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Abstract
Background: Periodogram analysis of time-series is widespread in biology. A new challenge for
analyzing the microarray time series data is to identify genes that are periodically expressed. Such
challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such
as noise, short length, and unevenly sampled time points. Most methods used in the literature
operate on evenly sampled time series and are not suitable for unevenly sampled time series.

Results: For evenly sampled data, methods based on the classical Fourier periodogram are often
used to detect periodically expressed gene. Recently, the Lomb-Scargle algorithm has been applied
to unevenly sampled gene expression data for spectral estimation. However, since the Lomb-
Scargle method assumes that there is a single stationary sinusoid wave with infinite support, it
introduces spurious periodic components in the periodogram for data with a finite length. In this
paper, we propose a new spectral estimation algorithm for unevenly sampled gene expression data.
The new method is based on signal reconstruction in a shift-invariant signal space, where a direct
spectral estimation procedure is developed using the B-spline basis. Experiments on simulated
noisy gene expression profiles show that our algorithm is superior to the Lomb-Scargle algorithm
and the classical Fourier periodogram based method in detecting periodically expressed genes. We
have applied our algorithm to the Plasmodium falciparum and Yeast gene expression data and the
results show that the algorithm is able to detect biologically meaningful periodically expressed
genes.

Conclusion: We have proposed an effective method for identifying periodic genes in unevenly
sampled space of microarray time series gene expression data. The method can also be used as an
effective tool for gene expression time series interpolation or resampling.

Background
Periodic phenomena are widely studied in biology and

there are numerous biological applications where perio-
dicities must be detected from experimental biological
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data. Because the measured data are often non-ideal, effi-
cient algorithms are needed to extract as much informa-
tion as possible. Spectral estimation has been a classical
research topic in digital signal processing and has recently
found important applications in DNA microarray time
series data analysis. Many spectral estimation methods
have been proposed in the past decades, including the
modified periodogram, the autoregressive (AR) model,
the MUSIC algorithm and the multitaper method [1,2].
Although all these algorithms have their own advantages,
they were all developed based on a basic assumption: the
input signal is evenly sampled. However, in many real-
world applications, the data can be unevenly sampled. For
example, in DNA microarray gene expression experi-
ments, a time series may be obtained with different sam-
pling intervals [3-5]. Furthermore, an evenly sampled
time series may contain missing values due to corruption
or absence of some expression measurements [6,7]. A
time series with missing values can be considered as an
unevenly sampled time series in general.

Recently, several methods for detecting periodic gene
expression have been proposed [8-15]. Lu et al. [8] have
proposed a periodic-normal mixture (PNM) model to fit
transcription profiles of periodically expressed genes in
cell cycle microarray experiments. Ahdesmäki et al. [9]
proposed a general-purpose robust testing procedure for
finding periodic sequences in multiple time series data,
which is based on a robust spectral estimator that is incor-
porated into a hypothesis testing framework using the so-
called G-statistic together with correction for multiple
testing. Chen [10] proposed a statistical inference
approach, the C&G procedure, to effectively detect statis-
tically significant periodically expressed genes based on
two statistical hypothesis testing procedures. Wichert et al.
[11] proposed to use the average periodogram as an
exploratory tool to detect the presence of possible peri-
odic genes and give an exact statistical test to determine
whether or not a sinusoid is presence. Luan and Li [12]
proposed to use the shape-invariant model combined
with a cubic B-spline estimation to model periodic gene
expression profiles. Ruf [13] is one of the first to treat
evenly sampled gene expression time series with missing
values as unevenly sampled data for spectral analysis
using the Lomb-Scargle periodogram. Bohn et al. [14]
have used the Lomb-Scargle periodogram in their attempt
to detect rhythmic components in the circadian cycle of
the Crassulacean acid metabolism plants. Glynn et al. [15]
also used the Lomb-Scargle periodogram to detect peri-
odic patterns in unevenly spaced gene expression time
series. The Lomb-Scargle periodogram produces better
results on unevenly sampled data than the classical Fou-
rier transform method since it weights the data on a "per
point" basis instead of on a "per time interval" basis [16].
Lomb [17] proved that this periodogram is the same as

the classical periodogram in the case of equally spaced
data. However, since the Lomb-Scargle method assumes
that there is a single stationary sinusoid wave with infinite
support, it introduces spurious periodic components in
the periodogram for data with a finite length. Also, due to
the effect of noise in the data, it may produce inaccurate
estimation results.

