BIVIC Bioinformatics

Methodology article

O

BiolVled Central

Bioinformatics analysis of the early inflammatory response in a rat

thermal injury model

Eric Yang!, Timothy Maguire!, Martin L Yarmush!, Francois Berthiaume? and

Ioannis P Androulakis*!

Address: 'Biomedical Engineering Department, Rutgers University, Piscataway, NJ, USA and 2Center for Engineering in Medicine/Surgical Services,

Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, MA, USA

Email: Eric Yang - eyang@eden.rutgers.edu; Timothy Maguire - timjm@eden.rutgers.edu; Martin L Yarmush - kma@soemail.rutgers.edu;

Francois Berthiaume - Francois_Berthiaume@hms.harvard.edu; loannis P Androulakis* - yannis@rci.rutgers.edu
* Corresponding author

Published: 10 January 2007 Received: 8 July 2006
BMC Bioinformatics 2007, 8:10 doi:10.1186/1471-2105-8-10 Accepted: 10 January 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/10

© 2007 Yang et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Thermal injury is among the most severe forms of trauma and its effects are both
local and systemic. Response to thermal injury includes cellular protection mechanisms,
inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-
suppression. It has been hypothesized that gene expression patterns in the liver will change with
severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing
the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from
burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In
this paper we propose a novel integrated framework for analyzing time-series transcriptional data,
with emphasis on the burn-induced response within the context of the rat animal model. Our
analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the
inflammatory response and we further propose a putative reconstruction of the associated
transcription factor activities.

Results: Implementation of our algorithm on data obtained from an animal (rat) burn injury study
identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene
ontologies and transcription factors, verifies the inflammation-specific character of the selections
and the rationalization of the burn-induced inflammatory response. Conducting the transcription
network reconstruction and analysis, we have identified transcription factors, including AHR,
Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important
to an organism's response to burn response. These transcription factors are notable due to their
roles in pathways that play a part in the gross physiological response to burn such as changes in the
immune response and inflammation.

Conclusion: Our results indicate that our novel selection/classification algorithm has been
successful in selecting out genes with play an important role in thermal injury. Additionally, we have
demonstrated the value of an integrative approach in identifying possible points of intervention,
namely the activation of certain transcription factors that govern the organism's response.
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Background

Thermal injury is among the most severe forms of trauma
and its effects are both local and systemic. Response to
thermal injury includes cellular protection mechanisms,
inflammation, hypermetabolism, prolonged catabolism,
organ dysfunction and immuno-suppression [1]. Changes
in energy expenditure following burn injury have been
attributed to processes such as gluconeogenesis, ureagen-
esis, fatty acid synthesis and catabolism, processes relating
to the need to compensate for the increased loss of body
heat through the injured skin, as well as changes in the cir-
culating levels of plasma proteins primarily synthesized in
the liver [2]. Therefore, physical stress as a result of burn
has a significant impact on the liver, an organ that plays a
critical role in modulating immune function, inflamma-
tory processes and the acute phase response in the attempt
to restore homeostasis.

It has been hypothesized that gene expression patterns in
the liver will change with severe burns, thus reflecting the
role the liver plays in the response to burn injury. Charac-
terizing the molecular fingerprint (i.e., expression profile)
of the inflammatory response resulting from burns may
help elucidate the activated mechanisms and suggest new
therapeutic intervention. To record the transcriptional
characteristics of hypermetabolism following severe
injury, various animal models have been proposed to
quantify in vivo the appropriate gene expression response
[3-6]. Transcriptional profiling used in the context of
monitoring burn-induced inflammatory responses
[1,4,7,8] may eventually provide the detailed mechanism
behind burn injury if information can be extracted from
the reams of data generated. It is our belief that relevant
genes tend to be part of large highly correlated clusters due
to the coordinated actions of these genes and can there-
fore be isolated if one were to utilize clustering to obtain
sets of highly correlated gene and combine it with a selec-
tion step that denotes clusters as relevant based upon their
population.

Even though individual components of the overall
inflammatory response have received intense scrutiny,
deciphering the cross-talk between components is a
daunting task due to the extraordinary complexity of the
inflammatory response, thus necessitating an integrative
approach [9] that requires the combination of outside
information besides strictly gene expression levels or met-
abolic flux levels. While gene expression in inflammation
is not solely transcriptionally controlled [10] the first step
towards understanding inflammation is to evaluate possi-
ble mechanisms which give rise to expression data, the
most readily available source of cellular response.

In this paper we propose an integrated framework for ana-
lyzing time-series transcriptional data, with emphasis on
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the burn-induced response within the context of the rat
animal model. The proposed approach is composed of
three elements:

1. Novel characterization of the dynamic transcriptional
response

2. Identification of maximally informative genes

3. Elucidation and quantification of regulatory interac-
tions

Our analysis robustly identifies critical expression motifs,
indicative of the dynamic evolution of the inflammatory
response, and subsets of informative genes and their asso-
ciated metabolic pathways, thus integrating extracted
genes with known networks of interaction. We will dem-
onstrate how, based on the reduced set of informative
genes that are optimally selected, we can construct a
potential network of regulatory interactions and suggest
potential targets for further investigation and interven-
tion.

Results

Following severe trauma, the liver plays a crucial role in
mediating a host of physiological responses. These proc-
esses include an increase in energy expenditure [4], the
production of acute phase proteins [11], activation of the
complement, kinin, clotting, and fibrinolytic pathways
[12-14], the initiation of immune response to prevent
against later onset of sepsis, as well as the up-regulation of
mechanisms to prevent against oxidative damage induced
by the activation of these responses [15]. Through our
robust analyses we have identified 4 motifs which capture
many of these underlying biological mechanisms, as well
as the expected temporal responses.

To dissect the onset of inflammation, we have summa-
rized the key physiological components, as identified
through ontology searches, listed in Table 1, We have fur-
ther subdivided these components into 2 major groups:
1) those processes which fit within the global characteri-
zation of metabolism, as a means to verify our approach,
since a large body of work has been established to charac-
terize these responses; 2) other processes which we have
detected that are integral in the inflammation process, but
have not been documented in detail in the literature. We
have also subdivided the inflammation process into three
phases: 1) early (up to four hours); 2) middle (up to 8
hours); and 3) late (following 8 hours up to the 24 hour
time point).

