
the CV procedure.
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The contribution of weak splice sites to Gene-
SplicerESE's performance. For each threshold that
would produce a false negative rate over all splice sites in the
test data, we show the difference between the number of
false positives that are predicted by GeneSplicer versus
GeneSplicerESE. The red plot shows this value for all splice
sites, while the green plot shows it for weak splice sites only.
See Methods for definition of weak sites. (a) donor sites; (b)
acceptor sites.

our previously developed splice site predictor, Gene-
Splicer. The method we used here can equally well be
adapted to improve other splice site prediction programs.
As an example, SpliceMachineESE is a splice site predictor
that we created by adding the ESE motif scores to the set
of features used by SpliceMachine [29]. We downloaded
SpliceMachine from the authors' website [37] and trained
it using the same procedure as the one described by the
original authors: a sub-sample of 1000 actual and 10000
pseudo-sites was used to obtain the optimal context sizes
for all features, and then a linear SVM was trained on the
complete training data set. Our training of SpliceMachine
on the GSAra data set revealed false positive rates compa-
rable to the ones previously published (ours were less

than 0.1% bigger). Table 4 shows the previously reported
false positive rates on the GSAra data set [29] compared to
the ones we obtained for SpliceMachineESE. Even though
SpliceMachine captures both positional and composi-
tional information at all positions in large windows (at
least 60 bp) around splice sites, we were still able to
decrease its false positive rates (Table 4). At 95% sensitiv-
ity the false positive rate dropped from 2.1% to 1.8% for
donor sites and from 2.7% to 2.4% for acceptor sites.

Conclusion

In this study we identified 84 potential ESE hexamers in
the flanking regions of internal coding exons from a large
set of high confidence Arabidosis thaliana genes. These 84
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Table 4: False positive rates obtained by SpliceMachine and
SpliceMachineESE on the GSAra data set

Sn FP%
Donors Acceptors
SpliceMachine  SpliceMachi  SpliceMachine  SpliceMachine

neESE ESE
0.97 32 3.1 47 45
0.95 2.1 1.8 2.7 2.4
0.93 1.5 1.3 1.8 1.7
0.92 1.3 1.2 1.6 1.5
0.90 1.0 0.9 1.2 .1
0.85 0.6 0.5 0.8 0.7
0.80 0.4 0.4 0.5 0.4
0.70 0.2 0.2 0.3 0.2

The false positive rates for SpliceMachine are copied from [29].

ESEs were used to generate motifs with a Gibbs sampling
program called ELPH. We believe these motifs to be
important in splice site regulation. 35 of them have sub-
sequently been validated experimentally to show ESE
activity. We have incorporated these motifs into two splice
site prediction methods and shown that they lead to an
increase in accuracy for both programs.

Methods
Finding ESE hexamers

Many studies suggest that ESEs are present in the vicinity
of splice sites. ESE activity falls off sharply with distance
[38] and natural internal exons tend to be small [16]. We
therefore focused our search for ESEs in the regions near
the ends of exons, and we also focused on internal exons
(those with introns on either side). We extracted regions
of 50 bp from either end of all internal exons in the
ESEAra data set, and then we identified potential ESE hex-
amers in these regions by using the same assumptions as
the RESCUE-ESE algorithm [9]. RESCUE-ESE assumes
that ESEs are represented by hexamers with both (1) a sig-
nificantly higher frequency in exons than in introns and
(2) a significantly higher frequency in exons with weak
splice sites (also called weak exons) than in exons with
strong splice sites (strong exons). To find ESEs based on
these assumptions, we define "weak" splice sites as those
scoring in the bottom 25% according to GeneSplicer, and
"strong" splice sites as those among the top 25%. Simi-
larly to RESCUE-ESE, we compute for each type of splice
site two differences: one between the frequency of occur-

rence of a given hexamer h in exons ( fl?) and the fre-

quency of occurrence near splice sites (within 50 bp) in

http://www.biomedcentral.com/1471-2105/8/159

introns ( fIh) and the other between the frequency of
occurrence of the hexamer in weak exons ( fv;\l/ ) and its fre-
quency in strong exons ( fsh ). The two distributions { fg

- fIh h € all possible hexamers}, and { f&, - fsh h € all possible

hexamers} are then computed, and only those hexamers
that score above a given threshold (defined in terms of
standard deviations above the mean) in each of these two
distributions are selected. For our A. thaliana data, we set
this threshold to 1.5, which identifies ~1% of all hexam-
ers. For other species this threshold is likely to wvary,
depending on the relative strength of the splice site sig-
nals.

