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Abstract

Background: Although short interfering RNA (siRNA) has been widely used for studying gene
functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few
consistencies among the recently reported design rules/guidelines for selecting siRNA sequences
effective for mammalian genes. Another shortcoming of the previously reported methods is that
they cannot estimate the probability that a candidate sequence will silence the target gene.

Results: We propose two prediction methods for selecting effective siRNA target sequences from
many possible candidate sequences, one based on the supervised learning of a radial basis function
(RBF) network and other based on decision tree learning. They are quite different from the
previous score-based siRNA design techniques and can predict the probability that a candidate
siRNA sequence will be effective. The proposed methods were evaluated by applying them to
recently reported effective and ineffective siRNA sequences for various genes (15 genes, 196
siRNA sequences). We also propose the combined prediction method of the RBF network and
decision tree learning. As the average prediction probabilities of gene silencing for the effective and
ineffective siRNA sequences of the reported genes by the proposed three methods were
respectively 65% and 32%, 56.6% and 38.1%, and 68.5% and 28.1%, the methods imply high
estimation accuracy for selecting candidate siRNA sequences.

Conclusion: New prediction methods were presented for selecting effective siRNA sequences.
As the proposed methods indicated high estimation accuracy for selecting candidate siRNA
sequences, they would be useful for many other genes.

Background

Although RNA interference (RNAi) has been successfully
used for studying gene functions in both plants and inver-
tebrates, many practical obstacles need to be overcome
before it becomes an established tool for use in mamma-
lian systems [1-6]. One of the important problems is

designing effective siRNNA sequences for target genes. The
short interfering RNA (siRNA) responsible for RNA inter-
ference varies markedly in its gene silencing efficacy in
mammalian genes, where the gene silencing effectiveness
depends very much on the target sequence positions
(sites) selected from the target gene [7,8]. Since different
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siRNAs synthesized for various positions induce different
levels of gene silencing, the selection of the target
sequence is critical to the effectiveness of the siRNA. We
therefore need useful criteria for gene silencing efficacy
when we are designing siRNA sequences [9,10].

Zamore et al. and Jayasena et al. showed that 5' end of the
antisense strand that was incorporated into RNA-induced
silencing complex (RISC) more efficiently was less tightly
paired to its complement and began with an A-T pair,
whereas the strand incorporated less efficiently had a G-C
terminus [11,12]. Other factors reported to be related to
gene silencing efficacy are GC content, sequence features,
specific motif sequences and secondary structures of
mRNA. Several siRNA design rules/guidelines using effi-
cacy-related factors have been reported [13-17].

Although sequence characteristics for siRNA designs seem
to be the most important factor determining effective
siRNA sequences, there are few consistencies among the
reported rules/guidelines [18-22]. This implies that these
rules/guidelines might result in the generation of many
candidates and thus make it difficult to extract a few for
synthesizing siRNAs. Furthermore, there is in RNAI a risk
of off-target regulation: a possibility that the siRNA will
silence other genes whose sequences are similar to that of
the target gene. When we use gene silencing for studying
gene functions, we have to first somehow select high-
potential siRNA candidate sequences and then eliminate
possible off-target ones [23].

Here we therefore focus on identifying high-potential
siRNA sequences from many possible candidates and pro-
pose the prediction methods for selecting effective siRNA
target sequences from many possible candidate sequences
by using the radial basis function (RBF) technique and
decision tree learning of a large number known effective
and ineffective siRNAs [24-26]. We also propose the com-
bined prediction method of the RBF network and decision
tree learning. The effectiveness of the proposed methods
were confirmed by using them to evaluate siRNA
sequences recently reported to effectively or ineffectively
suppress the expression of various genes (see Methods).
As the average prediction probabilities of gene silencing
for the effective and ineffective siRNA sequences of the
reported genes by the proposed three methods were
respectively 65% and 32%, 56.6% and 38.1%, and 68.5%
and 28.1%, the methods imply high estimation accuracy
for selecting candidate siRNA sequences. Although the
proposed methods are different from the previous scoring
methods and are therefore difficult to compare with them,
the evaluation results indicate that the proposed methods
would be useful for many other genes. They will therefore
be useful for selecting siRNA sequences for mammalian
genes.

Results and Discussion

We propose two prediction methods for selecting effective
siRNA sequences from many possible candidate
sequences, one based on the supervised learning of RBF
and other based on the learning of decision tree.