In the early phases of inflammation, we see a majority of
those processes which can be grouped as metabolic in
nature exhibiting distinct temporal changes. For example,
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Table I: Gene Ontology Enrichment of Informative motifs

Process Name Motif | Motif 2 Motif 3 Motif 4
protein biosynthesis 0.000 0.082 0.568 1.000
ribosome biogenesis 0.000 0.314 1.000 1.000
response to unfolded protein 0.003 0.268 1.000 1.000
protein folding 0.004 0.178 1.000 1.000
peptidyl-arginine methylation, to asymmetrical-dimethyl arginine 0.015 1.000 1.000 1.000
protein-nucleus export 0.023 1.000 1.000 1.000
adenine metabolism 0.023 1.000 1.000 1.000
response to stress 0.023 1.000 1.000 1.000
pyridoxine biosynthesis 0.030 1.000 1.000 1.000
endothelial cell differentiation 0.030 1.000 1.000 1.000
hormone-mediated signaling 0.038 1.000 1.000 1.000
re-entry into mitotic cell cycle 0.045 1.000 1.000 1.000
protein amino acid prenylation 0.045 1.000 1.000 1.000
transmission of nerve impulse 0.045 1.000 1.000 1.000
negative regulation of calcium-mediated signaling 1.000 0.000 1.000 1.000
Acute phase response genes 1.000 0.000 1.000 1.000
ubiquitin-dependent protein catabolism 0.288 0.001 0.284 1.000
ureteric bud development 1.000 0.005 1.000 1.000
nucleosome assembly 1.000 0.013 0.128 1.000
protein catabolism 1.000 0.015 1.000 1.000
homophilic cell adhesion 0.149 0.017 1.000 0.143
norepinephrine biosynthesis 1.000 0.018 1.000 1.000
protein refolding 1.000 0.027 1.000 1.000
chaperone cofactor dependent protein folding 1.000 0.027 1.000 1.000
N-acetylglucosamine metabolism 1.000 0.036 1.000 1.000
thyroid hormone catabolism 1.000 0.036 1.000 1.000
cellular response to starvation 1.000 1.000 0.000 1.000
negative regulation of Ras protein signal transduction 1.000 1.000 0.000 1.000
RNA processing 1.000 1.000 0.001 1.000
cell glucose homeostasis 1.000 1.000 0.002 1.000
protein amino acid dephosphorylation 0.436 0.494 0.003 0.421
cytokinesis 1.000 1.000 0.003 1.000
nucleocytoplasmic transport 1.000 1.000 0.005 1.000
negative regulation of transcription, DNA-dependent 0.116 1.000 0.007 1.000
somitogenesis 1.000 1.000 0.015 1.000
glycogen metabolism 1.000 1.000 0.015 1.000
thioredoxin pathway 1.000 1.000 0.023 1.000
negative regulation of Wnt receptor signaling pathway 1.000 1.000 0.023

negative regulation of neuron differentiation 1.000 1.000 0.023 1.000
frizzled signaling pathway 1.000 1.000 0.030 1.000
tRNA processing 1.000 1.000 0.030 1.000
regulation of Wnt receptor signaling pathway 1.000 1.000 0.030 1.000
interleukin-2 biosynthesis 1.000 1.000 0.030 1.000
RNA-nucleus export 1.000 1.000 0.037 1.000
Golgi organization and biogenesis 1.000 1.000 0.037 1.000
regulation of transcription, DNA-dependent 0.077 0.166 0.040 1.000
grooming behavior 1.000 1.000 1.000 0.015
medium-chain fatty acid transport 1.000 1.000 1.000 0.022
embryonic placenta development 1.000 1.000 1.000 0.022
catecholamine catabolism 1.000 1.000 1.000 0.022
inflammatory response 0.494 1.000 1.000 0.028
inflammatory response 0.494 1.000 1.000 0.028
embryo implantation 1.000 1.000 1.000 0.029
synaptic vesicle endocytosis 1.000 1.000 1.000 0.029
response to acid 1.000 1.000 1.000 0.036
associative learning 1.000 1.000 1.000 0.036
nitrogen fixation 1.000 1.000 1.000 0.036
regulation of dopamine metabolism 1.000 1.000 1.000 0.036
mesoderm cell differentiation 1.000 1.000 1.000 0.036
regulation of transcription 1.000 1.000 1.000 0.038
vasculogenesis 1.000 1.000 1.000 0.043
fatty acid transport 1.000 1.000 1.000 0.043
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motif 4, which displays a peak in up-regulation within the
first 2 hours following burn injury, contains genes which
are primarily responsible for the transport of fatty acids
and triglycerides into the cell. Cluster 3, characterized by
genes involved in FA oxidation clearly demonstrates an
early up-regulation followed by significant down-regula-
tion. Cluster 3 is also actively involved in fatty acid trans-
port. Furthermore, the CCAAT/Enhancer Binding Protein
a known transcription factor for gluconeogenesis [16] is a
key regulator of cluster 4. These coupled processes of fatty
acid transport and breakdown have been shown to be acti-
vated quite early in the inflammatory response, and it has
been hypothesized that they allow the liver to build up
energy stores in the form of ATP for the later production
of acute phase proteins [4,17]. One final ontology, related
to cellular energetics and the derivation of energy stores,
is glycogen metabolism, is also present in motif 3. Taken
together, one may conclude that the utilization of fatty
acids, and other energy sources, happens very early on fol-
lowing thermal injury, a point which is validated through
biochemical analysis of free fatty acid levels in burn injury
in vivo models [4].

Within the initial temporal phases of inflammation, our
approach has identified biological processes above and
beyond those categorized as cellular energetics. For exam-
ple, we have identified ontologies involved in catecho-
lamine metabolism and inflammation. Endogenous
catecholamines are primary mediators of the hypermeta-
bolic response to burn [18,19]. Shortly after severe burn,
plasma catecholamine levels have been observed to
increase significantly. Consistent with this observation,
cluster 4 is enriched in catecholamine metabolism genes.
The inflammatory process within this time period is
defined in large part by the initiation of the complement
and kinin and cascade systems, present in motif 4. Basi-
cally, two genes, murinoglobulin 1 homolog (alpha 1-
inhibitor 3) and complement component 5 receptor 1
(C5AR1) regulate these key inflammatory/acute phase
responses in an attempt to dampen the overall inflamma-
tory response so as to prevent it from progressing to a
chronic state [20,21]. During the middle temporal phase
we have identified genes involved in the acute phase
response, ubiquitin dependent protein catabolism, and
interleukin 2 (Il-2) synthesis. Cluster 2 is enriched with
genes associated with the acute phase response and also
exhibits the most significant enrichment in the known
inflammatory Transcription Factors (TF) NF-kB and
HNF1. Ubiquitin catabolism is a major mechanism of
muscle wasting characteristic of hypermetabolic states
and systemic inflammation [22]. Up-regulation of associ-
ated genes initiated in this middle temporal phase and is
pronounced at latter stages, as indicated by the ontology
enrichment of Cluster 2. Interleukin 2 and its receptor
have also been discovered to mediate the acute phase
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response and dysfunction within the liver [23]. Known to
regulate the production and activity of many inflamma-
tory mediators and cells, Interferon Regulatory Factors
(IRF) [24] were identified as a key transcription factor
family of Cluster 3 which is primarily responsible for
interleukin-2 biosynthesis.

