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Abstract
Background: The recent increase in the use of high-throughput two-hybrid analysis has generated
large quantities of data on protein interactions. Specifically, the availability of information about
experimental protein-protein interactions and other protein features on the Internet enables
human protein-protein interactions to be computationally predicted from co-evolution events
(interolog). This study also considers other protein interaction features, including sub-cellular
localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational
methods need to be developed to integrate these heterogeneous biological data to facilitate the
maximum accuracy of the human protein interaction prediction.

Results: This study proposes a relative conservation score by finding maximal quasi-cliques in
protein interaction networks, and considering other interaction features to formulate a scoring
method. The scoring method can be adopted to discover which protein pairs are the most likely
to interact among multiple protein pairs. The predicted human protein-protein interactions
associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly,
worm, thale cress and baker's yeast.

Conclusion: Evaluation results of the proposed method using functional keyword and Gene
Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the
predicted interactions. Comparisons among existing methods also reveal that the proposed
method predicts human protein-protein interactions more accurately than other interolog-based
methods.

Background
Large-scale protein-protein interactions (PPIs) have been
experimentally identified in several eukaryotic model
organisms, such as Drosophila melanogaster [1-3],
Caenorhabditis elegans [4,5], and Saccharomyces cerevisiae
[6-9]. Moreover, thousands of PPIs have been collected

from web databases including BIND [10], CYGD [11],
DIP [12], BioGRID [13], IntAct [14], and MINT [15].
Although the mammalian interactions, MPPI [16], have
been published, the amount of the data with similar scale
has not been described. The large-scale set of interactions
of human proteins is still hard to determine directly.
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Many computational methods have been developed to
predict protein-protein interactions. A phylogenetic pro-
file method [17] describes the presence or absence of pro-
teins among different organisms with sequenced
genomes. Proteins have similar phylogenetic profiles,
between which functional links can be detected. The gene
or domain fusion method [18,19] describes a pair of pro-
teins encoded as separate genes in one organism and
fused into a single protein in another organism. Such a
pair of proteins can be inferred by the function link, par-
ticularly among metabolic pathways. In the gene neighbor
or gene order method [20-22], the genes that encode two
proteins are adjacent in chromosome proximity in several
organisms, and are likely to be functionally linked. How-
ever, this method exploits the prevalance of operons in
prokaryotes, but operons appear to be uncommon in
eukaryoyes such as humans. Predictions using interologs
[5] are based on the theory that proteins interacting in one
organism co-evolve such that their respective orthologs
maintain the ability to interact in another organism. The
interolog concept has been applied to predict human pro-
tein interactions [23-29]. Some bioinformatics models
[30,31] have also been developed to detect interactions
among proteins by probability and machine-learning
methods and the literature text-mining approach [32-34]
based on natural language processing. Bader et al. devel-
oped a logistic regression approach [35] that adopts
employs statistical and topological descriptors to predict
the biological relevance of PPIs obtained from high-
throughput screening for yeast. Other sources of informa-
tion, such as mRNA expression, genetic interactions and
database annotations, are subsequently used to validate
the model predictions. Lu et al. used a simple Naive Bayes
classifier to integrate diverse sources of genomic evidence,
ranging from co-expression relationships to phylogenetic
profiling similarity [36].

The greatest challenge in predicting human PPIs using the
interolog-based method is that the high-throughput inter-
actions generate too many false positives when applied to
phylogenetically distant organisms or lower eukaryotes
[37], and some researchers have suggested that only 50%
of yeast two-hybrid interactions are reliable [38]. There-
fore, other filtering examinations of features and scoring
schema should be further considered in order to increase

the confidence in the prediction of human interactions
performed by the interolog-based method. This study
constructs human PPI maps from six eukaryotes, namely
rat, mouse, fly, worm, thale cress and baker's yeast. The
quasi-clique is analyzed and determined as a relative con-
servation score from the protein interaction networks in
each organism. The other feature scores further drawn
from spatial proximity (sub-cellular localization and tis-
sue-specificity), temporal synchronicity (cell-cycle stage)
and domain-domain combinations are also inspected, to
obtain human PPI networks with confidence scores.

Results and discussion
Predicted human protein interactions
All protein access codes, such as NCBI GI number or Ref-
Seq ID, were converted into non-redundant UniProt IDs.
Table 1 shows the non-redundant (nr) total set of the orig-
inally predicted human protein-protein interactions
(interologs) derived from six reference organisms. One-
to-many mappings exist across species in the InParanoid-
predicted data set, and are applied to identify protein
orthologs. The total data set of 90, 871 human PPIs was
obtained by the proposed method without cutoff by con-
fidence score (CS). A total of 90, 871 protein interactions
were predicted (see Additional File 1).

