
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
A fast parallel algorithm for finding the longest common sequence
of multiple biosequences
Yixin Chen*1, Andrew Wan1 and Wei Liu2

Address: 1Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA and 2Department of
Computer Science, Yangzhou University, Yangzhou 225009, China

Email: Yixin Chen* - chen@cse.wustl.edu; Andrew Wan - awan@wustl.edu; Wei Liu - yzliuwei@126.com

* Corresponding author

Abstract
Background: Searching for the longest common sequence (LCS) of multiple biosequences is one
of the most fundamental tasks in bioinformatics. In this paper, we present a parallel algorithm
named FAST_LCS to speedup the computation for finding LCS.

Results: A fast parallel algorithm for LCS is presented. The algorithm first constructs a novel
successor table to obtain all the identical pairs and their levels. It then obtains the LCS by tracing
back from the identical character pairs at the last level. Effective pruning techniques are developed
to significantly reduce the computational complexity. Experimental results on gene sequences in
the tigr database show that our algorithm is optimal and much more efficient than other leading
LCS algorithms.

Conclusion: We have developed one of the fastest parallel LCS algorithms on an MPP parallel
computing model. For two sequences X and Y with lengths n and m, respectively, the memory
required is max{4*(n+1)+4*(m+1), L}, where L is the number of identical character pairs. The time
complexity is O(L) for sequential execution, and O(|LCS(X, Y)|) for parallel execution, where
|LCS(X, Y)| is the length of the LCS of X and Y. For n sequences X1, X2, ..., Xn, the time complexity
is O(L) for sequential execution, and O(|LCS(X1, X2, ..., Xn)|) for parallel execution. Experimental
results support our analysis by showing significant improvement of the proposed method over
other leading LCS algorithms.

Background
Biological sequence [1] can be represented as a sequence
of symbols. For instance, a protein [2] is a sequence of 20
different letters (amino acids), and DNA sequences
(genes) can be represented as sequences of four letters A,

C, G and T corresponding to the four sub-molecules form-
ing DNA. When a new biosequence is found, we want to
know what other sequences it is most similar to. Sequence
comparison [3-5] has been used successfully to establish
the link between cancer-causing genes and a gene evolved

from Symposium of Computations in Bioinformatics and Bioscience (SCBB06) in conjunction with the International Multi-Symposiums on Computer and
Computational Sciences 2006 (IMSCCS|06)
Hangzhou, China. June 20–24, 2006

Published: 12 December 2006

BMC Bioinformatics 2006, 7(Suppl 4):S4 doi:10.1186/1471-2105-7-S4-S4

<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB06)</p> </title> <editor>Youping Deng, Jun Ni</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S4-info.pdf</url> </supplement>

© 2006 Chen et al; licensee BioMed Central Ltd
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7(Suppl 4):S4
in normal growth and development. One way of detecting
the similarity of two or more sequences is to find their
LCS.

The LCS problem is to find a substring that is common to
two or more given strings and is the longest one of such
strings. Since the LCS problem is essentially a special case
of the global sequence alignment, all the algorithms for
the sequence alignment can be used to solve the LCS
problem. Presented in 1981, the Smith-Waterman algo-
rithm [6] is a well known LCS algorithm which was
evolved from the Needleman-Wunsch [7] algorithm, and
can guarantee the correctness. Aho and et al. [8] gave a
lower bound of O(mn) on time for the LCS problem using
a decision tree model. It is shown in [9] that the problem
can be solved in O(mn) time using O(mn) space by
dynamic programming. Mayers and Miller [10] used the
technique proposed by Hirschberg [11] to reduce the
space complexity to O(m+n) on the premise of the same
time complexity.

To further reduce the computation time, some parallel
algorithms [12-14] have been proposed for different com-
putational models. For the CREW-PRAM model, Aggarwal
[15] and Apostolico et al [16] independently proposed an
O(log m log n) time algorithm using mn/log m processors.
Lu et al [17] designed two parallel LCS algorithms, one
uses mn/log m processors with a time complexity of
O(log2 n+log m), and the other uses mn/(log2 m loglog m)
processors with a running time of O(log2 m loglog m). For
the CRCW-PRAM model, Apostolico et al [16] gave an
O(log n (loglog m)2) time algorithm using mn/loglogm
processors. Babu and Saxena [18] improved these algo-
rithms for the CRCW-PRAM model. They designed an
O(log m) algorithm with mn processors and an O(log2n)
time parallel algorithm. Many parallel LCS algorithms
have also been proposed using systolic arrays. Robert et al
[19] proposed a parallel algorithm with n + 5m steps using
m(m+1) processing elements. Chang et al [20] put for-
ward an algorithm with 4n+2m steps using mn processing
elements. Luce et al [21] designed a systolic array with
m(m+1)/2 processing elements and n+3m+q steps where q
is the length of the LCS. Freschi and Bogliolo [22]
addressed the problem of computing the LCS between
run-length-encoded (RLE) strings. Their algorithm
requires O(m+n) steps on a systolic array of M+N process-
ing elements, where M and N are the lengths of the origi-
nal strings and m and n are the number of runs in their
RLE representation.

For the LCS problem of multiple sequences, the time com-
plexity tends to grow very fast when the number of the
sequences increases. For instance, using the Smith-Water-
man algorithm to solve the LCS for multiple sequences,

the time complexity is , where n is the

number of sequences, and ni is the length of the ith

sequence. It is not practicable when n is large. Some
improvements have been made on the algorithm. The
MSA program [23] can process up to ten closely related
sequences. It is an implementation of the Carrillo and Lip-
man algorithm [24] that identifies in advance the portions
of the hyperspace not contributing to the solution and
excludes them from the computation. Stoye described a
new divide and conquer algorithm DCA [25] that extends
the capability of MSA. Recently, OMA [26], an iterative
implementation of DCA is proposed to speed up the DCA
strategy and reduce memory requirements. Based on Feng
and Doolittle's algorithm [28], Clustal-W [27] is one of
the most widely used multiple sequence alignment soft-
ware that can also be used for LCS computation.

