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Abstract

Background: Quantitative simultaneous monitoring of the expression levels of thousands of
genes under various experimental conditions is now possible using microarray experiments.
However, there are still gaps toward whole-genome functional annotation of genes using the gene
expression data.

Results: In this paper, we propose a novel technique called Fuzzy Nearest Clusters for genome-
wide functional annotation of unclassified genes. The technique consists of two steps: an initial
hierarchical clustering step to detect homogeneous co-expressed gene subgroups or clusters in
each possibly heterogeneous functional class; followed by a classification step to predict the
functional roles of the unclassified genes based on their corresponding similarities to the detected
functional clusters.

Conclusion: Our experimental results with yeast gene expression data showed that the proposed
method can accurately predict the genes' functions, even those with multiple functional roles, and
the prediction performance is most independent of the underlying heterogeneity of the complex
functional classes, as compared to the other conventional gene function prediction approaches.

quantitatively. Analysis of such genome-wide gene expres-

Background

Recent emergence of various high throughput tools has
supplied new and powerful means for biologists to exper-
imentally interrogate living systems at the systems level
instead of merely at the molecular level. Large-scale exper-
iments that could only be imagined a few decades ago can
now be performed routinely. In particular, the advent of
DNA microarray technologies has enabled the differential
expressions of thousands of genes under various experi-
mental conditions to be monitored simultaneously and

sion data is useful for elucidating the functional relation-
ships among genes in the genomes.

To systematically reveal the biological functional roles of
the genes in a genome, the gene expression profiles of a
series of experimental assays or conditions can be grouped
into clusters based on the similarity in their patterns of
expression. The co-expressed genes in each cluster can
then be inferred to be coding for proteins that partake in
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a common biological function. The functions of
unknown gene products can also be inferred using the
guilt-by-association principle [1].

There are two typical techniques that can be used on gene
expression data for gene function annotation or predic-
tion. The first technique is clustering (a form of unsuper-
vised learning), while the second is classification (a form
of supervised learning) [2]. In clustering, the data points
(e.g. genes) are unlabeled - in other words, we assume no
prior knowledge about any of the genes' biological func-
tions. Using the expectation that genes which perform a
common biological function would have expression pro-
files that exhibit a similar pattern across different experi-
mental conditions, the clustering process organizes genes
into different functional groups using a similarity (or dis-
tance) measure on the gene expression data. Numerous
clustering techniques [3] have been proposed to find
groups of co-expressed genes. These techniques include
hierarchical clustering [4], self-organizing maps [5], k-
means clustering [6], simulated annealing [7], graph-the-
oretic clustering [8], mutual information approach [9],
fuzzy c-means clustering [10], diametrical clustering [11],
quantum clustering with singular value decomposition
[12], bagged clustering [13] and CLICK [14].

Clustering techniques are useful when there is no prior
knowledge (i.e. functional labels for the genes) available.
However, this may not be a particularly common situa-
tion here as biologists typically already know a subset of
genes involved in a biological pathway of interest. Instead
of clustering, we can treat the function prediction prob-
lem as a classification task so that such prior information
can be exploited in the form of training sets for supervised
machine learning algorithms. Several classification meth-
ods have been proposed, including nearest neighbor clas-
sification [15], support vector machines [16] and neural
networks [17]. However, as cellular functions are natu-
rally complex, a combination of heterogeneous biological
activities is typically required to perform each biological
function. This means that not all the genes in a given func-
tional class behave homogeneously, and this can drasti-
cally affect the learning rates of classification methods
[17].

In this paper, we therefore adopt a combined approach of
unsupervised clustering followed by supervised classifica-
tion for assigning biological functions to the unknown
genes. First, we perform hierarchical clustering to find co-
expressed subgroups or clusters of genes within each puta-
tive heterogeneous functional class. After that, given a test
gene, we predict its functional classes by computing the
similarity of its expression profile to each of its nearest
functional clusters - these similarity values can be consid-
ered as fuzzy membership values that represent the degree

to which the test gene belongs to the corresponding func-
tional classes (where each class is a fuzzy set). The func-
tion labels of those clusters with maximal similarities can
then be assigned to the test gene as its predicted functions.

We call this approach the Fuzzy Nearest-Cluster method
(FNC) and we will show in this paper that it is particularly
useful for genome-wide systematic functional prediction
of genes from microarray expression data, because it takes
into account the heterogeneity present even within each
functional class.