In this paper, we propose a new spectral estimation tech-
nique for unevenly sampled data. Our method models the
signal in a shift-invariant signal space, for which many
theories and algorithms are available [18-25]. In our
method, a direct spectral estimation formula is derived
based on the B-spline basis that has finite support. Exper-
iments on simulated noisy periodic signals show that our
algorithm is more accurate in detecting periodicity com-
pared to the Lomb-Scargle algorithm.

Results and discussion
Our method is based on signal reconstruction in a shift-
invariant signal space, where a direct spectral estimation
procedure is developed using the B-spline basis. The
details of the reconstruction algorithm and the power
spectrum density (PSD) estimation are given in the
Method Section.

Simulated data
We first test our spectral estimation algorithm on simu-
lated signals to compare the estimation accuracy with the
Lomb-Scargle method. A cosine curve has been used to
represent the ideal expression of a gene that goes from an
"on" state, to an "off" state, and then back to "on" [11].
For a gene g and expression level observed at time ti, we
denote the time series by Yg(ti),

where 

for i = 1,...,N and g = 1,...,G. Our test data consists of sim-
ulated time series data for the expression of G = 1000
genes, where 900 of them are random genes (i.e., β = 0)
and 100 are noisy periodic genes.

To obtain this dataset, the time series (genes) is first
evenly sampled at 48 points. That is, ti = i, (i = 1,...,48).
Then, time points are randomly deleted from each time
series to simulate the uneven sampling situation.

Figure 1(a) shows a simulated expression of a gene that
has a 24-hour period with data samples taken every half-
hour. Its corresponding periodogram (see Figure 1(b))
shows a peak at the frequency of 1/24 Hz. Figure 1(c)
shows the same cosine signal, but it is now corrupted with
Gaussian noise and unevenly sampled. The periodog-
rams, obtained using the Lomb-Scargle method and our

Y t tg i i( ) cos( ) ( )β π εti
g12

+
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algorithm, are shown in Figure 1(d). The peak frequencies
in the periodograms obtained using the Lomb-Scargle
method and our method are 1/22 Hz and 1/24 Hz, respec-
tively. Clearly our method is more accurate than the
Lomb-Scargle algorithm. Our method also produces fewer
and smaller false peaks in the spectrum.

In the second simulation test, we use the 100 simulated
noisy periodic gene profiles and compare our method

with the Lomb-Scargle approach in terms of errors in the
dominant frequency. In Figure 2, we show the mean-
square error in dominant frequency under various per-
centages of presence entries. From Figure 2, we observe
that our method is better than the Lomb-Scargle method.

Finally, we use the entire 1000 simulated genes and the
false discovery rate (FDR) gene selection strategy using G-
statistic to test the accuracy and sensitivity of our method.

Simulated dataFigure 1
Simulated data. Comparison of spectral estimation for simulated data: (a) simulated cosine signal with even sampling (N = 
48), (b) the periodogram of the simulated signal in (a) obtained using the Fourier transform, (c) simulated noisy cosine signal 
with uneven sampling, (d) the periodogram of the signal in (c) obtained using the Lomb-Scargle method (dashed line), and the 
periodogram of the signal in (c) obtained using our method (solid line).
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Lomb-Scargle's test is used for Lomb-Scargle method. We
added artificial Gaussian noise with mean μ = 0 and vari-
ous SD values (σ = 0.01, 0.2 and 0.6). In Table 1, we com-
pare the effectiveness of the two methods in detecting
periodic gene expressions with different missing ratios
and various noise levels under the same False Discovery
Rate q. From Table 1, we find that our method is better
than the Lomb-Scargle method in detecting periodic
expressions with various missing ratios. Our method is

also more robust than the Lomb-Scargle method under
different noise levels.

Experimental data
Plasmodium falciparum
We have tested our algorithm on the gene expression data
of Plasmodium falciparum, which is one of the species
that cause human malaria [27]. The gene expression time
series from the asexual intraerythrocytic developmental
cycle (IDC) of Plasmodium falciparum are strongly peri-
odic. Identifying periodically expressed genes is useful for
understanding the genome of Plasmodium falciparum
and designing effective vaccines for prevention of human
malaria. In the gene expression database from Bozdech et
al. [27], data values at the 23rd and the 29th hours are
completely missing. An example of a gene expression pro-
files from the database is shown in Figure 3(a), and its per-
iodograms obtained by using the Lomb-Scargle algorithm
and our algorithm are shown in Figure 3(c). The frequen-
cies corresponding to the peaks in the periodograms
obtained by using the Lomb-Scargle method and our
method are 1/43.10 Hz and 1/44.13 Hz, respectively.
Another example is shown in Figure 3(b). The frequencies
corresponding to the peaks in the periodograms obtained
by using the Lomb-Scargle method and our method are 1/
48.68 Hz and 1/47.85 Hz, respectively (see Figure 3(d)).
We can see from these diagrams that our algorithm can
effectively reduce the spurious oscillation components in
the spectra.