Results
In this paper, we present a fast algorithm named
FAST_LCS for efficient computation of LCS. The algo-
rithm first seeks the successors of the initial identical char-
acter pairs according to a successor table to obtain all the
identical pairs and their levels. Then by tracing back from
the identical character pair in the last level, it obtains the
result of LCS.

The key technique of our algorithm is the use of several
effective pruning operations. In the process of generating
the successors, pruning techniques can remove the identi-
cal pairs which can not generate the LCS so as to reduce
the search space and accelerate the search speed. The algo-
rithm can be extended to find the LCS of multiple biose-
quences.

Experimental results on the gene sequences of the tigr
database, using an MPP parallel computer Shenteng 1800,
show that our algorithm can obtain the exact optimal
results and is much faster than some other leading LCS
algorithms.

Conclusion
In this paper, we have developed FAST_LCS, one of the
fastest parallel LCS algorithms on an MPP parallel com-
puting model. For two sequences X and Y with lengths n
and m, respectively, the memory complexity of FAST_LCS
is max{4*(n+1)+4*(m+1), L}, where L is the number of
identical character pairs. The time complexity is O(L) for
sequential execution of the algorithm, and O(|LCS(X,Y)|)
for parallel execution, where |LCS(X,Y)| is the length of
the LCS of X and Y. The algorithm can be extended to
solve the LCS for multiple biosequences. For n sequences

O nn

i

n

i()2 1
1

−
=
Π

Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
X1, X2, ..., Xn, the time complexity is O(L) for sequential
execution, and O(|LCS(X1, X2, ..., Xn)|), which is inde-
pendent of the number of sequences, for parallel execu-
tion. Experimental results support our analysis by
showing significant improvement of the proposed
method over some other leading LCS algorithms.

Methods
The identical character pair and its successor table
Let X = (x1, x2, ..., xn), Y = (y1, y2, ..., ym) be two biose-
quences, where xi, yi ∈ {A, C, G, T}. We can define an array
CH of the four characters so that CH(1) = "A", CH(2)=
"C", CH(3)= "G" and CH(4)= "T". To find the LCS of X
and Y, we first build the successor tables of the identical
characters for the two strings. The successor tables of the
identical characters of X and Y are denoted as TX and TY,
which are two dimensional arrays of size 4(n+1) ×
4*(m+1). For sequence X = (x1, x2, ..., xn), TX (i, j) in table
TX is defined as follows.

Here, SX (i, j) = {k| xk = CH(i), k > j}, where i = 1,2,3,4 and
j = 0,1,...n. It can be seen from the definition that if TX(i,
j) is not "-", it indicates the position of the next character
identical to CH(i) after the jth position in sequence X, oth-
erwise it means there is no such character after the jth
position.

Example 1

Let X = "T G C A T A" and Y = "A T C T G A T". Their suc-
cessor tables TX and TY are shown in Table 1.

For the sequences X and Y, if xi = yj = CH(k), we call them
an identical pair of CH(k) and denote it as (i, j). The set of

all the identical character pairs of X and Y is denoted as
S(X, Y).

Let (i, j) and (k, l) be two identical character pairs of X and
Y. If i <k and j <l, we call (i,j) a predecessor of (k, l), or (k,
l) a successor of (i, j), and denote the relationship as (i, j)
< (k, l).

Let P(i, j) = {(r, s) | (i, j) < (r, s), (r, s)∈S(X,Y)} be the set
of all the successors of identical pair (i, j), if (k, l)∈P(i, j)
and there is no (k', l')∈P(i, j) satisfying the condition: (k',
l') < (k, l) and xk' = xk, we call (k, l) the direct successor of
(i, j), and denote the relationship as (i, j)>(k, l).

If an identical pair (i, j) ∈ S(X, Y) and there is no (k,
l)∈S(X, Y) satisfying (k, l) < (i, j), we call (i, j) an initial
identical pair.

For an identical pair (i, j)∈S (X, Y), its level is defined as
follows:

From the definitions above, the following theorems can
be easily deduced:

Theorem1. Denote the length of the LCS of X and Y as
|LCS(X, Y)|, then |LCS(X, Y)| = max{level (i, j)|(i, j)∈S(X,
Y)}.

Proof: Suppose the identical character pairs correspond-
ing to the longest common subsequence of X, Y are (xi1,
yj1), (xi2, yj2), ..., (xir, yjr), here r = |LCS(X, Y)|. Since (i1, j1)
is an initial identical character pair, we have: (ik, jk)>(ik+1,
jk+1), for k = 1,2,...,r-1, and the level of (xik, yjk) is k. Then
we can conclude that the maximal level of all the identical
character pairs is r, i.e. r = max{level(i, j)|(i, j)∈S(X, Y)}.
The reason is as follows: if r is not the maximal level of the
identical character pairs of X, Y, there must be an integer r'
> r and identical character pairs: (xi1', yj1,)>(xi2', yj2,)>
.....>(xir', yjr'). It corresponds to another common subse-
quence of X and Y with length r' > r. This is in contradic-
tion with the condition r = |LCS(X, Y)|.

The operation of producing successors
In our algorithm, all direct successors of all the initial
identical character pairs are first produced in parallel
using the successor tables. Then the direct successors of all
those successors produced in the first step are generated in
parallel. Repeat these operations of generating the direct
successors until no more successors could be produced.
Therefore, producing all the direct successors for the iden-
tical character pairs is a basic operation in our algorithm.

TX i j
k k SX i j SX i j

(,)
min | (,) (,)

=
∈{ } ≠
−

⎧
⎨
⎩⎪

()φ
otherwise

1
level i j

i j
,

,
() =

()1 if is an initial identical character ppair

otherwisemax , , ,level k l k l i j() + () < (){ }
⎧
⎨
⎪

⎩⎪
()

1
2

Table 1: Their successor tables TX and TY in Example 1.