The known human interactions (indicated as KNOWN)
were downloaded from external databases BIND, BioG-
RID, DIP, HPRD, IntAct, MINT and MPPI. The KNOWN2
data set was derived from KNOWN with the addition of
two recently published experimental data sets of human
PPIs [39,40]. The proposed method predicted all 2,
572(2.83%) true positive (TP0) and 88, 299(97.17%)
putatives (PU0) interaction data sets when applying the
threshold CS ≥ 0. A threshold of CS ≥ 4 achieved 1,
467(7.46%) true positives (TP4) and 18, 192(92.53%)
putatives (PU4). Figure 1 summarizes the results that
showing the relationship among these data sets. The fol-
lowing evaluation compares the functional annotations
among the KNOWN2, TP4, TP0, PU4, PU0, and random
interaction data sets (RANDOMS).

Evaluation
The experimental human PPIs and standard benchmark
are limited from well-known databases and few interac-

Table 1: Number and sources of predicted interactions inferred from each reference organism.

Reference organisms

Rat Mouse Fly Worm Thale cress Baker's yeast Total (nr)

Proteins 1,183 2,962 9,910 3,607 551 6,590 24,803
Interactions 1,344 3,895 44,119 7,690 2,134 115,903 175,085
Predicted interologs (nr) 476 1,212 13,131 8,429 1,384 82,425 90,871
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tions are known completely. Therefore, the absence of
interactions between proteins from the experimental data-
bases does not indicate that the interactions are negative.
Given this limited knowledge, functional keyword anno-
tation and GO term matching were tested to determine
the accuracy of measurement of various interaction data
sets.

Testing for true positives

Table 2 presents the successfully predicted human PPIs
(true positives) from different reference organisms in the
first evaluation. The accuracy of combining the predicted
human interactions from various reference organisms was
found to exceed that of a single reference organism.

Although the large-scale and protein interactions of rat
and mouse have not yet been completed, these two mam-
mal model organisms can be used to identify higher pro-

portion of predicted true positives,  and

, respectively (Table 1 and Table 2).

Therefore, human interactions can be confidently pre-
dicted from multiple mammalian organisms and higher
eukaryotes.

Testing scoring method
Each feature score of each data set was evaluated to deter-
mine whether the proposed scoring method was associ-
ated with more accurate predictions of interactions. The
data sets predicted by BLAST search method (BTP and
BPU are data sets for true positive and putative, respec-
tively) were also compared with our predicted data sets. In
Figure 2, each feature score was the original raw score
without normalization, revealing that the data sets (TP4
and PU4) predicted by our approach have similar but
higher feature scores than those of the known interaction
data sets (KNOWN2) and the randomly generated data
sets (RANDOMS). The distributions of the various com-
ponents of the confidence metrics and ANOVA tests
between these interaction data sets were listed (see Addi-
tional File 2). The differences between these data sets are
statistically significant.

Testing functional annotation
Interacting proteins commonly have similar functions.
Additionally, researchers should be able to validate the
functions of predicted protein pairs. The interactions pre-
dicted by the proposed method were optimized in terms
of UniProt functional keyword annotations, GO 'molecu-
lar function' (MF) and GO 'biological process' (BP). Their

317
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Table 2: Number of human interactions (true positives) successfully predicted from each reference organism in different experimental 
databases.

Predicted true positive interactions

Databases Human Rat Mouse Fly Worm Thale cress Baker's yeast Total (nr)

BIND 1,755 19 84 45 38 5 191 327
BioGRID 15,578 81 327 212 133 37 894 1516
DIP 703 9 50 23 11 2 77 150
HPRD 18,767 303 415 233 168 35 938 1,912
IntAct 7,046 18 95 93 51 11 523 709
MINT 3,236 16 79 73 49 17 305 478
MPPI 247 3 21 10 7 4 43 77
Rual 4,044 9 38 46 32 4 223 307
Stelzl 2,889 9 23 29 23 2 184 238

Total (nr) 37,929 317 474 335 212 45 1,433 2,572

Schematic illustration of interaction dataFigure 1
Schematic illustration of interaction data. Schematic 
illustration of sets of known (KNOWN2), predicted true 
positive (TP0) and predicted putative (PU0) interaction data. 
The confidence score (CS = 4 herein) can be used to identify 
interaction sets (TP4 and PU4) quantitatively and filter out 
the predicted interactions with lower confidence.
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relevant GO terms such as 'molecular function unknown',
'obsolete molecular function', 'biological process
unknown' and 'obsolete biological process' were dis-
carded.

Equations (1), (2), and (3) define the Jaccard coefficient
of the UniProt keyword, and the deepest depth of com-
mon ancestor GO terms in MF and BP categories, UK,
GMF and GBP, respectively. where Ka, Kb are the keyword vectors of interacting protein

pairs a and b, respectively. For example, in Ka = [1, 0, 1, 0,
1], the presence or absence of a keyword are represented
as 1 or 0, respectively. Protein self-interactions or homo-
dimers tend to have high scores, and always share the

UK
K K

K K K K K K
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Each feature score for all data setsFigure 2
Each feature score for all data sets. Each feature score for all data sets; x-axis is the feature type, and y-axis is the corre-
sponding raw feature score (mean value). The predicted data sets with confidence score (CS = 4) (TP4 and PU4) have similar 
or higher feature scores than the known interaction data sets with two recently published experimental data sets (KNOWN2), 
data sets for true positive and putative predicted from BLAST mapping method (BTP and BPU) and randomly generated data 
sets (RANDOMS).
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same functional annotations. Hence, these interactions
were eliminated from the predicted pairs to eliminate bias
in the results.