The Plasmodium falciparum dataset was analyzed by Boz-
dech et al. [27] using the fast Fourier transform (FFT), and
later by Glynn et al. [15] using the Lomb-Scargle algo-
rithm. Bozdech et al. [27] identified 3719 periodic genes
in the Quality Control dataset of Plasmodium falciparum,

Table 1: Number of periodic genes detected using different methods for simulated data

P

Noise levels (σ) Missing ratio Lomb-Scargle method Our Algorithm

0.01 15% 93 98
20% 88 92
40% 68 80
65% 40 65

0.2 15% 85 92
20% 75 85
40% 60 78
65% 32 50

0.6 15% 72 89
20% 65 80
40% 51 65
65% 28 47

The simulated data consists of 1000 time series (genes). The total number of periodic genes is 100. P is the number of periodic genes that are 
statistically significant for a FDR level of q = 0.02. The number of false positives FP can be computed as FP = q*TP/(1-q), where TP is the number of 
true positives. Keeping q at a fixed level ensures that we do not sacrifice specificity for sensitivity.

Dominant frequency errors for simulated dataFigure 2
Dominant frequency errors for simulated data. Com-
parison of dominant frequency errors of spectral estimation 
for simulated data. MSE of dominant frequencies of spectral 
estimation obtained using the Lomb-Scargle method (-❍-), 
and our method (-�-) according to various percentages of 
presence entries are shown.
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while Glynn et al. [15] found 4355 periodic genes in the
complete dataset of 6875 (excluding those profile with
unknown oligo ID). Our analysis has shown that the
number of periodic profiles in the complete dataset
should be around 3700 to 4000. Our estimate is based on
analyzing the trend of the sorted G-statistic (computed
using Equation (14) in Method) as shown in Figure 4(a).
The intersection of the two distinct slopes points indicates
a sudden change in the G-statistic trend. Nevertheless, no
distinct cut-off between periodic/aperiodic profiles can be
identified here. Figure 4(b) shows the histogram plot of
the G-statistic. Note that a profile with larger G-statistic
value implies it is much more likely to be periodic. We see

that many of the profiles are likely to be periodic. No dis-
tinct valley can be observed in the histogram, indicating
that a cut-off for periodicity/aperiodicity is difficult to be
obtained here. We also examine the periods of the pro-
files, and Figure 5 shows the histogram plot. It can be seen
that there is a prominent period of 48 hours with a count
of around 5000 profiles. This result agreed largely with
that of Bozdech et al. [27] (see their Figure 2 that discusses
the P. Falciparum IDC Transcriptome phases with a
period of roughly 48 hours) and that of Glynn et al. [15]
(see the histogram of period values in their Supplemen-
tary). Nevertheless, our result also shows a much less
prominent peak at a period of 24 hours with a low count

Plasmodium falciparum dataFigure 3
Plasmodium falciparum data. The expression time series of (a) gene a10325_26 and (b) gene f739_1 in the Plasmodium fal-
ciparum microarray dataset. The periodogram obtained using (a) the Lomb-Scargle method (dashed line) and our algorithm 
(solid line).
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of around 400 profiles. In Figure 6(a), we show the top 9
ranking profiles, they can be seen to be highly periodic. In
Figure 6(b)–(d) , we show the profiles that ranked around
2000, 4000, and 5000, respectively. Even at around a
ranking of 5000, some profiles (e.g. see profile at rank
4997) can still be judged to be somewhat periodic. We
provide a ranked list of the 6875 profiles in Additional
File 1.

Yeast
Spectral analysis is useful for the identification of cell-
cycle-regulated genes. Spellman et al. [3] monitored
genome-wide mRNA levels for 6178 yeast ORFs simulta-
neously using several different methods of synchroniza-
tion including an α (alpha)-factor-mediated G1 arrest
which covers approximately two cell-cycle periods with
measurements at 7 min intervals for 119 min with a total
of 18 time points, a temperature-sensitive cdc15 mutation
to induce a reversible M-phase arrest, and a temperature-
sensitive cdc28 mutation to arrest cells in G1 phase revers-
ibly, and finally, an elutriation synchronization to pro-
duce the elutriation dataset of 14 time points (raw data
available at [35]). For the cdc15 experiment, gene expres-
sion data were measured every 10 min for 290 min, lack-
ing observations for the 20, 40, 60, 260 and 280 min time
points, and gives a total of 24 time points. For the cdc28
experiment, samples were taken every 10 min from 0 to
160 min for a total of 17 time points. These four microar-
ray datasets have spawned a large body of work on the
gene expressions of the yeast cell cycle.