In the final temporal portion of the acute phase response
to thermal injury, we have identified processes which can
be grouped into two major components which again, are
unique to our analysis procedure: 1) RAS-RAC signaling
cascade (motif 3); 2) response to stress (motif 1). Within
motif 3, which has a secondary peak at 24 hours, we have
identified the gene for protein phosphatase 2a, catalytic
subunit, beta (Ppp2cb) which is a negative regulator of
RAS-RAC signaling, which in turn will down-regulated
RAS induced activation of NF-kB pathways [25], and will
provide a late-stage mechanism and like the effect of
alpha 1-inhibitor 3 and C5AR1 prevent a transition to a
chronic inflammatory state. Late stage stress response is
also a beneficial process and is aimed at attenuating the
stress response. For example we have identified glycogen
synthase kinase 3 beta (GSK-3 beta) within motif 1 which
exhibits a 24 hour peak. GSK-3 beta is known to be a key
element in the switch from acute to chronic/systemic
inflammatory response [26]. Another interesting finding
in this late stage inflammatory response is the up-regula-
tion of two pathways, involved in generating large pools
of thioredoxin and N-acetylglucosamine. In [27] the lev-
els of thioredoxin were measured in severely burned
patients, and noticeable increases were observed, interest-
ingly characterized by two peaks of increase. Cluster 2 is
enriched in genes involved in this particular pathway. It
was also recently observed [28] that the acute-phase
response is accompanied by increased liver pools of N-
acetylglucosamine at about 12 h post inflammation. Con-
sistent with this observation, Cluster 1 is enriched in
genes of that ontology. Interestingly glucosamine is cur-
rently considered as a dietary supplement for wound heal-
ing [29].

In addition to the genes which are active in the aforemen-
tioned responses we have also assembled the set of tran-
scription factors for all the genes involved in the four
maximally informative motifs by making use of Trafac
[30], which runs the Genomatix Matlnspector analysis
suite in the background. We ran two sets of analysis one
upon the transcription factors which were enriched at a
statistically significant level (Table 2), and those that
showed large deviations after the Network Component
Analysis (NCA) operation.

Of special interest are hypoxia inducible factor, p53
tumor suppressor (P53), and Cas-interacting zinc finger
protein. Severe burns typically cause a hypovolemic shock
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Table 2: Transcription factor enrichment of informative motifs

Transcription Factor Motif | Motif 2 Motif 3 Motif 4
AHR-arnt heterodimers and AHR-related factors 0.00 0.37 0.45 0.36
E-box binding factor without transcript. activation 0.03 0.74 0.78 0.78
Brn POU domain factors 0.03 0.19 0.19 0.23
CAS interating zinc finger protein 0.03 0.22 0.28 0.15
MYOblast Determining factor 0.04 0.13 0.23 0.16
GC-Box factors_SP1/GC 0.05 0.15 0.24 0.12
Cell cycle regulators: Cell cycle dependent element 0.05 0.64 0.69 0.70
Promoter CCAAT binding factors 0.08 0.20 0.16 0.31
RBP) — kappa 0.09 0.27 0.28 0.17
C-myb, cellular transcriptional activator 0.28 0.00 0.28 0.15
CP2-erythrocyte Factor related to drosophila EIfl 0.24 0.00 0.26 0.36
Homeodomain factor aberrantly expressed in myeloid leukemia 0.23 0.02 0.23 0.23
OCTI binding factor (POU-specific domain) 0.25 0.06 0.25 0.14
AP4 and Related proteins 0.11 0.09 0.18 0.23
MAF and API related factors 0.27 0.09 0.27 0.23
NKX/DLX — homeodomain sites 0.96 0.74 0.00 0.20
Interferon Regulatory Factors 0.18 0.91 0.00 0.18
CLOX and CLOX homology (CDP) factors 0.25 0.73 0.00 0.52
p53 tumor suppr.-neg. regulat. of the tumor suppr. Rb 0.12 0.21 0.00 0.28
Basic and erythroid Krueppel like factors 0.17 0.24 0.01 0.17
Pancreatic and intestinal homeodomain transcr. factor 0.23 0.20 0.02 0.24
Microphthalmia transcription factor 0.37 0.24 0.02 0.37
Human and murine ETSI factors 0.95 0.86 0.07 0.36
Regulator of B-Cell IgH transcription 0.28 0.22 0.28 0.03
Hypoxia inducible factor, bHLH/PAS protein family 0.37 0.36 0.43 0.04
E-box related factors 0.37 0.36 0.37 0.07
ZF5 POZ domain zinc finger 0.31 0.11 0.60 0.08
PAX-2 binding sites 0.37 0.24 0.22 0.08
CCAAT/Enhancer Binding Protein 0.16 0.19 0.23 0.09
E2F-myc activator/cell cycle regulator 0.02 0.04 0.27 0.20
Vertebrate caudal related homeodomain protein 0.04 0.05 0.23 0.23
FAST-1 SMAD interacting proteins 0.08 0.05 0.13 0.12
AMV-viral myb oncogene 0.10 0.04 0.11 0.20
Camp-Responsive Element Binding proteins 0.08 0.17 0.08 0.12
Octamer binding protein 1.00 0.00 0.03 0.96
AARE binding factors 0.31 0.04 0.08 0.37
Nuclear Factor Kappa B/c-rel 0.22 0.05 0.08 0.22
Zinc binding protein factor 0.20 0.0l 0.21 0.09
Hepatic Nuclear Factor | 0.15 0.04 0.23 0.07
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response during the first 24 hours; therefore, it is plausible
that there was reduced oxygen delivery to the liver result-
ing in hypoxia. One way that cells respond to hypoxia is
through increased activation of the hypoxia inducible fac-
tor (HIF), which is thought to enhance cellular adaptation
to low oxygen. Recent evidence verified the stimulation of
HIF by well known inflammatory signals, such as Tumor
Necrosis Factor (TNF) and Interleukin 1 (IL-1), which
results in the transcription of several genes leading to pro-
teins that increase blood flow [31]. Cluster 3 is enriched
in hypoxia-related genes and, furthermore, HIF is a lead-
ing TF for the genes within that cluster based on the corre-
sponding TF-enrichment analysis. p53 has been reported
elevated during inflammation in several studies. Specifi-
cally, p53 represses MAPK as well as RAS signaling path-
ways [32], both of which play a major role in signaling of
the inflammatory response [33]. Thus, p53 may be an
important factor for the down-regulation of the acute
inflammatory response. Aside from hypoxia as an out-
come of inflammation, it has been shown [34] that ther-
mal injury exhibits an interplay between liver cell
apoptosis and proliferation while attempting to establish
a trend towards homeostasis. Among the regulators asso-
ciated with cluster 1 we identified Cas-interacting zinc fin-
ger protein (CIZ) which is a known regulator of the bone
morphogenetic protein (BMP) signal regulating apoptosis
[35]. Furthermore, Aryl Hydrocarbon Receptor (AhR) is a
ligand-activated transcription factor known to influence
apoptosis, conceivably by regulating the expression of
genes involved in apoptotic signaling [36].

Taken together, these three parallel approaches (motif
identification, ontology enrichment, transcription factor
quantification) allow us to identify multiple layers of the
inflammatory response process to thermal injury. It
should be noted that all three approaches are needed in
combination, being that the control elements we have
identified as transcription factors are not contained within
the four motifs. This phenomenon may be explained by
one or both of the following. First, the motif identification
algorithm itself has been established to identify motifs
that contain a large quantity of genes, and the regulatory
elements we have found are contained in motifs with
lower quantities of genes. Second, these regulatory ele-
ments exhibit different temporal profiles then those of the
four motifs, since they work on a different time scale.
Thus, these regulatory elements, which exist higher in the
signaling cascade, may be immediately up-regulated in
the inflammatory process, and demonstrate their delayed
effect in the up-regulation and down-regulation of the
large clusters of genes present in each of the motifs.