First, the number of interaction pairs sharing at least one
UniProt overlapping functional keyword was determined
to verify the accuracy of the predicted interactions. Sec-
ond, the number of interaction pairs sharing common GO
annotations at a particular depth in the GO 'molecular
function' and 'biological process' hierarchy was analyzed
to confirm that the results and that were not just a general
GO term applied. Comparisons were made among
KNOWN2, TP4, TP0, BTP, PU4, PU0, BPU and RAN-
DOMS data sets (Figure 3).

Finally, the probability that two proteins share the same
UniProt functional keyword by chance is determined
through the hypergeometric distribution [41]. The p-value
is obtained by the following equation:

where N and M denote the total number of proteins in the
population, and the number of proteins that have a par-
ticular functional keyword, respectively, and n and x
denote the total number of proteins in the set, and the
number of proteins annotated with the particular func-
tional keyword, respectively. Since a pair of proteins is
observed, both n and x are equal to 2. A protein pair is
treated as enriched by a UniProt functional if the corrected
p-value is ≤ 0.05. The total of 90, 871 predicted interac-
tions with this p-value are listed (see Additional File 1).

Testing conservation score (C) and interolog score (I)
Table 3 and Table 4 show present the effectiveness of con-
servation (C) and interolog scores (I) based on the quasi-
clique of protein networks. The raw conservation score
and interolog score and corresponding standard error of
true positive and putative interaction data sets from differ-
ent InParanoid score (0.0 to 1.0) were evaluated. The
result reveals that the conservation and interolog scores in
the true positive data set were higher than those in the
putative data set.

Comparisons
Comparison with cut-off scores
Table 5 indicates that InParanoid can predict 1,
918(5.27%) and 2, 572(2.83%) true positive interologs
for one-to-one mapping and one-to-many mapping,
respectively. The table also shows the precision values,
given by (TP/(TP+FP)) and the recall, given by (TP/
(TP+FN)), where TP, FP and FN denote the numbers of
true positive, false positive and false negative interactions
in the predicted data sets, respectively. True positives are
the overlaps between predicted positive data set and all
known human interactions (KNOWN2); false negatives
are the overlaps between predicted negative data set and
all known human interactions (KNOWN2), and false pos-
itives are the predicted positive data sets that are absent
from the true positives (i.e. the putatives in this case).

The cut-off threshold of confidence score (CS), equation
(8), was identified to increase the true positive ratio and
indicate the relationship between the number of pre-
dicted interactions and the coverage of known interac-
tions. The maximum precision was obtained by a
threshold of CS ≥ 4. Table 6 shows the relationship
between cut-off threshold and predicted data sets from the
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Table 3: Mean and standard error of Conservation score (C) 
among the different InParanoid score (IP) interaction data sets.

True positives Putative

InParanoid score Mean of C 
score

Std Err Mean of C 
score

Std Err

IP > 0.0(CS ≥ 4) 2,278.54 15.31 519.62 28.98
IP > 0.0(CS ≥ 0) 725.17 4.73 335.75 17.43
IP ≥ 0.1 762.24 5.09 341.67 17.92
IP ≥ 0.2 812.78 5.60 344.13 18.38
IP ≥ 0.3 853.73 5.95 353.66 18.89
IP ≥ 0.4 896.72 6.34 359.68 19.54
IP ≥ 0.5 958.65 6.90 365.77 20.18
IP ≥ 0.6 953.82 7.17 367.83 20.55
IP ≥ 0.7 984.81 7.74 361.30 20.99
IP ≥ 0.8 979.91 8.07 355.88 21.03
IP ≥ 0.9 992.17 8.42 352.37 21.21
IP = 1.0 1,005.40 8.85 352.46 21.34

Testing of functional annotationFigure 3
Testing of functional annotation. Testing of functional 
annotation between all data sets. (a) Mean depth level of 
common ancestor GO term in 'molecular function' (MF) or 
'biological process' (BP) categories. (b) Mean of Jaccard coef-
ficient of UniProt keyword matching.
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175, 085 known interactions in the six reference organ-
isms.

Comparison with BLAST data sets
All of the 175, 085 known interactions (Table 1) from the
six reference organisms were used in the orthology search
by BLAST with minimum E-value (the E ≤ 0.005 was con-
figured in the BLAST tool). The protein sequences were
downloaded from UniProt. The InParanoid one-to-one
mapping (InPranoid score = 1.0) and one-to-many map-
pings (InPranoid score ≥ 0.0) were also compared, as were
the InParanoid data sets with threshold CS = 4. Table 5
shows the results of these predictions. Although BLAST
can more true positive interologs in quantity than the
InParanoid method, it also produced a higher putative
ratio. The predicted and true positive ratios reveal that
InParanoid can distinguish potential true orthologs. The
BTP and BPU are data sets for true positive and putative
predicted from BLAST mapping method, respectively. The
scoring method testing results are also presented (see Fig-
ure 2 and Additional File 2).