Spellman [3] originally identified a total of 800 cell-cycle
genes in all four datasets, while Wichert et al. [11] claimed
468 cyclic genes in alpha, 766 cyclic genes in cdc15, 105
in cdc28, and 193 in elutriation by using G-statistic as the
test statistic. Chen [10] detected 473 cyclic genes in alpha,
788 cyclic genes in cdc15, 27 in cdc28, and 769 in elutri-
ation by using the same G-statistic as the test statistic
under the same FDR threshold level. However, we found
that the fisher p-value (from Equation (13)) computed
using the G-statistic has weak statistical power with such a
short signal length. Instead, we analyze the four yeast
datasets for periodicity and rank the gene expression pro-
files according to their G-statistic. Figure 7(a)–(d) show
the histogram distributions of G-statistic values for the
four datasets. We see that there is a continuum of distribu-
tion and a clear cutoff for periodicity/aperiodicity cannot
be identified (no obvious valleys exist). The sorted G-sta-
tistic plots in Figure 8(a)–(d) also supported such an
observation. Hence, a ranking of the gene expression pro-
files would be much more informative than just giving an
ad-hoc estimate of the number of periodic genes (see
Additional File 2 for a ranked list of all genes in each
experiment).

Figure 9(a)–(d) show the 9 top ranking genes in each of
the four datasets. In Figure 9(a), we see that six of the nine
highest-ranking expression profiles actually have missing
values. Nevertheless, our algorithm was able to restore the
missing values and rank the profiles properly. The top
ranking profiles in the alpha and the cdc28 datasets can be
observed to have two periods within the measurement
intervals. This agrees well with the known estimated
period of 55–77 minutes and 80–100 minutes for the
alpha and cdc28 experiments, respectively. The top rank-
ing expression profiles in the cdc15 dataset are much nois-
ier compared to the top ranking profiles in the other three
datasets. The profiles indicate a period of around 80–100
minutes, whereas the known estimated period for this
dataset is around 60–80 minutes. The elutriation dataset
result of (d) strongly indicated that the measurement
interval is around one period (in agreement with many
studies done on this dataset). For our top 9 ranking elutri-
ation profiles in (d), 4 of them are within the top 9 rank-
ing profiles in Wichert et al. [11] (see their Figure 6) and
1 is within the top 9 ranking profiles of Chen [10] (see
their Figure 2).

As pointed out by Lichtenberg et al. [28], there is a remark-
ably poor agreement between the numbers of periodically
expressed genes detected by various computational meth-
ods. To enable a more objective comparison between the
performances of different algorithms, they proposed three
benchmark sets B1, B2, and B3 (see their website [36]). Set
B1 contains a total of 113 genes previously identified as
periodically expressed in small-scale experiments. Set B2
contains 352 genes whose promoters were bound by at
least one of the 9 known cell cycle transcription factors
(i.e., Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Mbp1, Swi4, Swi5,
Swi6) in two Chromatin IP studies, and therefore many of
the genes in this benchmark set should be expected to be
cell cycle regulated. Set B3 contains 518 genes annotated
in MIPS [37] as "cell cycle and DNA processing". How-
ever, since a large number of genes involved in the cell
cycle are not subjected to transcriptional regulation (not
periodic) and genes found in B1 were explicitly removed,
only a small fraction of the genes in B3 are expected to be
periodically expressed. They define a good method as one
that is able to reproduce precious findings (B1), extract
genes whose promoters are associated with known cell
cycle transcription factors (B2), or enriched for genes that
play a role in the cell cycle (B3).