Discussion
The symbolic transformation of the gene expression pro-
files, followed by the proposed hashing, results in a fine-
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grained clustering of the expression profiles, as shown in
the top part of Figure 1. Each peak indicates the number
of transformed expression profiles that hash to a particu-
lar motif value. All such expression profiles will have iden-
tical symbolic representations and as a result, very similar
raw expression profiles. The z-score transformation elimi-
nates differences due to magnitude, thus the intensity of
the signal is not taken explicitly into account. However, at
this point we will assume that if two genes have similar
normalized profiles they should both be considered for
further analysis regardless of the differences in magnitude.
With each peak there is an associated transformed average
profile and typical examples are depicted in the lower part
of Figure 1. Thus, the combination of the symbolic repre-
sentation and hashing allowed the identification of a large
number of potential clusters of genes whose transformed
expression profiles are identical. We term those "expres-
sion motifs." It is important to realize that similarity is
based now on the fact that similar motifs hash to the same
value and not to some point-wise distance metric (Eucli-
dean or other). As seen in Figure 1, each of the motifs con-
tains expression profiles which are highly correlated and
tightly grouped; pointing to the overall quality of the hash
based clustering in terms of intra-cluster variance, sup-
porting our use of a hashing based methodology in creat-
ing the initial clusters.

The fine-grained clustering provides a potential, albeit
enormous, number of tentative clusters. However, our
assumption is that the underlying dynamic response of
the transcriptional experiment can be expressed in terms
of a smaller number of expression "motifs". When per-
forming our selection step, we selected 4 motifs contain-
ing a total of 281 gene probes. The transcriptional state
which corresponds to the most informative genes also
illustrates an interesting dynamic insomuch that a two
wave burn response as observed by [37] is evident, as
shown in Figure 2. What we can see is that at hours 1 and
24, time points previously identified as critical points in
the evolution of the burn response, a distinct breakpoint
between the low and high expression levels for the
informative genes is evident; something which is not seen
at the time points 4 and 8 hours. This is in contrast to a
transcriptional state which includes all of the genes. By
including all of the genes the dynamics are not visible,
especially the two events which have been previously
observed. Given the clear evidence of two critical events in
our informative set of genes, we believe that it is reasona-
ble to state that we have selected genes which are playing
a critical role in the short-term evolution (i.e. the first 24
hours) of the burn response.

These probes were selected due to their ability to exhibit
the greatest change within their associated transcription
state. In Figure 3a we can see that the addition of a single
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peak, the Kolmogorov-Smirnov (KS) statistic has an inter-
mediate value, and as more peaks are added, it reaches a
maximum at four, after which it decreases. The presence of
this maximum allows us to assert that our algorithm has
managed to extract a set of genes in which the changes in
an organism's response is most evident.

Randomized Testing

In both of the randomized testing cases Figure 3b, it is evi-
dent that neither the case where motifs were randomly
selected nor the case in which genes were randomly
selected did the KS Statistic show as great a deviation as
found under the greedy selection heuristic. While this
does not preclude the existence of a better globally opti-
mal solution, it does however suggest that our current
heuristic is a reasonable approach to finding a set of opti-
mal of motifs that reflects the underlying dynamics of the
system.

Identification of significant processes and regulators

Figure 4 shows the localization of the ontology and the
transcription factors. What can be clearly seen here is the
diagonally dominant aspect of both the gene ontologies
as well as the transcription factors. This supports the ini-
tial contention by [38], which states that correlated genes
exhibit similar functions and regulatory mechanisms. It
also verifies the applicability for the utilization of hashing
to conduct the initial clustering. More importantly, we
believe that such a result validates the shape based
approach implemented since significant processes and
regulators have been selected by considering shape alone.

By selecting ontologies and transcription factors that are
enriched with (P < .05), we have identified hypothetical
processes and regulators behind thermally induced
inflammation. Genes involved in the acute phase
response, inflammation, fatty acid metabolism, choles-
terol import (Table 1) were found to be significantly
enriched within our cluster, all with a p-value less than
.05, and the acute phase response showing a p-value on
the order of 1 x 10-°. The significance of these ontologies
is that in addition to being statistically significant in our
selected genes, they are also known to be significant proc-
esses that occur during severe thermal injury. From this
ontology result, we believe that our algorithm has shown
the ability to extract genes which are involved with the
overall biological response to burn.

Given the set of statistically enriched transcription factors
given in Table 2, the relative dynamics of the transcription
factors predicted via NCA for the genes associated with
these transcription factors are given in Figure 5. From
these plots, it is evident that the majority of the transcrip-
tion factors show activity within a narrow range of expres-
sion levels, while a relatively few transcription factors

http://www.biomedcentral.com/1471-2105/8/10

show expression levels which differ greatly over the exper-
imental time course. It is our hypothesis that these highly
active transcription factors represent important parts of
the signaling process. The identification of transcription
factors allows us to precisely target unwanted responses
through techniques such as siRNA without disrupting the
overall signaling cascade.

Identification of hypothetical primary regulators

What we can extract from Figure 5, is a set of transcription
factors which can be hypothesized to be important in the
response of each cluster of genes to the initial burn injury.
The transcription factors that NCA identified as highly
active are the aryl hydrocarbon receptors, octamer binding
units, erythroid kruppel like factors, and cell cycle homol-
ogy elements (Table 2). The presence of the octamer bind-
ing units can be rationalized due to the generalized stress
response[39] of the organism leading to the initiation of
the immune response normally observed during
burn[40], while the presence of the aryl hydrocarbon
receptor and cell cycle homology elements can be ration-
alized by the parts that they play in the cell cycle and cell
regeneration[41]. Finally the presence of the erythroid
kruppel factors coupled with its role as a pro-inflamma-
tory initiator[42] suggests a possible role for it in the
inflammatory response associated with burn injury.

Analysis of gene interaction networks

Metabolic networks are known to exhibit small-word
characteristics [43] with average path length significantly
smaller than the corresponding length of a random net-
work. The small word properties in addition to the exist-
ence of hubs give gene interaction networks some of their
key distinct characteristics, namely: (i) local perturbations
are quickly propagate across the entire network as nodes
interact with each other via the hub proteins; (ii) the exist-
ence of hubs proteins is advantageous because it identifies
key controls whose manipulation can have significant
effects such as controlling the onset of a detrimental proc-
ess and thus identify major points of intervention; and
(iii) hubs make these networks prone to quick deteriora-
tion should one of the key controls be attacked [44].
Therefore, hubs proteins play a critical, important, role
thus requiring additional attention. Through our analysis
we have determined three major hubs of activity, within
our protein interaction network, those being interleukin1-
beta (Il-1B), prolactin (PRL), and mitogen activated pro-
tein kinase 14 (MAPK14; p38 MAPK). II-1B has been
reported to be a dominant cytokine that acts as a central
regulator of the acute inflammatory response, basically
through the production of acute phase proteins [45]. This
is evident in the large cascade of genes influenced through
the activities of 1I-1B (Figure 6). In addition, one specific
cascade which is initiated through the activity of 1I-1B, is
that regulated by PRL, another of the dominant nodes we
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Typical profiles of Transcription Factor Activity Obtained from NCA. The transcription factors in bold are hypothesized as
being more important based upon the scale of their activity. The cutoff was calculated by taking the transcription factor that
showed the greatest difference over the experimental time period. Other transcription factors were included if their maximum
difference was within the bootstrapped confidence intervals [85] of the originally selected profile.