Comparison with experimental data sets
All of the proteins were mapped to UniProt Entry ID, and
proteins (and their interactions) that could not be confi-
dently mapped were eliminated. Figure 4 presents the

overlap among various interacting data sets, including
two human experimental networks [39,40] and our pre-
dicted interlogs from six reference organisms (Huang et
al.). Surprisingly, the results of the proposed interolog-
based approach and the experimental high-throughput
method did not overlap significantly, revealing that the
methods applied to detect interactions have different
biases. Therefore, two methods (interolog-based and
experimental method) may reveal different and partial
sub-networks of the whole human protein interaction
network. The proposed method is based on evolutionarily
conserved interologs, and can not distinguish between
species-specific interactions from the two experimental
data sets.

Comparison with interolog-based approach
The proposed method was compared with other inter-
olog-based methods for predicting human PPIs, namely
HomoMINT [28], HPID [25], IPPRED [24], the method of
Lehner et al.'s group [27], OPHID [23], POINT [26] and
Rhodes et al.'s method [29].

The properties of the ortholog identification methods and
other features are as follows.

• An ortholog identification method indicates the
orthologs between model organisms. Orthologs between
organisms do not have a one-to-one relationship with
BLAST search (B) or BLAST search with E-value (BE); yet
one-to-many and many-to-many mappings exist. The
InParanoid clustering algorithm distinguishes potential
true orthologs from paralogs according to the InParanoid
score (IP). Although similar structures typically share sim-
ilar biological functions, the structural classification at the
protein superfamily level (SS) is not trivial in the identifi-
cation of structural similarities at the human protein level
on the large scale.

• Other features indicate that some other factors affecting
their interactions are considered. The quasi-clique with
maximal conservation score (C), domain-domain combi-
nations (D), sub-cellular localization (L), cell-cycle phase
(P) and tissue-specificity (T) were also carefully examined
in this study. Other existing methods apply the 'biological

Table 5: Number of human interactions (true positives) predicted from BLAST with minimum E-value and InParanoid.

Data sets Predicted interologs True positives Putatives Precision Recall

BLAST 84,501 4,130 80,371 4.89% -*
InParanoid (1-to-1 mapping) 36,376 1,918 34,458 5.27% -*
InParanoid (1-to-many mapping, CS ≥ 0) 90,871 2,572 88,299 2.83% -*
InParanoid (1-to-many mapping, CS ≥ 4) 19,659 1,467 18,192 7.46% 57.04%

* : the predicted data set do not contain negative data to calculate false negative (FN) to obtain recall = (TP/(TP+FN))

Table 4: Mean and standard error of Interolog score (I) among 
the different InParanoid score (IP) interaction data sets.

True positives Putative

InParanoid score Mean of I 
score

Std Err Mean of I 
score

Std Err

IP > 0.0(CS ≥ 4) 506.59 3.58 120.50 6.88
IP > 0.0(CS ≥ 0) 138.16 1.01 75.94 4.10
IP ≥ 0.1 152.02 1.11 78.41 4.23
IP ≥ 0.2 171.81 1.25 81.96 4.43
IP ≥ 0.3 184.67 1.34 84.33 4.56
IP ≥ 0.4 199.23 1.46 87.07 4.73
IP ≥ 0.5 218.09 1.61 89.62 4.91
IP ≥ 0.6 225.91 1.73 91.17 5.04
IP ≥ 0.7 239.93 1.90 91.48 5.21
IP ≥ 0.8 243.44 2.00 90.76 5.25
IP ≥ 0.9 248.07 2.10 90.20 5.31
IP = 1.0 252.37 2.21 90.27 5.34
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process' (BP) and 'molecular function' (MF) annotations
in the GO hierarchy.

The brief comparisons in Table 7 reveal that the proposed
method predicts results based on the relative conservation
score and the other feature scores to obtain human PPI
networks through confidence scores. A confidence score
allows researchers to identify interactions qualitatively
from objective and biologically reasonable judgement,
rather than using a large quantity of interacting data with-
out prioritized selection.