Learning based on the RBF network and the decision tree

A radial basis function (RBF) network is a type of artificial
network for application to problems of supervised learn-
ing, such as regression, classification and time series pre-
diction. As RBF networks are nonparametric models, there
is no a priori knowledge about the function that is to be
used to fit the training set [24,25]. RBF networks are
supervised learning models with a single middle layer of
units. They are similar back propagation neural networks
but usually faster to train because the RBFs used in the
units mean that fewer weight adjustments are needed.
Also, RBF networks tend to be more resistant to noisy data
than back propagation networks. Decision tree learning is
one of the most widely used and practical methods for
inductive inference. A decision tree is a tree in which each
branch node represents a choice between a number of
alternatives, and each leaf node represents a classification
or decision [26].

The proposed algorithms of the RBF network and the deci-
sion tree learning for selecting siRNA sequences effective
are described in Methods.

Verification of the proposed methods

After carrying out the learnings of the RBF network and
decision tree using 860 effective and 860 ineffective
sequences, we obtained eight clustered (C1 to C8) listed
in Table 1 and the decision tree diagram shown in Figure
1. Then we computed the prediction probabilities of gene
silencing for recently reported individual effective and
ineffective sequences for MG1 to MG5 (see Methods) by
using the proposed methods. The results are respectively
shown in Figures 2(a) - 2(e) and Figures 3(a) - 3(e). Since
there were ups and downs in the predicted probabilities of
individual sequences, we calculated the average for them.

Prediction analysis by the RBF network

The average prediction probability of gene silencing for
the MG1 effective siRNA sequences was 66.3% with the
standard deviation 23.2%, whereas the average probabil-
ity for the ineffective siRNA sequences was 33.6% with the
standard deviation 17.2%. As there is a clear difference
between the prediction probabilities of the effective and
ineffective siRNA sequences, the predicted probabilities
correspond to the effectiveness indication of the proposed
method. The average prediction probabilities of effective
siRNA sequences for MG2, MG3, MG4 and MG5 were
respectively 66% (standard deviation: 17.4%), 57.4%
(21.9%), 78.3% (16.7%) and 57.9% (16.7%), whereas
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Table I: Clusters generated by the RBF network.

Cluster ID No. of sequences Percentage of effective siRNAs (%)

Cl 134 94

c2 150 70.7
C3 125 70.4
C4 147 61.9
C5 141 433
Cé 158 323
c7 143 27.1
(@] 148 8.1

the average prediction probabilities of the corresponding
ineffective siRNA sequences were 25.5% (19.7%), 40.7%
(21.4%), 20.7% (6.2%) and 30.1% (15.4%). As there are
also clear differences between the averages of the effective
and ineffective siRNA sequences for these genes, the indi-
vidual predicted probabilities indicate the effectiveness of
the proposed method.

Relations between the average prediction probabilities of
the effective and ineffective siRNA sequences for the
recently reported siRNAs are shown in Figure 4. With
regard to gene classes, MG1, MG2 and MGS5 indicate dis-
tinctions between the effective and ineffective siRNAs
more clearly than MG3 does and MG4 indicates distinc-
tions remarkably clearly. These results therefore imply
that there are some differences individual nucleotide fre-
quencies at each position of the siRNAs effective for these
gene classes. Although MG3 indicates differences between
the effective and ineffective siRNAs, the ratios of the effec-
tive to ineffective ones are less than 20%. This implies that
there is no big difference between the individual nucle-
otide frequencies of the siRNAs effective and ineffective
for silencing this class of genes. The entire average of 103
effective sequences for these genes was 65% (20.5%),
whereas that of 93 ineffective ones was 32% (19.1%).

Prediction analysis by the decision tree learning

We also computed the average prediction probabilities for
MGI1 to MGS5 by using the decision tree learning. Rela-
tions between the average prediction probabilities of the
effective and ineffective siRNA sequences are shown in
Figure 5. Comparing Figure 4 with Figure 5, we can under-
stand the differences between the average prediction
probabilities of the RBF and decision tree methods.
Although the average prediction probability for MG1
effective siRNA sequences was 53% (20%) by the decision
tree learning, the corresponding probability by the RBF
network was 66.3% (23%). This is 13% higher than that
of the decision tree learning. There are similar relations
among the average prediction probabilities for MG2 to
MGS5. The entire average prediction probability of 103
effective siRNA sequences for these genes was 56.6%

(18.9%), whereas that of 93 ineffective siRNA sequences
was 38.1% (16.3%). Although the method of the RBF net-
work might be superior to that of the decision tree learn-
ing, different results imply that two methods have their
own prediction criteria.