Methods

In this section, we provide the details of our proposed
technique Fuzzy Nearest-Cluster (FNC), which utilizes the
advantages of both clustering and classification by (i) cap-
turing the homogeneous gene subgroups within heteroge-
neous function classes through clustering; and (ii) using
the experimentally-determined function information, i.e.
prior biological knowledge for classification. Our method
FNC consists of two steps. Section 'Mining for co-
expressed gene subgroups with hierarchical clustering'
presents the first step — a hierarchical clustering algorithm
that finds, within each functional class, the subgroups of
genes that are co-expressed. Then, a classification step is
described in Section 'Predicting the functions of unclassi-
fied genes' to predict the functional classes of unclassified
genes based on the functional similarities. Finally, Section
'Determining the thresholds A and k' presents how to
automatically set the parameters used in the two steps
above.

Mining for co-expressed gene subgroups with hierarchical
clustering

Biological functions are complex processes; it is therefore
unrealistic to expect that all the genes in a functional class
would be expressed in a homogeneous fashion. Figure 1
shows an example of the high degree of heterogeneity
amongst the genes in the functional class "C-compound
and carbohydrate metabolism". It is thus desirable to cap-
ture the homogeneous gene subgroups within each func-
tional class, where the genes within each subgroup have a
maximal level of similarity in their expression (see Figure
2) that is in turn suitable for classification training. In this
paper, we therefore pre-characterize each functional class
by performing hierarchical clustering to group the genes
within a given functional class into homogeneously co-
expressed subgroups.

Agglomerative hierarchical clustering (HC) is an iterative
procedure whereby the most similar genes are grouped
together during each step to form progressively larger and
larger clusters of genes. Compared with k-means cluster-
ing where the number of clusters must be pre-determined
by a parameter k, the number of sub-clusters need not be
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Heterogenous expressions of genes for the "C-compound and carbohydrate metabolism function" (MIPS code 01.05)

pre-determined here (although HC typically clusters all
the genes into one big cluster after the procedure is com-
plete). It is therefore suitable for our application as it is
not possible to pre-determine the number of subgroups in
a heterogeneous functional class.

There are several approaches for agglomerative HC. In the
average group linkage method, the distance (or inversely,
similarity) between two clusters is defined in terms of the
average vectors of each cluster, i.e. two vectors are
involved. Other methods include average linkage (dis-
tance is average of pair-wise distances between all items
within two clusters), single linkage (minimum of all pair-
wise distances), and complete linkage (maximum of all
pair-wise distances). Our FNC method employs a variant
of average group linkage. We chose the average group
linkage method (also used in [4]) for its computational
efficiency as well as its robustness against the noisiness of
gene expression microarray data. Single linkage and com-
plete linkage are relatively much more susceptible to noise
as they take only a single distance (either minimum or
maximum) into account when comparing clusters.

Our variant of average group linkage produces a number
of clusters instead one single cluster. We introduce a
threshold A to stop the clustering procedure when even
the most similar or closest clusters have a similarity less
than A.

Algorithm 1 details our clustering algorithm for mining
co-expressed subgroups within a functional class. For each

function f; in the function set F, our Algorithm 1 clusters
the genes within the functional group f; into co-expressed
subgroups. In the algorithm, steps 3 to 6 construct a gene
set G; for function f; and compute the corresponding sim-
ilarity values between each pair of genes in the gene set G;.
Here, the Pearson correlation is used as the similarity
measure. In step 7, each gene in the G; is set as an initial
individual cluster to construct cluster C;. Step 8 then finds
the two most similar clusters from C;. Steps 9 to 15 com-
prise the merging loop to group the two most similar clus-
ters into a new cluster C;, (step 10) if the similarity value
is greater than the threshold A. Step 11 then calculates the
new expression profile for cluster C;,. Steps 12 and 13 add
the new cluster while removing the two underlying clus-
ters from C; respectively. Finally, step 14 finds the two
most similar clusters in the updated cluster set C; to pre-
pare for the next iteration. When the algorithm termi-
nates, for each gene function f;, the algorithm outputs a
cluster set C; where the similarity between each pair of
clusters in C; is less than A.

It is important to note that while genes were clustered
together regardless of their biological functions in the
related clustering works mentioned in the introduction,
we cluster here only the genes within each of the func-
tional classes. Thus, we are able to make use of existing
biological knowledge and avoid the potential problem of
generating gene expression clusters do not correspond to
the true biological functional classes.

Input: Training gene set G and function set F
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Figure 2
Two distinctly co-expressed sub-graphs for the genes in the "C-compound and carbohydrate metabolism" function.