Biological significance
Many predicted pairs have been identified in existing
known human PPI databases (KNOWN) and the two
human experimental PPIs data sets (as shown in Figure 4).
The top 20 predictions that were not identified or not
present in the existing databases were listed (see Addi-
tional File 3) using the proposed prediction system, and
indicate that some top predicted protein interacting pairs

were manifestations of their potentially physical interac-
tions. For example, for the top 1 PLK1 and STK6 interac-
tion, PLK1 (polo-likekinase1) has just been reported this
year that it interacts with Aurora-B in playing critical roles
in the regulation of chromosomal dynamics [42]. STK6 is
also known as Aurora-A. The kinase domains of Aurora-A
and Aurora-B share more than 70% of their sequence
data. Most importantly, in 3D structure, they are likely to
share partially similar surface features [43]. Therefore, the
interaction of Aurora-A (i.e., STK6) with PLK1 (top1 inter-
action) is not surprising. ORC1, the origin recognition
complex protein, binds specifically to origins of replica-
tion, and serves as a platform for the assembly of addi-
tional initial factors including MCM and CDC6 proteins.
MCM proteins form a hexameric structure complex with 6
subunits, namely MCM2, MCM3, MCM4, MCM5, MCM6
and MCM7 [44]. To date, ORC1 been confirmed to inter-
act with MCM2 and MCM7. ORC1 can also be reasonably
expected to interact with MCM4 (top 2 interaction) and
MCM6 (top 5 interaction), because they are all localized
in a complex or origin recognition site. Furthermore, since
MCM proteins form a hexamer, MCM5 can reasonably be
expected to interact with MCM6 (top 3 interaction), and
MCM5 can be expected to interact with MCM4 (top 4
interaction). These findings reveal that constructing a pro-
tein-protein interaction network allows novel interacting
proteins to be identified. All proteins of the prediction
pairs are linked to a human disease in the OMIM database
[45] whenever possible (see Additional File 3). Therefore,
the interaction network can be further extended through
these annotated disease-associated proteins. Moreover,
these predicted interactions have high conservation (C)
and interolog (I) scores (Table 3 and Table 4, respec-
tively), revealing that these interactions are evolutionarily
conserved across species.

Discussion
Important high-throughput approaches such as yeast two-
hybrid have recently been applied to systematically iden-
tify PPIs in humans (Figure 4). Surprisingly, the experi-
mental results of the proposed and high-throughput

Table 7: Comparisons with other interolog-based approach for 
predicting human PPIs.

Ortholog 
mapping

Other 
features

Predicted 
interologs

True 
positives

HomoMINT IP - 9,749 694
HPID BE, SS D, L, MF - -
IPPRED BE - - -
Lehner et. al. IP L - -
OPHID BE D, T, L 23,889 800
POINT B L, P - -
Rhodes et. al. IP D, T, BP 39, 816 830
Huang et. al. IP, C D, T, L, P 90, 871 2, 572

Table 6: Relationship between cut-off threshold and predicted 
human interactions (true positives).

Cut-off 
threshold

Predicted 
interologs

True 
positives

Putatives Precision Recall

CS ≥ 0 90,871 2,572 88,299 2.83% -*
CS ≥ 1 59,919 2,473 57,446 4.13% 96.15%
CS ≥ 2 41,828 2,222 39,606 5.31% 86.39%
CS ≥ 3 27,048 1,772 25,276 6.55% 68.90%
CS ≥ 4 19,659 1,467 18,192 7.46% 57.04%
CS ≥ 5 14,344 1,226 13,118 8.55% 47.67%
CS ≥ 6 11,334 1,021 10,313 9.01% 39.70%
CS ≥ 7 8,374 859 7,515 10.26% 33.40%

* : the predicted data set do not contain negative data to calculate 
false negative (FN) to obtain recall = (TP/(TP+FN))

Comparisons among experimental data setsFigure 4
Comparisons among experimental data sets. Compar-
isons among two experimental data sets (Rual's and Stelzl's 
data sets), known databases (KNOWN) and our results 
(Huang).
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methods did not overlap significantly, indicating that dif-
ferent biases exist because of the approaches applied to
detect interactions. Hence, two methods (interolog-based
and experimental methods) may indicate different and
partial sub networks of the complete human-protein
interaction network.

The accuracy of the predicted interactions depends mainly
on the quality and completeness of the reference model
organism interaction data sets. Although only a subset of
the known interactions in the human interaction network
can currently be accurately predicted (Table 2), the accu-
racy can be improved by large-scale protein interaction
data in 'higher' eukaryotic reference model organisms in
the future. The orthologous relationship between
sequence and function is difficult to evaluate, because no
clear measurement of functional similarity between any
pair of proteins is made. Many one-to-many and many-to-
many mappings exist across species, and can be used to
identify protein orthologs. The InParanoid algorithm was
applied because several proteins from so-called 'lower'
eukaryotes have many co-orthologs in humans, and can
be identified using InParanoid, but not with a simple one-
to-one sequence similarity search based on BLAST or
structural classification at the protein superfamily level.

The Interolog [5] concept was previously proposed to pre-
dict C. elegans PPIs from yeast. This study presents 'Inter-
olog' as a concrete method for predicting human PPIs
from those of six 'lower' eukaryotes. However, high-
throughput interactions with false positives and false neg-
atives have been noted in some eukaryotes [37]. This
study utilized other features and scoring schema to derive
the confidence with which human interactions are pre-
dicted using the interolog-based method. Computational
analysis can be applied to determine conservation scores
and other feature scores, and is readily extensible to any
newly sequenced genomes. Users can construct many
genome-wide PPI networks with high confidence using
interolog mapping and the proposed scoring method.
This concept can also be applied to discover transcription
networks, such as simultaneous protein-DNA and pro-
tein-protein interaction networks [46].