Figure 10(a)–(e) show the fraction of benchmark sets
recovered (i.e., coverage) as a function of gene rank for the
four datasets and the combined set (the G-statistic in the
combined set is obtained by taking the maximum of the
corresponding G-statistic values of the 4 datasets). The
performance of all datasets is significantly better than ran-
dom for B1 and B2. For B3, cdc15 and elutriation per-
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(a)-(b). G-statistic values of P. falciparumFigure 4
(a)-(b). G-statistic values of P. falciparum. (a) Sorted G-statistic values. There is a change in the trend of the ranked G-
statistic values at around the 4000 sorted profiles, indicating that two classes of profiles, i.e., periodic/aperiodic, are present in 
the dataset. Nevertheless, this classification is not exact as there is not distinctive sharp drop in the ranked G-statistics. (b) His-
togram of the G-statistic values of P. falciparum. A profile with larger G-statistic value implies it is much more likely to be peri-
odic. We see that many of the profiles are periodic. However, no distinct valley can be observed, indicating that it is difficult to 
set a cut-off between periodicity and aperiodicity here.

(a)  

(b) 
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formances are close to random, whereas cdc28
performance is better than random. The superior perform-
ance of the combined dataset indicated that all experi-
ments are valuable in yeast cell cycle study and should be
considered together. Not surprisingly, the coverage for B3
is always less than B1 and B2 since only a small fraction of
the genes in B3 are expected to be periodically expressed.

A detail investigation of the expression profiles in the
benchmark sets shows that the generally low coverage is
really due to the absence of periodicity in many of the pro-
files. In Figure 11(a)–(c) , we plotted the ranking of the
genes in the benchmark sets against the overall ranking in
the four datasets. We see that a large portion of the profiles
in the benchmark sets is ranked very low in the four data-
sets. A close examination of these profiles confirms that
they are nearly random with no observable periodicity.
There could be two possible causes for this: (1) a large
number of genes involved in the cell cycle are not directly
transcription-regulated and therefore not periodic; (2) the
genes are really periodic but experimental artifacts and
noise has corrupted their profiles. Hence, for these pro-
files, it is expected that no algorithms would be able to
identify them as periodic based on just a periodicity score.

In [28], the strength of regulation (i.e., highly regulated
genes have large standard deviation in their expression
profiles) is an important criterion for the detection of peri-
odically expressed genes. Regulation strength was not
used as a criterion by our method (as well as the method
of [11]) in detecting profile periodicity since the G-statis-
tic value given by Equation (14) gives a normalized peri-

odic score. Based on the periodicity criterion alone, our
method has comparable performance with [28] for the
alpha and cdc28 experiments. For the cdc15 experiment,
our result is notably inferior (see Figure 12). However, if
we look at the cdc15 profiles as shown in Figure 9, we see
that even the high ranking profiles are very noisy, and
hence the comparison for cdc15 have lower reliability
with regard to periodicity behavior. When regulation
strength is taken into consideration as well, the results of
[28] clearly out-performance our results for the B1 dataset
(see dotted curves in left column of Figure 12). This is not
surprising since it was pointed out in [28] that the bench-
mark datasets B1 and B2 are biased towards periodic
genes which are strongly regulated. In fact, it was observed
in [28] that regulation strength alone outperforms pure
periodicity score for the alpha factor experiment on both
B1 and B2 datasets. However, for the B3 dataset, taking
regulation strength into account actually gives inferior
results for all three experiments. As noted by [28], the B3
dataset is likely to be biased toward small amplitude
genes. This suggests that regulation strength is only help-
ful in situations where genes involved in the cell cycle are
also significantly regulated. It would not be useful (and
can in fact worsen the performance) in situations where
genes are highly regulated but are not involved directly in
cell cycle process.

The three benchmark datasets are also analyzed in [29].
Both the method of [29] and our method considered only
periodicity as the sole criterion. We cited their results in
Figure 13. Comparing their results with our results as
shown in Figure 10, we see that for the alpha factor exper-
iment, our results is better for B3, comparable with theirs
for B2, and inferior for B1. For the cdc15 experiment, our
results are better for all three benchmark datasets. For this
experiment, it is interesting to note that although our
results are notably inferior to that of [28], they are signif-
icantly better than that of [29]. For the cdc28 experiment,
our results are better for B1, while comparable for B2 and
B3. The above comparative study indicates the difficulty
in making general performance comparison between dif-
ferent algorithms even with benchmark datasets due to
the differences in dataset characteristic.