Combined method of the RBF network and decision tree
learning

Since there were different prediction features in the two
methods, we combined both methods to increase predic-
tion capability. That is, if a candidate sequence is pre-
dicted as a high prediction probability one in either
method, it can be inferred as a high prediction probability
one. For example, if some sequence in MG2 effective siR-
NAs were predicted as 50% gene silencing by the RBF net-
work and the same sequence were predicted as 65% one
by the decision tree learning, it can be considered as 65%
gene silencing in the combined method. The average pre-
diction probabilities of gene silencing for various genes by
using the combined method are shown in Figure 6. It is
clear that the combined method indicates better predic-
tion probabilities for MG1 to MGS5 than those by the RBF
network and decision tree learning. The average predic-
tion probabilities for the total effective and ineffective
siRNA sequences are respectively 68.5% (17.7%) and
28.1% (17.1%).

Comparison with other reported methods

The proposed methods use the supervised learning tech-
niques by the RBF network and decision tree for selecting
effective siRNA candidates, whereas most of the previous
methods use scoring techniques [27]. Although the pro-
posed methods can estimate the probability of gene
silencing in the range from 0 to 1, the scoring methods
cannot indicate this probability. The scoring method basi-
cally sets score values for candidate siRNA sequences
according to the designated design rules. Consequently if
an siRNA candidate for a specific gene completely satisfies
the required design rules, it is expected to get a high score.
Even though a high-potential siRNA would be obtained,
however, it is difficult to estimate the probability that this
siRNA would actually accomplish the expected gene deg-
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Decision tree diagram for known 860 effective and 860 ineffective siRNA sequences. The top of the branch node indicates the
position and nucleotide attribute, e.g., "4, T or A" represents the cDNA position 4 with the nucleotide T or A. "X" indicates an
arbitrary nucleotide, i.e., A, G, C or T. The bottom of the branch node shows yes (Y) and no (N). The leaf node indicates the
number of effective siRNA sequences and its percentage, e.g., "299, 74%" means that the number of effective siRNA sequences

is 299 and its percentage indicates 74% (= 299/404).

radation. In addition, as the previous scoring methods are
dependent on their designated rules, the obtained scores
vary depending on the individual rules. It is therefore
quite difficult to compare these different scoring methods
with the proposed methods.

As the important role of the scoring methods is to show
the priority of the siRNA candidates, it is necessary to be
clear as to score differences between effective and ineffec-
tive siRNAs. That is, the scores of the effective siRNAs
should be indicated by a set of high values, whereas those
of the ineffective ones should be indicated by a set of low

or negative values. From this point of view, we examined
scores of the siRNAs effective and ineffective for MG1 to
MGS5 by using the previously reported scoring methods
[27]. As a result, it was clear that the previous methods do
not always clearly distinguish between effective and inef-
fective siRNA sequences (Fig. 7). The methods of Rey-
nolds et al. and Hsieh et al., for example, show positive
scores for siRNAs effective and ineffective for MG1, MG3,
MG4 and MG5 and do not yield distinct differences
between the scores of effective and ineffective siRNAs. The
average scores of siRNAs for MG4 obtained using the
method of Reynolds et al., for example, are in reverse
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Figure 2

Prediction probability distributions of siRNA sequences effective and ineffective for MGI| to MG5 by the proposed RBF
method. The probabilities for effective ("Effect”) and ineffective("Ineffect") siRNAs computed by using the proposed RBF
method are shown for (a) MG, (b) MG2, (c) MG3, (d) MG4 and (e) MGS5.

order: That is, the scores of the ineffective siRNAs are
larger than those of the effective ones. In addition,
although the methods of Ui-Tei et al. and Amarzguioui
and Prydz provide correspondences between the individ-
ual average scores and the siRNAs effective and ineffective
for MG1 to MGS5, the relative score differences between
the effective and ineffective siRNAs are not large (Fig. 7).
In the case of using the method of Ui-Tei et al., for exam-
ple, the average scores of the siRNAs effective and ineffec-
tive for MG1, MG3, and MG4 are respectively 0.8 and -1,
0.86 and -0.4, and 0.86 and 0.29. These results imply that
this method might result in producing many same-score
siRNA candidates because of the difficulty of setting the
candidate priorities.