Conclusion
The evolution of PPIs from the relative conservation score
is comprehensively assessed by finding a quasi-clique
from protein networks. However, PPIs in biological
organisms are complex, and do not depend only on a sin-
gle feature, such as protein structural complementarity,
gene proximity or co-evolution.

Moreover, some other protein interaction features, includ-
ing sub-cellular localization, tissue specificity, cell-cycle
stage and domain-domain combinations, are also critical

factors to be considered. This study describes a scoring
method based on integrating these heterogeneous but sig-
nificant biological resources to prioritize human protein-
protein interacting networks. The analytical results indi-
cate that the proposed method can predict potential
human PPIs with higher confidence than the other meth-
ods studied (Figure 2). The analytical results also reveal
that some correlations exist between the true positive data
set and the data set produced by the proposed method
(Figure 3). Furthermore, the conservation score of a true
positive interaction data set is higher that the score of the
putative interaction data set (Table 2). Additionally, the
proposed method allows researchers to identify quantita-
tively, rather than simply qualitatively, how (functional
domain), when (cell cycle stage) and where (cellular com-
partment and tissue specificity) the two proteins interact,
using a confidence score.

Methods
Some studies have been published on the experimental
derivation of PPIs and so does the in silico PPIs. Examples
of topics examined include domain-domain co-occur-
rence [31,47,48], gene co-expression as shown by micro-
arrays [49-52] and co-localization to the same sub-cellular
compartment using Gene Ontology cellular component
terms [35,38,53,54]. The combination of such evidence
can support a broader range of PPIs than the predicted
results from any single feature.

Protein-protein interactions can be represented as a net-
work graph whose vertices are proteins. These vertices are
linked by edges if the corresponding proteins interact. In
this study, the maximal quasi-clique determines a conser-
vation score (C) from reference to target organism, and
the interolog score (I) from the orthologous scores (IP)
and (C). The other features of the protein interaction,
such as spatial proximity (sub-cellular localization (L)
and tissue-specificity (T)), temporal synchronicity (cell-
cycle phase (P)) and domain-domain combinations (D)
are also considered. Each score is normalized, and then
these scores are summed into the final confidence score
(CS). Figure 5 shows schematically the proposed scoring
method.

InParanoid score (IP)
The InParanoid [55] algorithm was designed to distin-
guish potential true orthologs from co-orthologs (para-
logs) based on the best pairwise protein sequence
similarity between organisms. The orthologous score, IP
denotes the InParanoid score; the main orthologs always
receive a score of 1.0, and the other paralogs receive scores
from 0.0 to 1.0. Table 8 shows the predicted interologs
and true positives mapped using only InParanoid data
without considering other features. A lower IP score indi-
cates more true positives in quantity. This finding indi-
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cates that the ortholog mappings across species are one-
to-many and many-to-many. However, it also reveals that
the true positive ratio does not signify an improvement in
quality. The other features must be considered in order to
filter out the predicted interactions that have low confi-
dence scores.

Quasi-clique and conservation score (C)
Let G = (V, E) denote a graph, where V is the set of vertices,
and E is the set of edges in graph G. A graph is γ-dense,
such that γ = 2 |E|/|V| (|V| - 1). For a subset S ⊆ V, GS is
the sub-graph induced by S. A quasi-clique, also called a
γ-clique S, is a subset of G, such that the induced graph GS

is connected and γ-clique. The original maximum prob-
lem γ-clique S is to find a 1-clique, complete sub-graph (γ
= 1) with maximum vertices in graph G.

A quasi-clique in PPI networks is a group of proteins that
tend to interact with each other, but a complete sub-graph

(γ = 1) is not always biologically significant. Hence, C = γ
|E| is defined as the protein complex conservation score.
The value of |E| is the functional links of a protein com-
plex.

Some recent studies have concluded that motif modules
and their constituents in a specific functional protein net-
work are highly conserved across species [56,57]. Evolu-
tionary rate analysis [58] has indicated that the
connectivity of well-conserved proteins in the network is
negatively correlated with their rate of evolution. More
connected proteins in an interaction network evolve at a
lower rate, because they are subject to a higher pressure to
co-evolve with other interacting proteins. This study
searches for a quasi-clique with maximal relative conser-
vation score C in a protein complex. Figure 6 illustrates an
example of such a quasi-clique.

Interolog score (I)
The protein interaction bases utilized for mapping human
protein interaction networks were obtained from six
eukaryotes, namely Rattus norvegicus, Mus musculus, Dro-
sophila melanogaster, Caenorhabditis elegans, Arabidopsis
thaliana and Saccharomyces cerevisiae, as reference organ-
isms. These data were obtained from AfCS-Nature [59],
BIND, BioGRID, CYGD, CORE subset of DIP, IntAct,
MINT and MPPI. Table 9 lists the numbers of distinct
interactions in each data set.