TX:

i CH(i) 0 1 2 3 4 5 6
1 A 4 4 4 4 6 6 -
2 C 3 3 3 - - - -
3 G 2 2 - - - - -
4 T 1 5 5 5 5 - -

TY:

i CH(i) 0 1 2 3 4 5 6 7
1 A 1 6 6 6 6 6 - -
2 C 3 3 3 - - - - -
3 G 5 5 5 5 5 - - -
4 T 2 2 4 4 7 7 7 -
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
For an identical character pair (i, j)∈S(X, Y), the operation
of producing all its direct successors is as follows:

(i,j) →{(TX(k,i),TY(k,j))|k = 1,2,3,4, TX(k,i)≠'-' and
TY(k,j)≠'-'} (3)

From (3) we can see that this operation is to couple the
elements of the ith column of TX and the jth column of TY
to get the pairs.

For instance, the successors of the identical character pair
(2,5) in Example 1 can be obtained by coupling the ele-
ments of the 2nd column of TX and the 5th column of TY.
They are (4, 6), (3, -), (-, -) and (5, 7). Here (3, -) and (-,-
) do not represent identical character pairs, they only indi-
cate the end of the process of searching for the successors
in the branches they located. After discarding (3,-) and (-
,-), the successors of (2, 5) are just (4, 6) and (5, 7).

Theorem 2. For an identical character pair (i, j), the
method in (3) above can produce all its direct successors.

Proof: By (3), we can produce all direct successors (TX(k,
i),TY(k, j)), where k = 1,2,3,4, of (i, j). According to
(1),TX(k, i) is the location of the nearest character identi-
cal to CH(k) after xi in string X, andTY(k, j) is the location
of the nearest such character of CH(k) after yj in string Y.
This means that identical pairs (TX(k, i),TY(k, j)), where k
= 1,2,3,4, contain all the direct successors of (i, j). Conse-
quently, by the same operation on the newly generated
identical pairs (TX(k, i),TY(k, j)), where k = 1,2,3,4, we can
get all of their direct successors. It can be seen that by
repeating this operation of producing successors, we can
obtain all the successors of (i, j).

It is obvious that (TX(k, 0),TY(k, 0)), where k = 1,2,3,4, are
all the initial identical pairs of X and Y. By Theorem 2, we
know that starting from these initial identical pairs, all the
other identical pairs of X, Y, and their levels can be pro-
duced.

The operations of pruning
In the process of generating the successors, pruning tech-
niques can be implemented to remove the identical pairs
which can not generate the LCS so as to reduce the search
space and improve the efficiency.

Pruning Operation 1
If on the same level, there are two identical character pairs
(i, j) and (k, l) satisfying (k, l)>(i, j), then (k, l) can be
pruned without affecting the correctness of the algorithm
in obtaining the LCS of X and Y.

Rationale
The reason we can prune (k, l) is as follows. Suppose the
two identical character pairs (i, j) and (k, l) are produced
by the identical pairs (i1, j1) and (k1, l1) on the previous
level. Let the LCS produced via (k1, l1) and (k, l) be
a1a2...amam+1...ar, here am corresponds to (k1, l1) and am+1
corresponds to (k, l). Similarly, let the subsequence pro-
duced via (i1, j1) and (i, j) be b1b2...bmbm+1...bs...bq, here, bm
corresponds to (i1,j1) and bm+1 corresponds to (i, j). Since
(k, l)>(i, j), by Theorem 2 (k, l) must be produced after (i,
j). Then there must exist bs (m+1 <s <q) corresponding to
(k, l). Since am+1...ar and bsbs+1...bq are both the local long-
est common subsequences obtained by the operations of
producing successors on (k, l), we have "am+1...ar" =
"bsbs+1...bq" which means q-s = r-(m+1), and q = r+s-(m+1).
Since s>m+1, we have q > r. Therefore the subsequence
"amam+1...ar", which is produced on the mth level via (k1,
l1), can not be included in the LCS of X and Y, and (k, l)
can be pruned without affecting the algorithm to get the
LCS of X and Y.

This pruning operation can be implemented to remove all
those redundant identical pairs. After each level of identi-
cal pairs are generated, the algorithm checks all the newly
generated identical pairs on the same level to find all such
identical pairs (i, j) and (k, l) satisfying (k, l) > (i, j) and
then prune (k, l).

For instance, (4, 6) and (5, 7) in Example 1 are the succes-
sors of the identical pair (2, 5). Since they are on the same
level and (4, 6)>(5, 7), we can prune (5, 7).

For another identical character pair (1,2) in Example 1, its
successors are (4,6), (3,3), (2,5) and (5,2) which are
obtained by coupling the 1st column of TX and the 2nd col-
umn of TY.

Since (3, 3) < (4, 6), (4, 6) can be omitted by pruning
operation 1. On the next level, the successors of (3, 3), (2,
5) and (5, 2) are (4, 6), (5, 4), (5, 7) and (6, 6). Since iden-
tical pair (6, 6) is a successor of (5, 4), (5, 7) is a successor
of (4, 6) and they are on the same level, (6, 6) and (5, 7)
can be pruned.

Pruning Operation 2
If on the same level, there are two identical character pairs
(i1, j) and (i2, j) satisfying i1 <i2, then (i2, j) can be pruned
without affecting the correctness of the algorithm in
obtaining the LCS of X and Y.