identified [46]. While II-1B has the outcome of up-regu-
lating a variety of genes needed in mediating the acute
phase response, PRL has the inverse effect, in that it aides
in the acute phase response by opposing the immunosup-
pressive effects of glucocorticoids and other inflammatory
mediators to maintain steady-state homeostasis [47,48].
The third hub we identified, p38MAPK, has also been
established as a prominent gene involved in the acute
phase response [49-52]. The p38 signaling cascade exhib-
its its effects following thermal injury, generally through
the up-regulation of proinflammatory cytokines, such as
the aforementioned I1-1B [53]. Thus, not only are these
hubs capable of regulating a variety of down-stream
genes, they themselves exhibit a high-degree of cross-talk,
and regulate each other within the overall context of the
protein interaction network. In addition, identification of
these hubs provides potential therapeutic targets, to miti-
gate the inflammatory response observed following ther-
mal injury.

Comparisons with other clustering algorithms
Finally, we comparatively evaluated several clustering
algorithms, all of which are publicly available, such as

STEM (Short Time-series Expression Miner) [54], hierar-
chical clustering [55] and k-means based on the Matlab
Bioinformatics Toolbox to determine the relative enrich-
ment of ontologies and transcription factors [56,57]. With
the exception of STEM which has a built-in selection crite-
rion based on the frequency of an expression pattern, the
other methods do not perform a selection but rather clus-
ter all responses. The results of Table 3 demonstrate the
advantages of the proposed analysis in terms of the ability
to enrich both ontologies and TFs in relevant processes
and transcription factors. It is important to realize that
even though STEM appears to enrich the clusters more
than our motifs method, our approach takes into account
the dynamic responses that actually affect the experiment
therefore it achieves significantly superior enrichment in
terms of inflammation-specific ontologies and TFs. Hence
the comparative results provide a strong justification for
our initial hypothesis that relevance in dynamics results in
relevance of extracted information.

The motifs, key regulatory elements, and ontologies we
have identified may serve as a valuable basis for the iden-
tification of therapeutic options to detect as well as man-
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age the onset of acute inflammation. Given the progress
today in the areas of metabolic engineering and gene
silencing, the therapeutic utilization of these genes can
occur within two broad categories: 1) metabolically sup-
plementing the patient suffering from acute inflamma-
tion, following burn injury in order to maintain the
energetic levels of the liver required to produce acute
phase proteins; 2) utilizing silencing techniques in order
to control key regulatory elements we have identified, in
order to mitigate the effects of acute inflammatory
response that arises.

Conclusion

We have presented a novel approach combining a fine-
grained clustering and informative expression motifs
identification. The key novelty of our methodology is the
introduction of the concept of transcriptional state which
allows the quantification of the deviations from a control
state. Hence, we are able to measure the ability of expres-
sion motifs to capture deviations from the control state
and, therefore, identify relevant components of the tran-
scriptional response. The method was applied to the anal-
ysis of burn-induced inflammation based on a rat animal
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Table 3: Comparative Assessment with Other Clustering
Methods

k-means HC STEM  Motifs
% enriched GO 0.11 0.13 035 030
% inflammation-specific enriched GO 0.40 040 0.50 0.79
% enriched TFs 0.08 0.13 028 0.17

% inflammation-specific enriched TFs 0.25 028 0.28 0.57

model. Our approach for informative expression profiles
selection has identified motifs which characterize the
inflammatory response as observed in liver during the first
24 hours after thermal injury. Significant processes identi-
fied, and associated with informative genes, involved in
glycogen metabolism, catecholamine metabolism, ubiq-
uitin dependent protein catabolism, as well as genes
involved in the production of thioredoxin and N-
acetylglucosamine. In addition, we identify critical regula-
tors controlling the expression of the informative genes
and we quantified the reconstructed activities of the corre-
sponding transcription factors. We have demonstrated
that our proposed methodology can significantly reduced
the number of relevant probes while maintaining a high
level of specificity in the processes that are identified.

Methods

Experimental Data

Experimental DNA microarray data is available at the
Gene Expression Omnibus (GEO) database under the
accession number GSE802. In this previously published
study, male Sprague-Dawley rats were subjected to a cuta-
neous 3rd degree burn injury consisting of a full skin
thickness scald burn of the dorsum, calculated to be ~20%
of the rat's total body surface area [4]. Liver samples were
obtained at 5 time points (0, 1, 4, 8, and 24 h post burn).
RNA extracted from the extracted livers was isolated and
subsequently hybridized to a Affymetrix U34A GeneChip
that had 8,799 probes represented on each chip. The con-
trol for this experiment is the measurement labeled "Time
0" which was obtained prior to the thermal injury. It has
been previously shown that time had no significant effect
upon the response of rats to the sham treatment [8].

Gene Expression Analysis

A comprehensive review of computational methods for
the analysis of time series expression data was presented
in [58,59]. These methods can be classified in two major
families. Methods that measure the "distance" between
members of different groups and "model-based" methods
which assume the existence of an underlying model that
describes the temporal dependencies in the data [59]. In
[60] a novel algorithm extending the concept of time cor-
relation to account also for time lagged and inverted rela-
tions among expressed genes was presented. In [61] the
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expression dynamics is modeled via autoregressive equa-
tions and agglomerative clustering procedures are used to
search for the most probable set of clusters in the available
data. The approach explores Bayesian concepts to account
for the possible temporal dependencies of the expression
data. In [62] a pattern recognition-based approach is used
to capture similarity by finding salient changes in time-
varying expression patterns of genes. It was proposed that
such changes can give clues about important events such
as regulation, cell cycle or disease onset. By and large, tem-
poral expression profiling analysis is driven by the con-
cept of similarity and focuses on aggregating expression
profiles according to some metric quantifying the relative
topologically similarity, correlation, or anti-correlation,
of the features [55]. A general concern regarding the valid-
ity of existing algorithms stems from the practical obser-
vation that classification algorithms can lead to dubious
results which are often method dependent [63]. Temporal
transcription profiling is primarily aimed at identifying
characteristics shared by genes exhibiting common
dynamic responses [60,64]. For deciphering cell states and
disease progression, only recently have researchers begun
looking at the dynamics of gene ensembles and converg-
ing trajectories as high-dimensional attractors [37,65-67].
In order to thoroughly assess the progression of a disease
and reveal the molecular events driving transcription
changes representative of an organisms' response to exter-
nal stimuli (i.e. burn), it is important to consider the
ensemble of changes affecting the state of the organism as
opposed to simply identifying components with similar
temporal response. It does not simply suffice to consider
the evolution of a particular gene expression over time,
but rather we should consider the evolution of the entire
state of the system over time. Current clustering algo-
rithms aim at aggregating indiscriminately all available
responses, whether relevant or not, instead of selecting
among the available profiles, those that appear to be max-
imally affected by the specific perturbation. As a result,
expression analysis in the field of burn induced inflam-
mation has been primarily either descriptive, i.e. assem-
bling all possible responses, or hypothesis-driven, i.e.
specific targets are analyzed and verified [1,7,17]. We will
propose a novel approach which combines the clustering
of expression motifs and the selection of relevant
responses in order to improve the information content of
transcription analysis.