The proposed method, on the other hand, by estimating
the gene silencing probability of the siRNA candidates
can, as shown in Figure 6, clearly indicate differences
between effective and ineffective siRNAs. This therefore
implies that the proposed method can easily be used for
selecting high-potential siRNA sequences.

Conclusion

We proposed two prediction methods for selecting effec-
tive siRNA target sequences from many possible candidate
sequences by using a radial basis function (RBF) network
and decision tree learning. They are quite different from
the previous score-based siRNA design techniques and
can predict the probability that a candidate siRNA
sequence will be effective. The proposed methods were
evaluated by applying them to recently reported effective
and ineffective siRNA sequences for various genes. In
addition, we also proposed the combined method of the
RBF network and decision tree learning. As the average
prediction probabilities of gene silencing for the effective
and ineffective siRNA sequences of the recently reported
genes by the proposed three methods were respectively
65% and 32%, 56.6% and 38.1%, and 68.5% and 28.1%,
the methods imply high estimation accuracy for selecting
candidate siRNA sequences. The evaluation results indi-
cated that the proposed methods would be useful for
many other genes. It should therefore be useful for select-
ing siRNA sequences for mammalian genes.
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Figure 3

Prediction probability distributions of siRNA sequences effective and ineffective for MG| to MG5 by the proposed decision
tree method. The probabilities for effective ("Effect") and ineffective ("Ineffect") siRNAs computed by using the proposed deci-
sion tree method are shown for (a) MG, (b) MG2, (c) MG3, (d) MG4 and (e) MG5.

Methods

Supervised learning for effective siRNA classifications by
using the RBF network

Preparation

To use a RBF network for selecting effective siRNA
sequences, we need to represent individual nucleotides
(A, G, Cand T) as numerical data. We therefore transform
the symbols A, G, C and T into the following numerical
representations: A = 1, G = 2, C = 3 and T = 4. Other
numerical data representations for individual nucleotides
are, of course, also possible. The RBF network can be con-
structed by adding the hidden and output layers as shown
in Figure 8. To carry out the supervised learning for effec-
tive siRNA classifications by using the RBF network, we
partitioned the data (known effective and ineffective siR-
NAs) into two sets, one of training data and the other of
validation data. The processes of the classifications are
carried out two phases: training and validation.

Training phase
The training of the RBF network proceeds in two steps.
First the hidden layer parameters are determined as a func-

tion of the input data (vectors) and then the weights
between the hidden and output layers are determined by
comparing the target data and the output of the hidden
layer. The hidden layer parameters to be determined are
the parameters of hyperellipsoids that partition the input
data (vectors) into discrete clusters or regions. The param-
eters locate the center (i.e., the mean) of each ellipsoid's
(region or cluster) basis function and describe the extent
or spread of the region (i.e., the variance or standard devi-
ation).

The centers of individual clusters are determined as fol-
lows:

(1) Randomly choose m vectors from the input data set to
be the centers of m basis functions.

(2) For each vector i in the input dataset compute the
Euclidean distance D, ,, to each of the m basis function
centers.

Page 6 of 13

(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 5):S22

>

= 1 T

O

3 0.8 I

O

506 | : I ! : I RBF

504 |

%0.2 -

S— O - - - - - - - - - - - -
O oo/l o]0 |0 oo oo
QL0000 02 902 902
Il © 0 © W o W o W © b o©

= = = = = =
MG1 MG2 MG3 MG4 MG5 | Total
Sequence ID
Figure 4

Comparison of the average prediction probabilitiesof the effective ("Effect”) and ineffective ("Ineffect") sequences for MGI to

MGS5 by the RBF method.
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> (51 i)

j=1

(1)

Di,m =|Xi _Mm|=\/

where i is input vector number, e.g., i = 1,2, ..., TN (the
maximum number of vectors in the set of training data, X;
is i-th input vector, X; = (x; ;, %;,, ..., %;,9) and M,, is the
location vector or center of the basis function for hidden
node m, M, = (um,ll Mo, 21 «oees “m,19)'

(3) Determine for each input data vector the closest basis
function center:
Cyi=Min{D,y, D,,,...D,; ,,} fori=12,.,IN, (2)

where Cy; is the closest basis function for the input vector
i.

(4) For all the input vectors grouped around the basis
functions, compute the mean C,,

m
- 2B

m

for all m,

(3)

where BE" is the input vector i of the closest basis func-
tion m and N,, is the number of input vectors grouped

around the basis function m.