Rationale
The reason we can prune (i2, j) is as follows. Let the suc-
cessors of (i1, j) be (l2, j2)>(l3, j3)>...>(lr, jr), then the length
of common subsequence of "xi1xi1+1 ...xn" and "yjyj+1 ...ym"
is just r. Let the successors of (i2, j) are (k2, j2')>(k3,
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
j3')>...>(kq, jq'). Because i1 < i2, if an LCS contains a subse-
quence following (i2, j), this exact subsequence(note that
all the x index is larger than i2) can be added at the end of
(i1, j). Since (i1, j) and (i2, j) are on the same level, there
must exist an LCS containing (i1, j). In other words, for
any LCS containing identical character pair (i2, j), there is
at least a corresponding LCS containing identical charac-
ter pair (i1, j). Thus (i2, j) can be pruned without affecting
the algorithm to get the LCS of X and Y.

By extending pruning operation 2, we can get the follow-
ing pruning operation.

Pruning Operation 3
If there are identical character pairs (i1, j), (i2, j), ...,(ir, j)
and i1 <i2<...<ir, then we can prune(i2, j),...,(ir, j).

Framework of FAST_LCS and complexity analysis
Based on the operations of generating the successors of
the identical character pairs using successor tables and the
pruning operations, we present a fast parallel LCS algo-
rithm named FAST_LCS. The algorithm consists of two
phases: searching for all the identical character pairs and
tracing back to get the LCS. The first phase begins with the
initial identical character pairs; then continuously
searches for successors using the successor tables. In this
phase, the pruning technology is implemented to discard
those search branches that obviously can not obtain the
optimum solution so as to reduce the search space and
speed up the process of searching.

The framework of the FAST_LCS algorithm is as follows,
where the phase of searching for all the identical character
pairs consists of steps 1, 2, 3 and the phase of tracing back
is in step 4.

Step 1. Build tables TX andTY;

Step 2. Find all the initial identical character pairs:(TX(k,
0),TY(k, 0)), where k = 1,2,3,4, and add the records of the
initial identical pairs (k, TX(k, 0), TY(k, 0), 1, Φ, active), k
= 1,2,3,4 to the table pairs.

Step 3. Repeat the following until there is no record in
active state in table pairs.

Step 3.1 For all active identical pairs (k, i, j, level, pred,
active) in pairs parallel-do

Step 3.1.1 Produce all the direct successors of (k, i, j, level,
pred, active).

Step 3.1.2 For each identical character pair (g, h) in the
direct successors set of (k, i, j, level, pred, active), a new

record (k', g, h, level+1, k, active) is generated and inserted
into the table pairs.

Step 3.1.3 Change the state of (k, i, j, level, pred, active) into
inactive.

Step 3.2 Use the pruning operations on all the successors
produced on this level to remove all the redundant iden-
tical pairs from table pairs.

Step 4. Compute r = the maximum level in the table pairs.

For all the identical pairs (k, i, j, r,l,inactive) in pairs paral-
lel-do

Step 4.1. pred = l; LCS(r) = xi.

Step 4.2 While pred ≠ Φ do

Step 4.2.1 get the pred-th record (pred, g, h, r',l', inactive)
from table pairs.

Step 4.2.2 pred = l'; LCS(r') = xg.

In the algorithm, a table called pairs is used to store the
identical character pairs obtained in the algorithm. In the
table pairs, each record takes the form of (k, i, j, level, pred,
state) where the data denote the index of the record, the
identical character pair (i, j), its level, the index of its direct
predecessor, and its current state, respectively. Each record
in pairs has two states. For the identical pairs whose suc-
cessors have not been searched, it is in the active state, oth-
erwise it is in the inactive state. In every step of search
process, the algorithm searches for the successors of all the
identical pairs in active state in parallel, and repeat this
search process until there is no more identical pairs in
active state in the table. The phase of tracing back starts
from the identical pairs with the maximum level in the
table, and traces back according to the pred of each identi-
cal pair. This tracing back process ends when it reaches an
initial identical pair, and the trail indicates the LCS. If
there are more than one identical pairs with the maximum
level in the table, the tracing back procedure for those
identical pairs can be carried out in parallel and several
LCS can be obtained concurrently.

The LCS of X, Y is stored in the array LCS. In our algo-
rithm, every identical pair must have the operation of pro-
ducing successors at least once. Because of the pruning
technology, this operation will only be run exactly once
on each identical character pair. Therefore, assuming that
the number of the identical character pairs of X, Y is L, the
time complexity for a sequential execution of the algo-
rithm FAST_LCS (X, Y) is O(L). Since the table pairs has to
store all the identical character pairs, it requires O(L)
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
memory space. Considering that the space cost of TX, TY
are 4*(n+1) and 4*(m+1), the storage complexity of our
algorithm is max{4*(n+1)+4*(m+1), L}. In parallel
implementation of the algorithm, since the process for
each identical pair can be assigned to one processor, all
the operations on the identical pairs can be carried out in
parallel. Thus, the processing of each level requires O(1)
time, and the number of time steps required for a parallel
execution of FAST_LCS is equal to the maximum level of
the identical pairs. By Theorem 1, we know that the length
of the LCS of X, Y, |LCS (X, Y)|, is equal to the maximum
level of the identical pairs. Therefore, the time complexity
of parallel FAST_LCS is O(|LCS(X,Y)|).

Finding the LCS of multiple sequences using FAST_LCS
Our algorithm FAST_LCS can be easily extended to the
LCS problem of multiple sequences. Suppose there are n
sequences X1, X2, ..., Xn, where X = (xi1, xi2, ..., xi,ni), ni is the
length of Xi, xij ∈ {A, C, G, T} where j = 1, 2, ..., ni. To find
their LCS, similar to the case of two sequences, the algo-
rithm for multiple sequences first builds the successor
tables for all the sequences. Denote the successor tables of
X1, X2, ..., Xn as TX1, TX2, ..., TXn, respectively, where TXs is
a two-dimensional array of size 4*(ns + 1 [-del-ni+1]) for
the sequence Xs = (xs1, xs2, ..., xs,ns), s = 1,2,...n, and succes-
sor table TXs of identical characters is defined as:

where SXs (i, j) = {k|xsk = CH(i), k>j} where i = 1, 2, 3, 4.