By combining classification and selection into one inte-
grated step, we implicitly suggest that there is sufficient
information about the relevance of a gene based solely
upon its shape. While undoubtedly there is important
information about a gene's relevance based upon the
magnitude of its expression profile, it is not being explic-
itly considered in our algorithm. This was done in order
to assess the informativeness of shape independent of
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other factors. This however does not preclude pre-process-
ing of the input or post-processing of the results to take
magnitude into account.

Identification of major expression patterns

The expression data is given as an NxT matrix, E, where N
is the number of probes and T is the vector of time points
at which mRNA levels has been measured. For our analy-
sis, we wish to characterize the entire expression wave-
form for each gene in the array. Therefore, we would like
to assign to each waveform a characteristic attribute so
that similarly shaped waveforms share similar attribute
values. In many respects, this is reminiscent of the classi-
cal problem of analyzing multi-dimensional time series of
which numerous approaches have been proposed in the
literature and an extensive review is presented in [68]. We
have adopted the basic formalism of Symbolic Aggregate
approXimation of the time series discussed in [69] albeit
with some modifications. SAX is based on the premise of
transforming a time series into a corresponding sequence
of symbols. Each series is first normalized as the z-score
given as

W N;t=1,.,T (1)

An equiprobable discretization technique is then applied
where the breakpoints are defined such that the area
defined by the boundaries of the breakpoint and the
Gaussian curves are equal. Breakpoints that divide the
Gaussian distribution into regions of equal area are
obtained through statistical tables which give the values of
the cumulative distribution function (CDF) of the N(0,1)
distribution. The CDF values can also be calculated via a
standard formula by solving for b:

i 1 b
—=—|1+ef| —= ||; 2
k-1 2{ d{Jﬁ)} (2)
i=1,..,k k = number of breakpoints; b = breakpoint value

This method of discretization was selected because empir-
ical evidence suggests that the z-score normalized sub-pat-
terns should have a highly Gaussian distribution [69],
thereby equally distributing a set of randomly generated
signals throughout the hash space. Coefficients below the
smallest breakpoint are "mapped" to the first symbol of a
chosen alphabet (for example a). Other points are
"mapped" accordingly within their respective intervals. A
more extensive discussion and visualization of this proc-
ess and can be found in [69]. The elements of the sym-
bolic transformation are exemplified in Figure 7. This
symbolic representation makes it possible to further sim-
plify the time series in order to uniquely characterize the

http://www.biomedcentral.com/1471-2105/8/10

overall dynamic response of each transcriptional profile
as a single number through hashing [70]. After the alpha-
bet has been generated, it is condensed into a single hash
value using the function proposed by [71]:

hash(c,w,a)=1+i[ord(cj)—l]xaj_1 (3)
j=1

where a is the size of the alphabet, w is length of the word,
and c is the "letter" sequence to which the expression pro-
file is assigned. This is essentially the conversion of a base
a number into base 10 with a change of making the small-
est value 1 instead of 0. The only difference between our
hashing method and the originally proposed method is
the change in the most significant bit (MSB). By having
the MSB as the first letter in our word, rather than having
the most significant bit as the last letter in our word, we
weigh the differences of the sequences at the beginning
heavier than that of the end. Consistent with this is the
observation that the signals that were correlated at the
beginning of the time points were more closely related
than signals that were more correlated at the end of the
time series. In our analysis we experimented with various
combinations of the two major parameters required, w
and a. The results presented are based on an alphabet, a,
size of 4, and the word size, w, of 5. Given that we are
attempting to find non-random expression profiles within
a set of gene expression profiles, the distribution of hash
values must be non-random, i.e. non-exponential. There-
fore for the selection of alpha, we would generate all of the
hash values, and then determine the distribution of the
populations of hash values and then evaluate how well
these distributions can be fitted by an exponential distri-
bution, and select the alpha which gives the worst fit
(most non-exponential) which in our case is at o = 4.

What has been achieved at this point is the assignment of
a unique identifier to all the transcriptional profiles.
Therefore, genes with similar normalized expression pro-
files "hash" to similar motif values. As a result, we can
generate a distribution of such motif values and identify
(i) dominant, i.e., overpopulated motifs, and (ii) genes
sharing similar motif values, i.e., sharing similar expres-
sion profiles. Hence we have achieved a very fine-grained
"clustering" of the data where the number of potential
clusters is dependent upon the definition of the hashing
function.

Characterization the transcriptional state of the system
and extraction of the most informative expression
patterns

Having assigned the expression profiles to distinct motifs,
the next task is to identify the motifs that are maximally
affected by the experimental perturbation. We first define
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An example of a HOT-SAX transformation of a time series (w =

2,0 = 3).

a concept we term the "transcriptional state", which is the
statistical distribution of the expression levels at a specific
time point. The motivation for using this concept is that
the genes which react to a stimulus will be either strongly
up or down regulated. Therefore, there should be a signif-
icant change in the distribution of expression levels in a
set of informative genes compared to the distribution of
expression levels of uninformative genes. Had we consid-
ered the totality of the transcriptional information, it
would have been rather clear that the expression intensi-
ties of all the probes, averaged between replicate arrays,
and plotted over time would have been practically the
same for all time points, as [4] point out for the system
under study (we specifically refer to Figure 1 in [4]).
Therefore, even though gene expression measurements do
contain information, this is confined to only a sub-set of
genes which we have to identify in a rigorous and system-
atic way.

To quantify the hypothesis that informative subsets of
genes should give rise to distribution of expression values

maximally affected by the experiment, the Kolmogorov-
Smirnov (K-S) test which is a standard test for evaluating
whether or not two distributions are different, is
employed. The K-S test is applicable to un-binned, arbi-
trary and unknown distributions that are functions of a
single independent variable (that is, each data point can
be associated with a single number). The list of data
points (the ensemble of the expression values of all the
genes at each time point) can be easily converted to an
unbiased estimator of the cumulative distribution func-
tion of the expression levels from which the data was
drawn. The fundamental concept is that truly informative
subsets of genes are the ones that have the ability to cap-
ture significant deviations from the base distribution.

The K-S test was selected over other statistical tests which
are used in order to differentiate between statistical distri-
butions due mainly to its ability to work on arbitrary dis-
tribution. Tests such as the Lilliefors test may improve
upon the discriminant nature of the K-S test, but rely upon
the use of known distributions. By utilizing the KS statis-
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tic, we make no assumption as to the underlying distribu-
tion of our data, and can therefore utilize a completely
data dependent metric.