Conclusion
In this paper, we have proposed a new spectral estimation
algorithm based on a signal reconstruction technique in
an unevenly sampled space. The advantage of our algo-
rithm over the Lomb-Scargle spectral estimation method
is that the new algorithm can effectively reduce the effects
of noise and spurious oscillation components and there-
fore improve the estimation accuracy. Experiments on
simulated signals and real gene expression data show that
our method is effective in identifying periodically
expressed genes. Finally, we remark that this paper focuses

Histogram plot of the dominant period of P. falciparumFigure 5
Histogram plot of the dominant period of P. falci-
parum. The histogram plot shows a prominent period of 48 
hours with a count of around 5000 profiles.
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on the improvement of periodicity estimation accuracy
using spectral analysis algorithms. Another important
issue is the statistical significance of the periodicity of a
time series. Interested readers are referred to Chen [10],
Wichert et al. [11] and Glynn et al. [15], who have used
hypothesis testing to address this problem.

Methods
Mathematical model
In the following, we first review existing work on signal
analysis in the shift-invariant signal space, and then derive
the new spectral estimation algorithm.

Shannon's signal sampling and reconstruction theorem
states that:

(a)-(d). Expression profiles of P. falciparum at different rankingFigure 6
(a)-(d). Expression profiles of P. falciparum at different ranking. (a) Top 9 ranking profiles, (b) profiles that ranked at 
around 2000, (c) profiles that ranked at around 4000, (d) profiles that ranked at around 5000.

       (a)         (b) 

       (c)         (d) 
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Theorem: If f ∈ BΩ = {f ∈ L2 : supp  ⊂ [-A, A]} and 0 <

2TA ≤ 1, then

where supp  = {x : (x) ≠ 0} and  is the Fourier trans-

form of f defined by

Equation (1) shows that the space of a bandlimited signal
is identical to the space:

f̂

f x TA f nT
A t nT

A t nTn

( ) ( )
sin[ ( )]

( )
= −

−∈
∑2

2

2Z

π
π
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ˆ( ) ( ) .f f t e dti tω πω= ∫−∞
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k
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∈
∑
Z

2

(a)-(d). Histogram distributions of G-statistic values for the four yeast datasetsFigure 7
(a)-(d). Histogram distributions of G-statistic values for the four yeast datasets. (a) G-statistic histogram for the 
alpha dataset, (b) G-statistic histogram for the cdc15 dataset, (c) G-statistic histogram for the cdc28 dataset, and (d) G-statistic 
histogram for the elutriation dataset. In each dataset, there is a continuum of distribution and a clear cutoff for periodicity/ape-
riodicity cannot be identified.

(a)          (b) 

     (c)          (d) 
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Dowski et al. [30] have introduced a reconstruction for-
mula for unevenly sampled signals that is a special case of
Equation (2):

Since the sinc function has an infinite support and slow
decay, it is seldom adopted in real applications. Xian et al.
[24] found a good decay function that can replace the sinc
basis function, but the new function still has an infinite
support. To replace the sinc function with a general func-

tion ϕ, we first introduce a signal space that is called the
shift-invariant (also called time-invariant) signal space:

where the coefficients {ci} are related to the choice of
basis function, ϕ.

Signal reconstruction in the shift-invariant space is an
active research area and there are many mathematical the-
ories and algorithms available [18-25]. When the signal f
∈ V(ϕ), we need to reconstruct signal f from sampled

V f f x c x n
n

N

n= = −
=

−

∑{ : ( ) ( )}.
0

1
sinc

V f f x c x k c
k

k k( ) { : ( ) ( ) : ( ) }φ φ= = − ∈
∈
∑
Z

2

(a)-(d). The sorted G-statistic plots for the four yeast datasetsFigure 8
(a)-(d). The sorted G-statistic plots for the four yeast datasets. (a) Sorted G-statistic for the alpha dataset, (b) sorted 
G-statistic for the cdc15 dataset, (c) sorted G-statistic for the cdc28 dataset, and (d) sorted G-statistic for the elutriation data-
set.

     (a)         (b) 

     (c)         (d) 
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value {f(xi)}, where {xi} is the sampled point set. If {xi} is
an evenly sampled point set, this problem can be regarded
as signal reconstruction in an even sampled space. Other-
wise, this is a signal reconstruction problem in an uneven
sampled space.

In fact, the well-known autoregressive (AR) model can be
regarded as a special case of signal reconstruction in the
above signal space. For a given discrete data sequence x[n]
for 0 ≤ n ≤ N - 1, the sample at time index n is approxi-
mated by a linear combination of the previous K samples
in the sequence based on the AR prediction model that
can be written as,

(a)-(d). The top nine ranking genes in each of the four yeast datasetsFigure 9
(a)-(d). The top nine ranking genes in each of the four yeast datasets. (a) Top 9 ranking genes for the alpha dataset, 
(b) top 9 ranking genes for the cdc15 dataset, (c) top 9 ranking genes for the cdc28 dataset, and (d) top 9 ranking genes for the 
elutriation dataset.