Similar to identical character pairs in the case of two
sequences, we define the concept of identical character
tuple for LCS of multiple sequences. For the sequences X1,

X2, ..., Xn, if ,we record them in an

identical character tuple of the sequences X1, X2, ...,Xn and

denote it as (i1, i2, ..., in). The set of all the identical char-

acter tuples of X1, X2, ...,Xn is denoted as S(X1, X2, ..., Xn).

Let (i1, i2, ..., in) and (j1, j2, ...,jn) be two identical character
tuples of X1, X2, ..., Xn. If ik <jk, for k = 1,2,...n, we call (i1,
i2, ..., in) a predecessor of (j1, j2, ..., jn), or (j1, j2, ..., jn) a suc-
cessor of (i1, i2, ..., in), and denote them as (i1, i2, ..., in) <
(j1, j2, ..., jn).

Let P(i1, i2, ..., in) = {(j1, j2, ..., jn) | (i1, i2, ..., in) < (j1, j2, ...,

jn), (j1, j2, ..., jn)∈S(X1, X2, ..., Xn)} be the set of all the suc-

cessors of identical tuple (i1, i2, ..., in), if (k1, k2, ...,kn)∑P

(i1, i2, ..., in) and there is no (k1', k2', ..., kn')∈P(i1, i2,..., in)

satisfying the condition: (k1', k2', ..., kn') < (k1, k2, ..., kn)

and , we call (k1, k2, ..., kn) the direct successor of

(i1, i2, ..., in), and denoted it as (i1, i2, ..., in)>(k1, k2, ..., kn).

If an identical tuple (i1, i2, ..., in)∈S(X1, X2, ..., Xn) and
there is no (k1, k2, ..., kn)∈S(X1, X2, ..., Xn) satisfying (k1, k2,
..., kn)>(i1, i2, ..., in), we call (i1, i2, ..., in) an initial identical
tuple.

For an identical tuple (i1, i2, ..., in)∈S(X1, X2, ..., Xn), its
level is defined as follows:

Similar to the case of two sequences LCS, the following
theorems can be easily deduced.

Theorem 3. Denote the length of the LCS of X1, X2,..., Xn
as |LCS(X1, X2,...,Xn)|, then

|LCS(X1,X2,...,Xn)| = max
{level(i1,i2,...in)|(i1,i2,...in)∈S(X1,X2,...,Xn)}.

Proof of Theorem 3 is similar to that of Theorem 1.

In our parallel algorithm for LCS of multiple sequences,
all direct successors of all the initial identical character
tuples are produced in parallel using the successor tables.
Then, the direct successors of all those successors pro-
duced in the first step are generated in parallel. Repeat
these operations of generating the direct successors until
no more successors could be produced. For an identical
character tuple (i1, i2, ..., in) ∈ S (X1, X2,..., Xn), this opera-
tion is as follows:

(i1, i2,...,in)→{(TX1(k, i1), TX2(k, i2),...,TXn(k, in))| k =
1,2,3,4, TXj(k, ij) ≠ '-', j = 1,2,...,n} (6)

From (6) we can see that this operation is to assemble the
elements of the ij-th column of TXj, for j = 1,2,...,n to get
the new tuples.

Example 2. Let n = 3, and X1 = "T G C A T A", X2 = "A T C
T G A T", and X3 = "C T G A T T C". Their successor tables
TX1, TX2 and TX3 are shown in Table 2.

By assembling the 0th columns of the successor tables, we
can get the initial identical triples (4,1,4), (3,3,1), (2,5,3)
and (1,2,2).

The direct successors of the identical character triple
(1,2,2) can be obtained by grouping the elements of the
1st column of TX1 and the 2nd columns of TX2 and TX3,
which are (4,6,4),(3,3,7) (2,5,3) and (5,4,5).

TX i j
k k SX i j SX i j

s
s s

,
min | , ,() =

∈ (){ } () ≠

−
()

⎧
⎨
⎪

⎩⎪

φ

otherwise
4

x x xi i n in1 21 2, , ,...= = =

x xk k′ =
1 1

level i i i
i i i

n

n

1 2

1 21
, ,...,

, ,...,
() =

()if is an initial idenntical tuple

max , ,..., , ,..., ,level k k k k k k i in n1 2 1 2 11(){ + () ≺ 22
5

,...,in()}
⎧
⎨
⎪

⎩⎪
()

 otherwise
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
Theorem 4. For an identical character tuple (i1, i2, ..., in),
the method in (6) can produce all its successors.

Proof of Theorem 4 is similar to that of Theorem 2.

From Theorem 4, we know that all the successors of the
identical tuples on each level can be generated by the
operation of producing successors. Starting from the ini-
tial identical tuples, all the identical tuples can be pro-
duced. In such process of generating the successors,
pruning techniques can be implemented to remove the
identical tuples which can not generate the longest com-
mon subsequence so as to reduce the search space. All the
pruning operations for two-sequence LCS can be easily
extended to the case of multiple sequences.

For instance, in Example 2, among the successors of triple
(1,2,2), we have (2,5,3)>(4,6,4), since they are on the
same level, we can prune (4,6,4). For another instance in
Example 2, among the initial identical triples (4,1,4),
(3,3,1), (2,5,3) and (1,2,2), since they are in the same
level and (1,2,2)>(2,5,3) we can prune (2,5,3).

Assume that the number of the identical character tuples
of the sequences X1, X2, ..., Xn is L. In our algorithm, since

every identical tuple must have the operation of produc-
ing successors exactly once, the time complexity for
sequentially executing of the algorithm on the sequences
X1, X2, ..., Xn is O(L). The algorithm uses a table tuples to

store all the identical character tuples, it requires O(L)

memory space. Considering that the memory space cost of

TXj, for j = 1,2,...,n, is 4 , the storage complexity

of our algorithm is max{4 , L}. In a parallel

implementation, since the computation for each identical
tuple can be assigned on one processor, all the process on
the identical tuples can be carried out in parallel. There-
fore, the processing of each level requires O(1) time, and
the time required for the parallel computation is equal to
the maximum level of the identical tuples which is equal
to the length of the longest common subsequence of X1,

X2, ..., Xn. Therefore the time complexity of the parallel

execution of FAST_LCS on multiple sequences is
O(|LCS(X1, X2, ..., Xn)|).