(5) Use these grounded means as the new mean values for
the m basis functions.

(6) Repeat this process until there is no further significant
change to the basis function centers.

The number m of basis functions starts as a small value -
e.g., m = 4 - and increases as the validation data is being
evaluated. The variances of the individual basis functions
(0,, 0y, ...,0;) are computed after the individual basis func-
tions are determined.
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Comparison of the average prediction probabilities of the effective ("Effect") and ineffective ("Ineffect") sequences for MGI to

MGS by the decision tree learning method.

The radial basis function GR(i, m) for the hidden unit m
output of the input vector i is defined as a Gaussian func-
tion in the following way:

2
_( D; )
2
GR(i,m)=e 20m, (4)
where 6,2 is a measure of the size of the cluster m (i.e., the
variance or the square of the standard deviation).

Then all that remains is to find the linear combination of
weights that produces the desired output (target) values
for each input vector. Since this is a linear problem, con-
vergence is guaranteed and computation proceeds rapidly.
This task can be accomplished with an iterative technique
based on the perceptron training rule or with various
other numerical techniques. Technically, the problem is a
matrix inversion problem:

T=BW, (5)

where T is the target vector, W is the to-be-determined
weighting vector and B is the matrix of output values from
each hidden unit in response to the input data (calculated
from the basis functions, e.g., equation (4)). The matrix is
usually not square, so a pseudo inverse may be used to
give a minimum least-squares solution.

In the case of the supervised learning, we have already

obtained gene silencing results for all input vectors, e.g., i
=TN.

m m _Dyz
i=1, f(X;)= Y wGRLY) =Y we /> =1

1=1 1=1

m m B 5/ >
i=2, f(X;)=Y wGR2,) =Y we /% =0
=1 I=1
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Average prediction probabilities for MG to MGS5 in this study. Effective ("Effect") and ineffective ("Ineffect") siRNAs are pre-
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m m _Dg’/z
i=3, f(X3)= Y wGRGB, =Y we /> =0

I=1 I=1

m m ‘D%N/z
i=1N, f(X;n)= Y, wGR(IN,1)= Y we /%1 =0 (6)

=1 =1
Therefore, w,, w,, ..., w,, are determined by solving the
above linear equations.

After determining the weighting variables, we can com-
pute the percentages of effective and ineffective siRNAs in
the individual clusters.

Validation phase

To evaluate whether the RBF network carried out appro-
priate (not overtraining) classifications, we verified indi-
vidual clusters in the classifications by using the
validation data. The differences between the percentages
of effective and ineffective siRNAs for the training and val-
idation data are computed for individual clusters. If there
are few differences between the percentages of effective
and ineffective siRNAs for the training and validation data
in some classification, we can infer that the classification

was carried out appropriately. If, on the other hand, there
are large differences between them, we must conclude that
the classification was not appropriate. The differences
therefore indicate the effectiveness of individual classifica-
tions by the RBF network. The summation of the differ-
ences - the entire error of this partition (cluster) number
m - is used to compare the error of this partition with
other errors of other partitions (clusters).

Determination of the number m of clusters

The number m of basis functions corresponds to the
number of partitions (clusters) and is determined on the
basis of the minimum error of the individual clusters by
using the validation data. That is, after carrying out several
classifications while changing the number m of clusters,
the errors of individual clusters are checked and the
number of clusters yielding the minimum error is the
desired number, i.e., the optimal classification.

Decision tree learning
Preparation

Attributes or features

Size: 19 nucleotide sequence

Nucleotides: A, G, Cand T
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Comparisons to other scoring methods. Scores of the effective and ineffective siRNA sequences were computed on the basis
of the positional scores of the individual guidelines shown in Saetrom et al. 2004 [27]. The individual guideline scores are aver-
age values of the effective and ineffective siRNAs for MGI to MGS5.

Training instances
Effective siRNAs: 860 sequences

Ineffective siRNAs: 860 sequences

To carry out the supervised learning for effective siRNA
classifications by using the decision tree learning, we par-
titioned the training instances into two sets, one for the
growth of the decision tree (training data) and other for
the decision tree pruning (validation data). The processes
of the classifications are carried out in two phases: the
growth and pruning of the decision tree.

The growth of the decision tree
The algorithm, in outline, is as follows:

(1) if all the instances belong to a single class, there is
nothing to do (except create a leaf node labeled with the
name of that class).