ELPH: Estimated-Location-of-Pattern-Hits

ELPH is a Gibbs sampling program to identify motifs
present in the flanking regions of exons. Gibbs sampling
has proven successful in several previous computational
methods to discover motifs in regulatory sequences [39-
42], although none of these previous systems focused on
ESRs. ELPH takes as input a set of DNA sequences and
searches through them for the most common motif. The
set may contain up to several thousand sequences, and the
sequences can be very short or can be thousands of nucle-
otides long. The algorithm's success depends on most of
the sequences containing at least one copy of the motif.
ELPH is freely available under an open source license
from [43].

The implementation of the Gibbs sampling technique in
ELPH is based on the algorithm previously described by
Neuwald et al. [44]. The algorithm starts by randomly
choosing a motif position in each of the input sequences.
These motif positions are used to compute an initial
weighted probability matrix (a position weight matrix, or
pwm) describing the motif. After this initialization step,
the program iteratively runs through two main steps: pre-
dictive update and sampling. In the predictive update
step, one sequence from the input file is selected, begin-
ning with the first sequence and proceeding to the last
one. The motif element from that sequence is added to the
background and the pwm is updated accordingly. In the
sampling step, the pwm is used to assign each position in
the given sequence a probability, representing the likeli-
hood that the motif starts at that position. A motif ele-
ment is assigned to the sequence by performing a
weighted sample from all the possible motif positions in
the sequence. These two steps are repeated until a local
maximum is reached or until a pre-defined maximum
number of iterations are made. The Gibbs sampler is
restarted several times with different random initial con-
ditions in order to avoid local maxima.
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We ran ELPH in this fashion (as a motif detector) on the
ESEAra data, looking separately at the first 50 bp (the 5'
end) and the last 50 bp (the 3' end) of all exons. ELPH
identified the motif TGAAGA in the 5' data and [T|C]TTC
[A|C]T in the 3' data. Logos of this motifs created using
WebLogo [45] are shown in Figure 1.

Another way to run ELPH is to use an input pattern as a
seed. In this case the sampling step is restricted to those
positions in the sequence that are close to the seed pat-
tern. This strategy significantly constraints the search
space and the output will contain the motif that best
matches the input pattern.

Similar to Neuwald et al. [44], ELPH can estimate the sta-
tistical significance of any predicted motif using the Wil-
coxon signed-rank test. A control set of sequences with the
same background composition as the input sequences is
generated using a first-order Markov model. A control
sequence with the same length is appended to each
sequence in the input set, and then the weighted probabil-
ity matrix representing the motif is used to sample posi-
tions in the combined sequences. If the motif is a real one,
then one expects the algorithm to find it in the original
sequence much more often than in the random control
sequence. After repeating this sampling process many
times, a rank is associated to the chosen motif sites accord-
ing to the frequency they have been selected. If the
selected sites are from the original sequence than this rank
is positive, otherwise if they fall within the control
sequences the assigned rank is negative. Under the null
hypothesis, the mean rank of the selected sites is expected
to be zero, but largely positive if a statistically significant
motif is found.

GeneSplicerESE

Recent studies show that support vector machines [46]
represent a state-of-the-art classification method for the
splice site recognition task [29,47]. Based on a linear sup-
port vector machine (LSVM), we built a new splice site
predictor called GeneSplicerESE. The LSVM is a binary
classification technique which separates the input data
points from a class X < R" by building a hyperplane with
maximum distance to the closest data point from both
classes (see [48] for more details). A new data point x € X
is classified into {+ 1} according to the following decision
function:

f (x) =sgn (wx + b) (1)

where the pair {w € R", b € R} describe the separating
hyperplane.

GeneSplicerESE represents each candidate splice site by a
feature vector consisting of the splice site score computed

http://www.biomedcentral.com/1471-2105/8/159

by GeneSplicer as described in [28], and a set of n motif
scores computed according to the following formula:

i+length(m) . i
Score(s,m) = MaXi_1 jengih(s)-length(mpil D, D (51)108([’4.% (sj)/ Pb(Sj))

(2)

where s represents a flanking region of an exon (either the
5'or 3' exonic end depending if acceptor or donor sites are
classified), m is a motif predicted by ELPH, §;is the nucle-

otide at position j in sequence s, P,}fl (a) is the motif prob-
ability of the nucleotide a situated at position k in the
motif, and P, (a) is the background probability of the
nucleotide a. GeneSplicerESE is freely available under an
open source license from [49].
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