It should be pointed out that for most of the algorithms
for multiple-sequence LCS, their time complexity strongly
depends on the number of the sequences. For instance, if
we use the Smith-Waterman algorithm to find the LCS of
multiple sequences, the time complexity is

, where n is the number of sequences,

which is not practicable when n is large. The time com-
plexity of our algorithm is O(L) for sequential computa-
tion and O (|LCS(X1, X2, ..., Xn)|) for parallel

implementation, where the time complexity of FAST_LCS
is independent of the number of sequences n. This means
that our algorithm is much more efficient for finding the
LCS of a large number of sequences.

Results
The results of sequential computation on two sequences
We test our algorithm FAST_LCS on the rice gene
sequences of the tigr [29] database and compare the per-
formance of FAST_LCS with that of Smith-Waterman
algorithm [30] and FASTA algorithm [31,32] which are
currently the most widely used LCS algorithms. Since
both our algorithm and Smith-Waterman's can obtain
exactly correct solution, we compare the computation
speed of our algorithm FAST_LCS with that of Smith-
Waterman algorithm. Also, we compare the precision of
our algorithm with that of FASTA using the same compu-
tation time.

Table 3 compares the computation speed of FAST_LCS
with that of Smith-Waterman algorithm on groups of
gene sequence pairs with different lengths. Since a test on
one pair of sequences takes very short time, it is hard to

()ni
i

n

=
∑ +

1

1

()ni
i

n

=
∑ +

1

1

O nn

i

n

i()2 1
1

−
=
Π

Table 2: Their successor tables TX1, TX2 and TX3 in Example 2

TX1:

i CH(i) 0 1 2 3 4 5 6
1 A 4 4 4 4 6 6 -
2 C 3 3 3 - - - -
3 G 2 2 - - - - -
4 T 1 5 5 5 5 - -

TX2:

i CH(i) 0 1 2 3 4 5 6 7
1 A 1 6 6 6 6 6 - -
2 C 3 3 3 - - - - -
3 G 5 5 5 5 5 - - -
4 T 2 2 4 4 7 7 7 -

TX3:

i CH(i) 0 1 2 3 4 5 6 7
1 A 4 4 4 4 - - - -
2 C 1 7 7 7 7 7 7 -
3 G 3 3 3 - - - - -
4 T 2 2 5 5 5 6 - -
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
Table 3: Comparison of computation speed of FAST_LCS with that of Smith-Waterman algorithm

Time of FAST_LCS (s) Time of S-W algorithm(s)

Name of Sequences Length l Number of pairs Total time Average time Total time Average time

gi|21466196 ~ 0≤l≤50 100 0.49 0.0049 1.09 0.0109
gi|21466195 ~
...
gi|21466168 ~
gi|21466167 ~
gi|21466166 ~
gi|30250556 ~
gi|30230255 ~
gi|30230254 ~
gi|30229613 ~
gi|30229612 ~
...
gi|30229449 ~
gi|30229448 ~

gi|30229047 ~ 50≤ l≤ 100 100 5.88 0.0588 11.55 0.1155
gi|30229046 ~
...
gi|30229001 ~
gi|30229000 ~
gi|30228999 ~
gi|30228998 ~
...
gi|30228849 ~
gi|30228848 ~

gi|30229447 ~ 10≤ l≤ 150 100 29.41 0.2941 65.95 0.6595
gi|30229446 ~
...
gi|30229249 ~
gi|30229248 ~

gi|30228846 ~ 15≤ l≤ 200 100 94.11 0.9411 172.213 1.7213
gi|30228845 ~
...
gi|30228648 ~
gi|30228647 ~

gi|30229247 ~ 20≤ l≤ 250 100 230.51 2.3051 425.16 4.2516
gi|30229246 ~
...
gi|30229049 ~
gi|30229048 ~

compare the speed of the algorithms using a single pair of
sequence. Therefore we test the algorithms on groups of
sequence pairs with similar lengths. We test five groups of
sequence pairs each of which consisting of 100 pairs of
sequences. The total time for each group by the two algo-
rithms are listed in Table 3.

Fig. 1 shows the comparison of the computation time of
our algorithm with that of Smith-Waterman algorithm.

From the table and the figure, we can see that our algo-
rithm is obviously faster than Smith-Waterman algorithm
for sequence sets of all different lengths. The difference of
the computation time between the two algorithms grows
exponentially when the length of sequences becomes
greater than 150. This means that our algorithm is much
faster and more efficient than Smith-Waterman's for find-
ing the LCS of long sequences.
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
We also compare the precision of our algorithm with that
of FASTA on the premise of the same computing time.
Here precision is defined as:

Fig. 2 shows the comparison of the precision of the results
by our algorithm with that by FASTA using the same com-
putation time. From Fig. 2, we can see that our algorithm
can obtain the correct result no matter how long the
sequence is, while the precision of FASTA declines when
the length of the sequences is increased. Therefore the pre-
cision of our algorithm is much higher than that of
FASTA.

The results of sequential computing on multiple sequences
We test our algorithm FAST_LCS on the multiple
sequences and compare with the Clustal-W[27] algorithm
which is a popular algorithm for multiple-sequence LCS.
Fig. 3 and Fig. 4 show the comparison of the computation
time of our algorithm FAST_LCS with that of Clustal-W
algorithm. Table 4 lists the computation time of the two
algorithms on 5 sets of different numbers of sequences
with length of 50. Comparison of the computation time
of the two algorithms on sequences sets of different num-
bers of sequences is shown in Fig. 3.