(2) otherwise, for each attribute that has not already been
used, calculate the information gain that would be

obtained by using that attribute on the particular set of
instances classified to this branch node.

The information gain can be computed in the following
way (28).

Ip,n =- lo - lo 7

where

p is a number of effective siRNA sequences for this
attribute and n is a number of ineffective siRNA
sequences.

The entropy E(L) associated with the position L is :

v

p; +n;
E(L)= )Y ——=I(p;,n;
(L) Z{IH'TI (piimi)

(8)

where
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RBF network representation of the relations between effective and ineffective siRNA sequences. The input layer is the set of
numerically represented siRNA sequences (A, G, C and T are converted to |, 2, 3 and 4). Sense strands of siRNAs (cDNAs 5'
to 3',19 nucleotides from positions | to 19) are described. The hidden layer classifies the input vectors into several clusters
depending on the similarities or closeness of individual input vectors. The output layer indicates the effectiveness of individual
siRNA sequences (I : effective gene silencing, 0 : ineffective gene silencing). X;: i-th input vector, TN: the maximum number of
vectors, M, : the location vector, m: the number of basis functions, G: the standard deviation, w; i-th weighting variable, f{X):

weighted sum function.

v is a kind of nucleotides, i.e.,i=1=A,2=G,3=Cand 4
=T, and L is the sequence position, i.e.,, L =1, 2, ...., 19.

The information gain is therefore obtained as follows:

gain(L) = 1(p, n) - E(L)  (9)

(3) use the attribute (position) with the greatest informa-
tion gain as a branch node.

(4) if the information gain becomes less than the specified
criterion, stop the growth of the decision tree and create
leaf nodes.

Decision tree pruning
Working backwards from the bottom of the tree, the sub-
tree starting at each nonterminal node is examined. If the

error (misclassification) rate on the validation data
improves by pruning it, the subtree is removed. The proc-
ess continues until no improvement can be made by prun-
ing a subtree.

Training, validation and evaluation data of the proposed
methods

Training and validation data

As effective data, we collected 860 effective siRNA
sequences (more than 80% gene silencing at the protein
level) from 503 different cDNAs reported in references in
the PubMed database. We also randomly generated 860
ineffective siRNA sequences as ineffective data. This is
because we know that the randomly generated siRNA
sequences were less effective in gene silencing as empirical
knowledge. These effective and ineffective siRNAs were
used as the training and validation data while partitioning
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the entire data set into various ratios of training data to
validation data: 2to 1,3 to 1 and 10 to 1. We used 2 to 1.

Data used to evaluate the proposed methods
The proposed method was evaluated by using recently
reported effective and ineffective siRNAs. These siRNAs
were not used for 860 effective siRNAs.

Reynolds et al. recently analyzed 90 siRNAs systemati-
cally, targeting every other position of 197-base regions of
human cyclophilin B mRNA (GeneBank accession no.
M60875) [21]. For simplicity, human cyclophilin B is sym-
bolized throughout the present paper as MG1. From the
90 analyzed siRNA sequences we selected as effective ones
a set of 25 sequences for which MG1 target gene expres-
sion is less than 10% and selected as ineffective ones a set
of 25 sequences for which MG1 target gene expression is
greater than 48%.

Ui-Tei et al. reported 38 effective and 24 ineffective
sequences for six genes: firefly luciferase (PRL-TK), vimen-
tin, Oct 4, EGFP, ECFP and DsRed [22]. For simplicity, in
the rest of this paper all six of these genes are symbolized
as MG2.

Amarzguioui et al. reported 21 effective and 25 ineffective
siRNA sequences for four genes: hTF (accession no.
M16553),mTF (accession no. M26071), PSK (accession
no. ]272212) and CSK (accession no. NM_004383) [18].
For simplicity, in the rest of this paper these four genes are
symbolized as MG3.

Takasaki et al. reported 7 effective and 7 ineffective siRNA
sequences for the homo sapiens cyclin B1 gene (accession
no. NM_031966) [28]. For simplicity, in the rest of this
paper this gene is symbolized as MG4.

Huesken et al. reported 37 siRNAs for TC10 (accession no.
BD135193), UBE2I (accession no. NM 003345) and
CDC34 (accession no. NM_004359). We selected the top-
ranked 12 effective and the worst-ranked 12 ineffective
siRNA sequences for these genes. For simplicity, in the rest
of this paper these genes are symbolized as MG5 [29].

These test data sets (MG1 to MG5) are available in Addi-
tional File 1.
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