The interolog concept states that proteins that interact in
a single organism co-evolve so that their respective
orthologs maintain the ability to interact in another
organism. For example, as shown in Figure 8, if two pro-
teins (a, b) interact in the reference organism, then the
corresponding pairs of orthologs and paralogs (A1, B1),

Relationship among γ, |E| and CFigure 6
Relationship among γ, |E| and C. Relationship among γ, 
|E| and C. (a) Three proteins interacting as a complex with 
three functional links; (b) five proteins interacting as a com-
plex with nine functional links. Although the protein complex 
in (a) has a higher γ = 1.0 than the protein complex in (b), 
that in (b) is more biologically significant. Therefore,C = γ |E| 
is taken as the relative conservation score for a protein com-
plex.

Schematic illustration of scoring method for human PPIs determined from interologsFigure 5
Schematic illustration of scoring method for human 
PPIs determined from interologs. The protein pair (a, b) 
is a known interaction in the reference organism, and the 
corresponding orthologous protein pair (A, B) can be 
inferred to interact in the target organism. The five-tuple 
score (I, D, T, L, P) is normalized to obtain a confidence score 
(CS).

Table 8: Number of interologs and true positives predicted by 
InParanoid score (IP) without other feature scores.

InParanoid 
score

Predicted 
interologs

True 
positives

Putatives Precision Recall

IP > 0.0 90,871 2,572 88,299 2.83% -*
IP > 0.1 82,529 2,489 80,040 3.02% 96.77%
IP ≥ 0.2 72,266 2,368 69,898 3.28% 92.07%
IP ≥ 0.3 66,764 2,305 64,459 3.45% 89.62%
IP ≥ 0.4 60,916 2,214 58,702 3.63% 86.08%
IP ≥ 0.5 54,481 2,134 52,347 3.92% 82.97%
IP ≥ 0.6 49,778 2,069 47,709 4.16% 80.44%
IP ≥ 0.7 44,531 1,986 42,545 4.46% 77.22%
IP ≥ 0.8 41,354 1,958 39,396 4.73% 76.13%
IP ≥ 0.9 38,984 1,930 37,054 4.95% 75.04%
IP = 1.0 36,376 1,918 34,458 5.27% 74.57%

* : the predicted data set do not contain negative data to calculate 
false negative (FN) to obtain recall = (TP/(TP+FN))
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(A1, B2), (A1, B3), (A2, B1), (A2, B2) and (A2, B3) can be
inferred to interact in a target organism, and the interolog
score (I) can be determined as follows.

The weight of evolutionary conservation (wec) is defined
such that a higher wec value indicates an organism that is
genetically closer to humans. The following wec values
were considered: wrat = 1.0, wmouse = 1.0, wfly = 0.75, wworm

= 0.75, wthalecress = 0.5 and wyeast = 0.25 for rat, mouse, fly,
worm, thale cress and baker's yeast, respectively. Because
rat and mouse are both mammals, and are thus geneti-
cally closest to human, they were assigned the highest
value of 1.0. Drosophila and C. elegans are two animal
models that are widely studied to understand human dis-
ease genes and development, and are ranked second clos-
est to humans among the organisms studied. Finally,
thale cress is sorted in higher order than yeast, since it is
multi-cellular organism, while yeast is a single-cell spe-
cies. If a pair of human protein interactions is derived
from two or more reference model organisms, then only
the highest interolog score is used to generate non-redun-
dant (nr) human protein-protein interactions.

Domain-domain combination score (D)
A probabilistic framework [31] has been presented to pre-
dict the interaction probability of proteins, and an inter-
action possibility ranking method has been developed for
multiple protein pairs using the Potentially Interacting
Domain Combination Pair (PIDC). This study utilized
the concept of PIDC, collecting all domain combinations
were accumulated from the known interactions in the
experimental databases. A pair of interacting proteins A
and B with multiple domains was obtained. For example,
a domain set Dd = {d1, d2, d3, ..., dm}, and its power set PDd
= {{d1}, {d2}, {d3}, ..., {d1, d2, d3, ..., dm}}. The protein
domain information was downloaded from the Pfam [60]
domain annotation database. The domain-domain com-
bination score, D, was calculated by summing the appear-
ance probability as follows:

I w IP IP Cij ec= ∗ ∗min( , )A B abi j
(5)
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N pd pd

N pd pd
pd PD pd PD

ij

mm

=
′

∈ ∈
=

−

=

−
∑∑

( , )

( , )
,

i j

i j
i d j d if 

1

2 1

1

2 1

(6)

Example of GO cellular component hierarchy from depth levels 0 to 8Figure 8
Example of GO cellular component hierarchy from 
depth levels 0 to 8. A protein pair (A, B) with GO cellular 
component annotations 'cell' and 'spindle' at depths 2 and 8, 
respectively. The common GO terms among their ancestor 
terms (including the original terms) are 'Gene Ontology', 
'cellular component' and 'cell'. The deepest term is 'cell', at a 
depth of 2.