The K-S test is a very simple yet effective way of comparing
two distributions and has found many widespread appli-
cations [72]. The K-S test quantifies a particularly simple
measure: it is defined as the maximum absolute difference
between two cumulative distribution functions. In our
setting, and for each time point, we estimate a cuamulative
distribution function (CDF) of the expression values by
appropriate binning of the expression values. The base
distribution is the corresponding CDF prior to the injury.
The K-S statistic is defined as:

D= ma |F(Y;)~ F(Y;(0)) (4)

where F(Y;(0)) is the cumulative distribution of the
expression values at time t = 0. This statistic allows a met-
ric that defines the magnitude of the difference between
two distributions to be computed. Since the data is pre-
sented as a time series, at each time point a value for the
Kolmogorov statistic is obtained. To condense the N val-
ues into a single numeric score, we utilize the infinity
norm. Therefore, the overall metric then becomes

D = max max| FIY; ()] - FIY, 0)] (5)

The application of the K-S test over time allows us to
quantify just how much the CDF of a particular sub-set of
genes deviates from the corresponding CDF at time t = 0
(control). The most sensitive sub-set exhibits the largest
deviations from the control. Once the subset is specified
then it can be characterized based on its corresponding D
value. We have currently implemented a simple greedy
algorithm that selects peaks based on their population.
The basic steps of the algorithm are as follows:

(i) k = 0, S(k) = @, D(k) = -0 max = -
(i) k=k+1

(iii) h*, arg max N(h), N(h) = number of genes with
corresponding hash value h

(iv) G(k) = {g;: hash(g;) = h*}, the subset of genes that
hash to h

(v) Evaluate F(Y(1)); t =0,...T; g € X
(vi) Evaluate D(k) = max Inax‘ FIY, ()] - FIY,, (0)]\
t gexT ! !

(vii) If D(k) > max
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(viii) Max = D(k); F=k;

(ix) Go to (ii) until all peaks have been added
(x) Fora=1toF

(xi) Select X = S(a - 1)uG(a)

The iteration count k corresponds to the number of peaks
that are incorporated at each step. S(k) is the set of hash
values that have been considered up to iteration k. N(h) is
the number of genes that have been assigned to a particu-
lar hash value h, h* is the motif values that is most popu-
lated at each iteration. G(k) is the subset of genes, g; that
have hashed to h, while S is the cumulative set of genes
included at each iteration. D(k) is the K-S statistic evalu-
ated at iteration k and is calculated using the set S of
genes. Once a peak and its corresponding genes, has been
included then the corresponding hash value is eliminated
so that it is not considered again in the future. The search
is performed upon motifs which are comprised up of
genes with similar expression profiles, as opposed to indi-
vidual genes. The peaks (along with the corresponding
genes) are added provided that a clear deviation from the
control state is observed.

The two elements just described (identification of major
expression patterns and characterization of the transcrip-
tional state) define the elements of a novel fine-grained
selection/clustering algorithm which permits the identifi-
cation of groups of genes whose expression motifs are
maximally affecting the underlying dynamic of the tran-
scriptional experiment as defined by the CDF of the corre-
sponding expression patterns of the selected genes.

Randomized Testing

To validate the fact that the proposed algorithm, espe-
cially the use of the KS statistic is selecting meaningful
dynamics, it was important to evaluate the behavior of the
KS statistic over randomly selected motifs. To prove that
the statistic was not driven primarily by the number of
genes selected, motifs were randomly selected until the set
of genes was the same as the number of informative genes,
after which the KS Statistic would be evaluated. Addition-
ally to verify that the selection of motifs is a reasonable
approach, we then selected random genes corresponding
to the same number of informative genes and evaluate the
KS statistic. A positive result in both cases would show a
maximum KS statistic below that the informative result.

Functional Characterization of Informative Motifs

To validate the biological foundations for the results, we
utilized ontology enrichment analysis. Given the fact that
our algorithm is performing a selection and grouping of
informative genes, statistically over-represented ontolo-
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gies ought to provide a list of important underlying phe-
nomenon which is part of the mechanism behind the
organism's response to burn. This is done in order to com-
plement the results obtained from mining the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.
Given the incomplete identification of pathways, we felt
than an overall summary of important processes would be
helpful in providing a better view as to the necessary com-
pensatory mechanisms.

The gene ontology formulism which we have selected is
based upon the hypergeometric distribution [73]. The
hypergeometric distribution is based upon the binomial
distribution and calculate the probability that a given
number of ontologies will localized to a given cluster
given the total number of times the ontology is present
within the cluster, the number of times an ontology is
present within the entire dataset, the number of genes in
the cluster of interest, and the total number of genes. For
ontologies in which the expected number of occurrences
was less than 5, we used the 1-tailed Fisher test as stated
by[73]. The equation for the hypergeometric distribution
is given in Equation 6, and the equation for the Fisher test
is given in Equation 7.

kY m-—k
po _g i r:]—i ; (6)
%)

n = number of times the ontology appears in a given clus-
ter

i = number of genes in a given cluster
N = total number of genes

m = number of times the ontology appears in the dataset

Y RIRIC!IC!

P=3. (7)

=1 N!C!(ﬂlz —C)!n21 !1122!

R, = Number total amount of ontologies present
R, = Number of the ontology of Interest

C, = Number of Genes in the Raw Dataset

C, = Number of Genes in the Cluster
N=R,+R,=C+C,

n,; = Number of genes in the cluster with the ontology

http://www.biomedcentral.com/1471-2105/8/10

n,, = Number of genes in the cluster
1n,, = Number of genes in the raw data with the ontology

n,, = Number of genes in the raw data without the ontol-
ogy

After the probability of each ontology present is calcu-
lated, we then take the ontologies which are most statisti-
cally significant (p < .05) and perform further analysis
upon these ontologies in order to identify significant
processes which take place. A similar analysis was con-
ducted for transcription factors in order to determine
whether or not transcription factors were preferentially
localized to a specific cluster. The initial list of transcrip-
tion factors were extracted via trafac [30] with a promoter
region of 200 base pairs upstream of the start codon. We
selected 200 base pairs upstream for our transcription fac-
tor analysis given the results from [74], that suggested that
the region of maximum promoter sequence homology
between rats and mice was at 200 base pairs or less
upstream of the start codon.

In order to visualize the distribution of ontologies and
transcription factors, we have constructed an image where
significant ontologies are coded in green and ontologies
which are not statistically significant are coded in black.
As a post processing step, we sort the matrix in the same
fashion that a radix sort works, i.e. first sorting by the last
column, then iterative moving to the next to last column,
until the first column is reached[70]. This will then
arrange our ontologies in such a manner where the signif-
icant ontologies for each cluster will be grouped together.
Therefore, if a significant number of ontologies are local-
ized to each cluster, then we should obtain a diagonally
dominant plot.

Building Gene Interaction Networks

Genes belonging to informative motifs were subsequently
fed into Pathway Assist in order to assess their functional
relations. Pathway Assist [75] is a software application
developed for navigation and analysis of biological path-
ways, gene regulation networks, and protein interaction
maps. It comes with the built-in natural language process-
ing module MedScan and a comprehensive database
describing more than 100,000 events of regulation, inter-
action and modification between proteins, cell processes,
and small molecules. Pathway Assist mines papers
indexed on PubMed for gene names, and genes that have
been mentioned in the same paper are assumed to be
related and therefore a connection can be drawn between
the two genes. As a result, a plausible network of interac-
tions is created. Protein interaction networks, for each of
the 6 informative clusters, were built using Pathway Assist
and further analyzed using the basic functionalities of
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Cytoscape. The interactions were established so that com-
plete paths were established between all genes. The net-
works of interactions are highly complex and visual
inspection is uninformative. However, further analysis of
the interaction maps reveals some important properties.
The inherent structure of the graphs was determined by
evaluating the degree distribution. The distribution for all
clusters clearly follows as power-law (P(k) = ak with val-
ues for the degree exponent y indicative of a scale-free net-
work. The value of the degree exponent is a critical
characteristic determining important properties of the
graph. The smaller the value of g the more important the
role of the hubs (nodes with high connectivity) is in the
network [76]. The degree values we identify are well bel-
low the threshold for scale-free networks of 3 [77] indicat-
ing the existence of such highly connected nodes.