     (a)         (b) 

     (c)         (d)
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(a)-(e). The fraction of benchmark sets B1, B2, and B3 recovered (i.e., coverage) as a function of gene rank for the four yeast datasets and the combined setFigure 10
(a)-(e). The fraction of benchmark sets B1, B2, and B3 recovered (i.e., coverage) as a function of gene rank for 
the four yeast datasets and the combined set. (a) Coverage for the alpha dataset, (b) coverage for the cdc15 dataset, (c) 
coverage for the cdc28 dataset, (d) coverage for the elutriation dataset, and (e) coverage for the combined dataset. Red line is 
for benchmark set B1, green line is for benchmark set B2, blue line is for benchmark set B3, and dotted line is for random per-
formance.

    (a)          (b) 

    (c)          (d) 

    (e) 
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where [n] and e[n] represent the estimation of x[n] and
the corresponding estimation error, respectively. Yeung et
al. [31] have presented an application of the AR model to
microarray gene expression time series analysis for gene
regulation study. Comparing Equation (4) with Equation
(5), it is obvious that Equation (5) is a special case of
Equation (4).

For signal reconstruction in the shift-invariant space, we
can characterize its energy density spectrum Sxx(ω) accord-
ing to Equation (4),. If f(x) ∈ V (ϕ), then the energy den-
sity spectrum is given by

where ω is the frequency in Hz. In order to avoid introduc-
ing spurious periodic components caused by a basis func-
tion ϕ with infinite support, for example, the sinc
function, we only consider basis functions with compact
support.

x n x n e n a x n k e n n K
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(a)-(c). The ranking of the genes in the benchmark sets against the overall ranking in the four yeast datasetsFigure 11
(a)-(c). The ranking of the genes in the benchmark sets against the overall ranking in the four yeast datasets. 
(a) Ranking in B1, (b) ranking in B2, and (c) ranking in B3. Red line is for the alpha dataset, green line is for the cdc15 dataset, 
blue line is for the cdc28 dataset, and black line is for the elutriation dataset. We see that many of the genes in the benchmark 
sets have no observable periodicity.

     (a)          (b) 

     (c)
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Comparison of coverage as a function of gene rank between results of [28] and our methodFigure 12
Comparison of coverage as a function of gene rank between results of [28] and our method. Left column: results 
of [28] on the benchmark sets B1, B2, and B3 when only periodicity is considered (solid lines), and when periodicity and regu-
lation strength are both considered (dotted lines). Right column: results of our method on the benchmark sets B1, B2, and B3. 
Red line is for B1, green line is for B2, blue line is for B3. X-axis is the fraction of set identified, y-axis is the number of genes 
identified.
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Results of [29] on the benchmark sets B1, B2, and B3 (Figure adopted from [29])Figure 13
Results of [29] on the benchmark sets B1, B2, and B3 (Figure adopted from [29]). Our method (see Figure 10) 
compares favorably with that of [29]. Both the method of [29] and our method considered only periodicity as the sole crite-
rion. We see that for the alpha factor experiment, our results are better for B3, comparable for B2, and inferior for B1. For the 
cdc15 experiment, our results are better for B1, B2, and B3. For the cdc28 experiment, our results are better for B1, while 
comparable for B2 and B3.
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PSD estimation algorithm
In [26], Grochenig and Schwab introduce the family of B-
spline functions as the basis function with compact sup-
port. Assume that supp ϕ ⊂[-Ω, Ω] and f(x) ∈ V (ϕ) is
defined on a finite interval [A1, A2], then f can be deter-
mined completely by the coefficients {ck} for k ∈ (A1 - Ω
+1, A2 + Ω -1) ∩ Z with

In terms of the definition of the power spectrum density
(PSD), we can obtain the following estimation function
according to Equation (7)

Coefficients {ci} can be calculated according to following
steps using least squares method [26]:

(1) Given sampling points x1,...,xJ ∈ [A1, A2] and corre-
sponding discrete function values y = (y1,...,yJ). Assume
that J ≥ Jmin = A2 - A1 + 2Ω - 1 and that the truncated matrix
T defined below is invertible. Compute matrix: U = (Ujk),
T = Tkl), where

j = 1,...,J, k, l = A1 - Ω + 1,..., A2 + Ω - 1.

(2) Compute c = T-1b according to b = y, where 
denotes the complex conjugate transpose of U and T-1 is
the inverse of T.