From Fig. 3 and Table 4, we can see that FAST_LCS is faster
than Clustal-W for sets with different numbers of
sequences. When the number of sequences is larger than
five, the speed up is significant.

Table 5 lists the computation time of the two algorithms
on five sequences sets with different lengths. Comparison

of the computation time of the two algorithms on
sequence sets of different lengths is shown in Fig. 4. From
Table 5 and Fig. 4, we can see that FAST_LCS is faster than
Clustal-W for sequence sets with different lengths.

We also compare the precision of our FAST_LCS algo-
rithm with that of Clustal-W algorithm. Fig. 5 shows the
comparison of precision of FAST_LCS with that of Clustal-
W on the sets with different numbers of sequences, and
Fig. 6 shows the comparison of precision of the two algo-
rithms on the sets of sequences with different lengths.
From these two figures, we can see that no matter how the
length and the number of sequences are increased, our

Precision
The length of the common subsequence computed by= the algorithm

The length of the longest common subsequencee in correct match

Comparison of the computation time of FAST_LCS with that of Clustal-W on sequence sets of different numbers of sequencesFigure 3
Comparison of the computation time of FAST_LCS with that
of Clustal-W on sequence sets of different numbers of
sequences.

0

1

2

3

4

5

6

7

8

2 5 8 11 14

The number of input sequence

T
im

e
(S

)

FAST_LCS CLUSTAL-W

Comparison of the computation time of FAST_LCS with that of Smith – Waterman algorithmFigure 1
Comparison of the computation time of FAST_LCS with that
of Smith – Waterman algorithm.

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

The Length of input sequence

T
im

e(
S

)

FAST_LCS S-W Algorithm

Comparison of the precision of FAST_LCS with that of FASTA using the same computation timeFigure 2
Comparison of the precision of FAST_LCS with that of
FASTA using the same computation time.

92

94

96

98

100

102

50 100 150 200 250

The length of input sequence

P
re

c
is

io
n (

%
)

FAST_LCS FASTA Algorithm
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S4
algorithm can obtain the exactly correct results. The preci-
sion of Clustal-W declines when the number or the length
of the sequences is increased. Therefore the precision of
our algorithm is much higher than Clustal-W.

The results of parallel computing
We also test our algorithm on the rice gene sequence from
the tigr database [29] on the Shenteng 1800 supercom-
puter using MPI (C bounding). In the parallel implemen-
tation of FAST_LCS, the identical character pairs in the
active state are assigned and processed in different proces-

sors. The experimental results by using different numbers
of processors are shown in Fig. 7. Three pairs of gene
sequences are tested. The names, lengths, and computa-
tion times are listed in Table 6. From Fig. 7 and Table 6 we
can see that the computation will become faster as the
number of processors increases. Due to the communica-
tion overhead between processors, the speedup of our
algorithm is slower than linear, which conforms to the
Amdahl's Law.

Acknowledgements
This work is supported in part by research funds from an Early Career Prin-
cipal Investigator Award from the Department of Energy of the United
States, the Washington University in St. Louis, the Chinese National Natu-
ral Science Foundation under grant No. 60673060, the Chinese National
Foundation for Science and Technology Development under contract
2003BA614A-14, and the Natural Science Foundation of Jiangsu Province
under contract BK2005047.

This article has been published as part of BMC Bioinformatics Volume 7, Sup-
plement 4, 2006: Symposium of Computations in Bioinformatics and Bio-
science (SCBB06). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/7?issue=S4.

Table 5: Comparison of computation time of FAST_LCS with
that of Clustal-W on sequences sets of different lengths

The length of input sequences

Algorithm 20 30 50 60 80

Time of FAST_LCS (S) 0.109 0.391 2.656 3.516 6.166
Time of Clustal-W (S) 0.312 1.053 2.732 3.612 5.992

Comparison of the computation time of FAST_LCS with that of Clustal-W on sequence sets of different lengthsFigure 4
Comparison of the computation time of FAST_LCS with that
of Clustal-W on sequence sets of different lengths.

0

1

2

3

4

5

6

7

20 30 40 50 60 70 80

The Length of input sequence

T
im

e(
S

)

FAST_LCS CLUSTAL-W

Table 4: Comparison of computation time of FAST_LCS and that of Clustal-W on sequences sets of different numbers of sequences

Sequence name Sequence Number Time of FAST_LCS (s) Time of Clustal-W (s)

gi|21466194 3 0.609 0.804
...
gi|21466196

gi|21466192 5 2.656 2.732
...
gi|21466196

gi|21466189 8 6.14 7.91
...
gi|21466196

gi|21466186 11 5.71 8.20
...
gi|21466196

gi|21466183 14 6.34 8.49
...
gi|21466196
Page 10 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7?issue=S4

BMC Bioinformatics 2006, 7(Suppl 4):S4

Page 11 of 12
(page number not for citation purposes)

Parallel computational time of FAST_LCS using different processor numbersFigure 7
Parallel computational time of FAST_LCS using different
processor numbers.

0

0. 5

1

1. 5

2

1 3 5 7 9 11 13 15

Processor Number

T
im

e (
S
)

gi | 21466166 gi | 30250556 gi | 30228999 gi | 30228998

gi | 30229447 gi | 30229446

Table 6: Computational time of parallel FAST_LCS using different numbers of processors

Computational time using different numbers of processors (s)

Sequence name Length 1 2 4 8 16

gi|21466166 ~ 250 2.3051 0.7955 0.51085 0.3300 0.2313
gi|30250556

gi|30228999 ~ 200 0.9411 0.4247 0.2669 0.15421 0.09379
gi|30228998

gi|30229447 ~ 150 0.3941 0.2015 0.10271 0.06975 0.04702
gi|30229446

Comparison of the precision of FAST_LCS with that of Clus-tal-W on sequence sets with different numbers of sequencesFigure 5
Comparison of the precision of FAST_LCS with that of Clus-
tal-W on sequence sets with different numbers of sequences.