Elucidation and Quantification of Regulatory Interactions
After the identification of possible links through tran-
scription factor analysis, we need to carry out the quanti-
fication of these links. The identification of these links
through transcription factor analysis only provides a
superset of possible interactions which are occurring in
the experimental system. However, after the quantifica-
tion of these links we can begin to assign the significance
of each link in order to obtain a reduced set of connec-
tions that are active within the experimental regime. This
allows for the identification of significant pathways which
function as the primary driving forces of the system. This
information can perhaps lead to possible points of con-
trol in order to mitigate the detrimental responses of an
organism. However, physical binding of a TF is a necessary
but not sufficient condition for transcription initiation
and regulation. Due to various complex post-translational
modifications as well as interactions among multiple TFs
the measured expression level of regulatory genes does
not reflect the actual activity of the TFs themselves. There-
fore, regulator transcription levels are generally not appro-
priate measures of transcription factor activity (TFA).
Recently, methods combining TF-gene connectivity data
and gene expression measurements have emerged in order
to quantify these regulatory interactions. Prominent
examples are the decomposition-based methods which
combine ChiP and microarray data and inversion of
regression techniques to estimate TFAs [78-81]

Numerous statistical techniques have been proposed
recently for the construction of lower-dimensional repre-
sentation regulatory networks from high-dimensional
gene expression data [82,83]. Network Component Anal-
ysis (NCA) [84,85] was a recently proposed method for
the quantification of regulatory interactions and the esti-
mation of transcription factor activities. It offers the
advantage over more commonly used regulatory model
building techniques in that it does not rely upon purely

http://www.biomedcentral.com/1471-2105/8/10

mathematical assumptions that other decomposition
methods do. In the commonly used component analyses
such as principal component analysis (PCA) and inde-
pendent component analysis (ICA), assumptions are
made on the matrix of basis vectors such as orthogonality
or statistical independence. These assumptions are usually
not borne out by the underlying biology. NCA on the
other hand takes its assumption from the underlying bio-
logical structure, namely predicted transcription factor
binding sites, which makes it much better suited for quan-
tifying networks in a relevant manner.

The formulation of NCA is as follows: Given a set of log
normalized temporal expression profiles [E](NxT), there
exists a decomposition [A](NxL) and [P](LxT) where [A] is
the connectivity matrix and [P] is the basis matrix repre-
senting transcription factor activity, N is the number of
genes, T the number of time points and L the number of
transcription factors. We obtain the overall connectivity
matrix by processing the results obtained via TRAFAC. The
regulatory weights are zero if TF; does not regulate gene i,
and a non-zero value if TF, regulates gene i. Therefore NCA
imposes structure to matrix [A] derived from transcription
factor analysis, giving it a biological rather than a mathe-
matical basis to for the decomposition [85]. This is in con-
trast to the other commonly used decomposition
methods such as PCA or ICA. In PCA, the set of compo-
nents are assumed to be orthogonal, and in ICA the set of
components are assumed to be statistically independent
[86]. In NCA, there is no assumption about the structure
of [P]. Rather the assumption has been moved to [A],
which we are able to extract information via transcription
factor analysis. In order to satisfy the goal that the entire
solution space of NCA will differ by only a diagonal scal-
ing matrix, the following additional constraints must be
satisfied: (i) [A] must be of full column rank; (ii) the
reduced form of [A] must also be of full column rank; and
(iii) [P] must be of full rank. The interested reader should
consult the original presentation of NCA [84,85] for a
thorough discussion of the aforementioned constraints
and their implications.

Given the density of the initial transcription factor bind-
ing matrix, obtained through transcription factor analysis,
itis unlikely that the initial matrix will be NCA compliant,
thus satisfying the three aforementioned constraints.
[84,85] suggest an iterative process in which connections
are randomly deleted from the initial connectivity matrix
and checked to see if the resultant matrix is NCA compli-
ant[87].

Relation to Previous Work
A preliminary exposition of the basic elements of the
approach was presented in [88]. The current publication
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significantly expands the previous work in a number of
ways.

1. In [88] an ad hoc analysis was presented in an attempt
to verify the presence of genes which were known to play
some role in thermal injury and inflammation. A rudi-
mentary analysis of over-represented gene ontologies and
transcription factors, and not a rigorous enrichment anal-
ysis, was discussed to simply evaluate the potential of the
analysis method. In the present work we performed a
thorough enrichment analysis in order to identify relevant
over-represented processes within the selected genes, as
well as significant transcription factors through variance
analysis of predicted transcription factor activity. Of par-
ticular importance are the results of Tables 1 and 2 that
quantify the p-values of the corresponding enrichment.

2.1n [88] we selectively verified the presence of a very lim-
ited number of already known relevant processes and dis-
cussed their implications. In the present work a thorough
analysis of numerous processes and predicted transcrip-
tion factors was performed, their potential role in the
inflammatory process was discussed and an integrated
picture was hypothesized.

3. Of particular importance are the transcription factor
activity reconstruction data and most notably the results
of Figure 5. In [88] we simply comment on the potential
of NCA (Network Component Analysis) to reconstruct
gene expression profiles. However, in the current manu-
script we demonstrate how TFA profiles can be recon-
structed.

4. New and very significant is the analysis summarized in
Table 3, which compares our results to known clustering
methods. A number of different approaches were imple-
mented, including recent methods specifically developed
for temporal gene expression data and methods were eval-
uated based on their ability to enrich GO and TFs in gen-
eral, as well as their ability in enriching inflammation-
specific GO and TFs. The results clearly indicate the supe-
riority of our approach.

The improvements in the analysis steps are neither trivial
nor auxiliary. In our previous work [88] we merely sought
to verify the fact that our results were not nonsensical.
While the data analyzed in both papers is the same, we
wanted to create an automated method in which one
could go from temporal expression data to a set of testable
hypotheses with minimum human intervention. There-
fore the methods which we proposed for the analysis are
extremely important. The greater in depth analysis pre-
sented in our paper reflects this. Due to the automated
analysis tools, we were able to obtain a greater under-
standing of the underlying response than before. With the
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current framework in both the extraction of informative
genes, dominant motifs, and computational analysis of
the results we are confident in our ability to discern major
pathways, processes, and transcriptional signals that drive
an unknown system. Therefore, in [88] we have not been
able to synthesize any new knowledge about the system.
However, in the present work, we believe we have been
able to synthesize new information about an organism's
response, namely the primary factors that drive the sys-
tem, the time course in which these factors are active, and
a time frame in which the system undergoes state changes
in which treatment protocols would need to change due
to differences in the transcriptional state. These are things
which were not identified in the first iteration, nor could
have been identified given the analysis framework in
place at that time.
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