Table 9: Number and sources of model organism interaction data sets.

Organisms

Version Human Rat Mouse Fly Worm Thale cress Baker's yeast

AfCS-Nature 2005/10/14 - - 763 - - - -
BIND 2005/07/10 1,755 317 1,077 15,693 3,417 - 11,502
BioGRID 2.0.20 15,578 - - 18,919 4,921 - 48,011
CYGD 2006/05/18 - - - - - - 11,778
DIP 2006/04/02 703 20 61 564 2,371 - 5,067
HPRD 2006/01/06 18,767 - - - - - -
IntAct 2006/06/16 7,046 854 1,464 22,322 4,585 2,134 74,961
MINT 2005/05/20 3,236 138 767 18,573 3,970 - 11,223
MPPI 2005/04/25 247 83 185 - - - -
Rual et, al [39] 4,044 - - - - - -
Stelzl et, al [40] 2,889 - - - - - -

Total (nr) - 37,929 1,344 3,895 44,119 7,690 2,134 115,903
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where pdi and pdj are sets i and j in the power set PDd,
respectively, and N' (pdi, pdj) and N (pdi, pdj) are the
number of interacting protein pairs and the total number
of protein pairs that contain (pdi, pdj) in known interac-
tions, respectively.

Tissue specificity score (T)
The tissue specificity is another spatial proximity value to
be considered. Two proteins that are activated at the same
sub-cellular localization, and co-expressed in the same tis-
sue, are likely to interact with each other. This informa-
tion can be used to discover tissue-specific PPIs associated
with human diseases for biomedical research. Tissue-spe-
cific gene expression information was extracted from the
GeneAtlas Affymetrix data set, which includes 44, 775
human probe sets (30, 694 proteins) from 79 normal
human tissue samples [61].

Score T denotes the tissue specificity score, calculated by
summing the number of common tissues if two proteins
both have 2-fold up-regulated expressions (log2 expres-
sion ratio = 1) than the mean expression value of specific
tissue.

where eAi and eBi are the normalized expression values of

proteins A and B, respectively, in tissue sample i, and

 and  are the mean expres-

sion values of proteins A and B, respectively, under 79 tis-
sue samples.

Sub-cellular localization score (L)
The physical PPI requires contact between two proteins at
certain cellular locations. Hence, this study used the Gene
Ontology (GO) [62] annotation in the deep 'Cellular
Component' (CC) hierarchy, discarding irrelevant GO
terms such as 'cellular component unknown' and 'obso-
lete cellular component'.

If two interacting proteins share a common ancestor of
the GO term, then L is the sub-cellular localization score,
which is the deepest level number of the common GO
term among ancestor terms (including itself) in the GO
hierarchy. For example, a protein pair (A, B) has the GO
cellular component annotation 'GO:0005623 cell' and
'GO:0005819 spindle' at depths of 2 and 8, respectively.
The sub-cellular localization score L = 2 since the deepest
level of common GO term among ancestors is at a depth
of 2 in the GO hierarchy. Figure 8 shows the detailed hier-
archy.

Cell-cycle stage score (P)
Human cell cycle cDNA microarray analysis [63] reveals
cell cycle-regulated genes. Table 10 lists the numbers of
non-redundant (nr) proteins mapped from the original 1,
134 expressed clones at different cell cycle phases. The
cell-development stage score P is given by the number of
cell cycle phases in the overlap between two interacting
proteins.

Confidence score (CS)

The five-tuple score (I, D, T, L, P) is an overall confidence

score determined from equation (8), where the , ,

T
e
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Protein-protein interolog scoreFigure 7
Protein-protein interolog score. Protein-protein inter-
olog score, where A-a and B-b are orthologs between the 
two organisms. The orthologous protein pair (Ai, Bj) can be 
inferred to interact in a target organism if the protein pair (a, 
b) interacts in a reference organism. Gab is the sub-graph of 
proteins that interact with both a and b; Cab is the quasi-
clique with maximal conservation score in Gab, and IPAi and 
IPBj are the InParanoid scores of paralogs i and j of orthologs 
A and B, respectively, in the target organism.

ab

IPA IPB

Iij= wec * min IPAi, IPBj *Cab

 Cab

1

2

1

2

3

Table 10: Number of human cell cycle-regulated proteins at 
different phases.

Cell cycle stage Expressed clones Proteins

G1/S 211 137
S 221 146
G2 239 160
G2/M 273 208
M/G1 190 137

Total (nr) 1,134 788
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 and  are the mean values of each feature score

from known human interaction data sets (KNOWN2). 

is the mean interolog score in one reference organism.

In this scoring scheme, all data sources are weighted
equally: wI = 1, wD = 1, wT = 1, wL = 1 and wP = 1. Moreover,
the confidence score CS = 4, as derived by recall ratio ≥
50% (Table 6).
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KNONW – Human known interaction data set obtained
from well-known databases.

KNONW2 – KNOWN2 is derived from KNOWN with
addition of two experimental data [39,40].
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C – Conservation score.
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