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

The number of input sequence

P
re

c
is

io
n

(%
)

FAST_LCS CLUSTAL-W

Comparison of the precision of FAST_LCS with that of Clus-tal-W on sequence sets of different lengthsFigure 6
Comparison of the precision of FAST_LCS with that of Clus-
tal-W on sequence sets of different lengths.

0

20

40

60

80

100

20 40 60 80 100 120

The Length of input sequence

P
re

ci
si

o
n

(%
)

FAST LCS CLUSTAL- W

BMC Bioinformatics 2006, 7(Suppl 4):S4
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Hao B, Zhang SY: The manual of bioinformatics. Shanghai Science

and Technology Publishing Company 2000.
2. Li YD, Sun ZR, et al.: Bioinformatics – The practice guide for

the analysis of gene and protein. Tsinghua University Publishing
Company 2000.

3. Edmiston EW, Core NG, Saltz JH, et al.: Parallel processing of bio-
logical sequence comparison algorithms. International Journal of
Parallel Programming 1988, 17(3):259-275.

4. Lander E: Protein sequence comparison on a data parallel
computer. Proceedings of the 1988 International Conference on Parallel
Processing 1988:257-263.

5. Galper AR, Brutlag DL: Parallel similarity search and alignment
with the dynamic programming method. In Technical Report
California: Stanford University; 1990.

6. Smith TF, Waterman MS: Identification of common molecular
subsequence. Journal of Molecular Biology 1990, 215:403-410.

7. Needleman SB, Wunsch CD: A general method applicable to
the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 1970, 48(3):443-453.

8. Aho A, Hirschberg D, Ullman J: Bounds on the complexity of the
longest common subsequence problem. J Assoc Comput Mach
1976, 23:1-12.

9. Gotoh O: An improved algorithm for matching biological
sequences. J Molec Biol 1982, 162:705-708.

10. Mayers EW, Miller W: Optimal alignment in linear space. Com-
put Appl Biosci 1998, 4:11-17.

11. Hirschberg DS: A Linear space algorithm for computing max-
imal Common Subsequences. Commun ACM 1975,
18(6):341-343.

12. Pan Y, Li K: Linear array with a reconfigurable pipelined bus
system – concepts and applications. Journal of Information Science
1998, 106:237-258.

13. Myoupo JF, David Seme D: Time-efficient parallel algorithms for
the longest common subsequence and related problems.
Journal of Parallel and Distributed Computing 1999, 57:212-223.

14. Bergroth L, Hakonen H, Raita T: A survey of longest common
subsequence algorithms. Seventh International Symposium on String
Processing Information Retrieval 2000:39-48.

15. Aggarwal A, Park J: Notes on searching in multidimensional
monotone Arrays. Proc 29th Ann IEEE Symp Foundations of Comput
Sci 1988:497-512.

16. Apostolico A, Atallah M, Larmore L, Mcfaddin S: Efficient parallel
algorithms for string editing and related problems. SIAM J
Computing 1990, 19:968-988.

17. Lu M, Lin H: Parallel algorithms for the longest common sub-
sequence Problem. IEEE Transaction on Parallel and Distributed Sys-
tem 1994, 5:835-848.

18. Babu KN, Systems W, Saxena S: Parallel algorithms for the long-
est common subsequence problem. 4th International Conference
on High Performance Computing 1997:18-21.

19. Robert Y, Tchuente M: A Systolic Array for the Longest Com-
mon Subsequence Problem. Inform Process Lett 1985,
21:191-198.

20. Chang JH, Ibarra OH, Pallis MA: Parallel parsing on a one-way
array of finite-state machines. IEEE Trans Computers 1987, C-
36:64-75.

21. Luce G, Myoupo JF: Systolic-based parallel architecture for the
longest common subsequences problem. Integration 1998,
25:53-70.

22. Freschi V, Bogliolo A: Longest common subsequence between
run-length-encoded strings:a new algorithm with improved
parallelism. Information Processing Letters 2004, 90:167-173.

23. Lipman DJ, Altschul SF, Kececioglu JD: A tool for multiple
sequence alignment. Proc Natl Acad Sci USA 1989, 86:4412-4415.

24. Carrillo H, Lipman DJ: The multiple sequence alignment prob-
lem in biology. SIAM J Appl Math 1988, 48:1073-1082.

25. Stoye J, Moulton V, Dress AW: DCA: an efficient implementa-
tion of the divide-andconquer approach to simultaneous
multiple sequence alignment. Comput Appl Biosci 1997, 13:625-6.

26. Reinert K, Stoye J, Will T: An iterative method for faster sum-
of-pair multiple sequence alignment. Bioinformatics 2000,
16(9):808-814.

27. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position specific gap penalties

and weight matrix choice. Nucleic Acids Research 1994,
22:4673-4680.

28. Feng DF, Doolittle RF: Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J Mol Evol 1987,
25:351-360.

29. [http://www.tigr.org/tdb/benchmark].
30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local

alignment search tool. J Mol Biol 1990, 215:403-410.
31. [http://alpha10.bioch.virginia.edu/fasta_www/cgi/].
32. [http://www.ebi.ac.uk/services/].
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2734293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2734293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9475994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9475994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9475994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.tigr.org/tdb/benchmark
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://alpha10.bioch.virginia.edu/fasta_www/cgi/
http://www.ebi.ac.uk/services/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Conclusion
	Methods
	The identical character pair and its successor table
	The operation of producing successors
	The operations of pruning
	Pruning Operation 1
	Rationale
	Pruning Operation 2
	Rationale
	Pruning Operation 3

	Framework of FAST_LCS and complexity analysis
	Finding the LCS of multiple sequences using FAST_LCS

	Results
	The results of sequential computation on two sequences
	The results of sequential computing on multiple sequences
	The results of parallel computing

	Acknowledgements
	References