Remarks:

(1) The construction of matrix T has the advantage that T
is a positive operator on �2(Z).

(2) In the case of B-spline, matrix T is invertible under the
condition that

That is, the Schoenberg-Whitney Theorem implies that T
is invertible [32].

(3) Since the numerical solution of (ck) can be sensitive to
particular sets of inter-sample spacing, we can approxi-

mate the inverse of the ill-conditioned T by its pseudo-
inverse using singular value decomposition (SVD).

The B-spline of order N can be defined as the convolu-
tions of (N+1) B-splines of order 0, i.e.

. It is obvious that supp

 for a B-spline of order N and its Fourier

transform can be easily computed as follows:

Substituting it to (8), we obtain an explicit formulation of
the PSD estimation as follows:

We have the following observations on our PSD estima-
tion method:

• The proposed method does not make any assumption
about the number of frequency components in the data,
whereas the Lomb-Scargle method assumes that there is
only a single stationary sinusoid wave with infinite sup-
port. In practice, noise in the data can contribute to many
frequency components. Thus, our model is more appro-
priate for real-world noisy data.

• Compared with the traditional PSD estimation algo-
rithms, our method can directly compute the PSD for an
unevenly sampled signal from Equation (11). The classi-
cal Fourier periodogram based method only can deal with
evenly sampled data.

• The order N of the B-spline basis function ϕ can be cho-
sen adaptively according to Equation (9). From Equation
(9), we know that the relationship between the B-spline
order N and the minimum number of sampling points
Jmin is given by N ≈ Jmin - (A2 - A1) such that the matrix T is
invertible. If we hold the number of sampling point J and
the signal support [A1, A2] fixed, then increasing N (which
would result in a smoother B-spline with larger support)
would ensures a smoother reconstruction. In practice,
some over-sampling is done for stability of reconstruc-
tion, and we increase the over-sampling rate (i.e., number
of sample time points per time interval) by time-scaling
the original signal support appropriately to a smaller
interval.
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• From Equation (11), we see that the periodogram decays
more rapidly with increasing N, meaning that the recon-
structed signal will be smoother with increasing N. This
fact can be used for signal denoising.

Detecting periodically expressed genes
The periodogram of the microarray time series from a
periodically expressed gene must contain a peak corre-
sponding to its dominant frequency. In [27], Bozdech et
al. use the power ratio test to detect the periodic genes of
Plasmodium falciparum. Assuming that the frequency
value of the main peak in the periodogram is fm and con-
sider the frequency band [fm-1, fm+1] as fm's region of influ-
ence (ROI). The power ratio S in [27] is defined to be the
ratio of the power in fm's ROI, powerm, to the total power
of the signal, powertotal, i.e.,:

If the power ratio calculated is larger than a threshold, the
corresponding profile is considered to be periodic. In
[27], the threshold for S is heuristically chosen to be 0.7.

In order to be rigorous statistically, Chen [10] and Wichert
et al. [11] use the Fisher G-statistic test to determine
whether a peak in the periodogram is significant or not.
They corrected for the multiple testing case using the
method of False Discovery Rate (FDR) [33], which con-
trols the expected proportion of false positives in the
result. The Fisher G-statistic test [34] can be used to test for
the presence of periodic component in random white
noise for finite sample signal. The p-value for the hypoth-
esis testing for periodicity of a signal g of length N0, using
G-statistic as the test statistic, is given by

where g is the sample realization of the G-statistic value
calculated from the Fisher's G-statistic given by

n = [N0/2], and p is the largest integer less than 1/x. Equa-
tion (14) is computed over the set of normalized Fourier
frequencies ω = k/N0, where k = 0,1,...,N0/2. Equation (13)
gives an exact p-value that allows one to test whether a
gene expression profile behaves like a purely random
white noise process or whether the maximum peak in the
periodogram is significant. However, for gene expression
profiles of short length, i.e., < 40 time points, the p-value
given by Equation (13) has weak statistical power to deter-

mine the number of periodic genes [9,11]. In view of this,
we follow [28] and provide instead a ranking of the
expression profiles based on the G-statistic of Equation
(14).

Lomb-Scargle method
Here, we briefly review the Lomb-Scargle periodogram
method. For a time series X(tj), where i = 1,2,...,N0 and
zero mean, the normalized periodogram as a function of
the angular frequency ω is defined as [16]

where τ is defined by the equation

The statistical significance of the periodic components
detected in the periodogram can be evaluated using an
exponential probability distribution test [16] which we
denoted in this work as the Lomb-Scargle test.
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