Output: Cluster set C, for each function f 7: Initialize cluster set C;= {C;| C;= {g;}, §€G;j=1,2,.
G
1: BEGIN
8: Find the two clusters C;,, and C;, with maximal similar-
2: for each function fie F do ity,
3: Construct gene set G; = {g | fun(g) = f,, g€ G}; (Cpy Ciy) =arg max sim(Cy, Cy,), Cyy Cye Cs
iar~ib
4: for each pair of gene (g, ;) 3.€Gi <G, a#b, do

9: while (sim(C,,, C;,) 2 1) do

Ul

: Compute the similarity sim(g, g,);

10: Combine C;,, and C;, into a bigger cluster C,
6: end for

11: Calculate the expression profile for C;, by averaging
the gene profiles of C;,, and C,,,;
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12: Gi= G U {Cy};
13: C;= G- {Cy,} - {Cii}s

14: Find the two new clusters C,,, and C;, with maximal
similarity in updated cluster set C;, C;,,, C;, € C;

15: end while
16: end for
17: END

Algorithm 1. Mining of co-expressed subgroups within
each function

Predicting the functions of unclassified genes

Next, based on the gene subgroups in each of the func-
tional classes, we can predict the functions of unclassified
genes by using their nearest clusters' functional informa-
tion. The underlying rationale is that co-expressed genes
are likely to share the same biological functions (the
"guilt-by-association" principle). Given an unknown gene
g, for each function f;, we compute the functional similar-
ity value between g, and f;. The gene g, is then assigned
with functions having the largest similarity values. The
function similarity value between g, and f; is computed as
follows. First, we compute the Pearson similarity between
g,and each cluster in function f;. The clusters that have the
top k biggest Pearson similarity values are then selected as
prototype clusters. The functional similarity between g,
and f; is then defined as the average Pearson similarity
value of the prototype clusters. The detailed steps are
shown in Algorithm 2.

In Algorithm 2, we predict the functions for each unclas-
sified gene g, in the test set T based on its similarity scores
(also interpreted as a fuzzy membership value) with the
clusters of the known functions. Step 4 of the algorithm
computes the cluster similarity between a test gene g, and
each cluster C; in cluster set C; of function f;. Steps 5 to 6
then obtain a subset C,,, of C; consisting of k nearest pro-
totype clusters. Step 7 computes the average cluster simi-
larities fs;. Finally, steps 9 and 10 rank the fs;and assign the
test gene g, with the functions that have the top fs; values
(see our evaluation metric TNA in Section 3.1.3).

Input: Test gene set T, Cluster set C; for each function f
Output: gene's predicted functions
1: BEGIN

2: for each test gene g T do

3: for each function f,e F do

4: Compute the cluster similarity ss(g, C;) between the
test gene g and each cluster C; in cluster set C;;

5: Suppose cluster Cy, is the cluster whose cluster similarity
is k-th largest in cluster set C;;

6: Cyp = {Cyl ss(8, Cyj) 2ss(gt, Cy), C€Cyj=1,2, ...,
Cil};

i ’

k
7 fsi = 2 $8(8¢/Cim) [ k. Cipy € Ctop;
m=1
8: end for
9:Rankfs,i=1,2,... |F;

10: Assign the functions with the top fs; to gene g;
11: end for
12: END

Algorithm 2. A fuzzy k-nearest clusters algorithm for func-
tional prediction.

Given a test gene, the functions with maximal functional
similarities will be assigned to it. The average cluster sim-
ilarity fs; basically evaluates how similar a test gene is to a
function, indicating a fuzzy membership value with
respect to each function. The sum of fuzzy membership
values for any particular test gene need not be 1, since
these are not probability values. Also, because genes are
typically involved in multiple cellular processes, each
gene can have partial membership in more than one func-
tional class (fuzzy set).

Determining the thresholds A and k

There were two parameters, A and k, used in the two steps
presented in the previous sections. A is a parameter for the
clustering process, while k is a parameter for the classifica-
tion step. Parameter A determines when we should stop
the clustering process; its value directly affects the "qual-
ity" of the clusters output by the clustering step. Parameter
k controls how many similar neighboring clusters to be
used in the classification step for predicting the function
labels for a given gene; it therefore affects the classification
performance.

Conventionally, clustering and classification methods
require the parameters to be "user-defined"; they therefore
fall short for not providing a systematic way to determine
the values for these key parameters that directly affect sys-
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tem performance. Here, we show how we can quantita-
tively determine the threshold values for these two
parameters by minimizing the estimated error rate based
on the known genes' function labels. We use different val-
ues of A from 0.7 to 1.0 (in steps of 0.05) while varying k
from 1 to 20 (with step 1.00). For each combination of A
and k values, we compute the estimated error rate for all
the genes in training set G - by counting the number of
genes' predicted functions f(g; A, k) that were not equal to
its actual functions L(g;). The threshold values of A and k
can then be obtained from the (A', k') that gave the mini-
mum error on G:

G|
(N.k') =arg rrklian(f(gi,hk) #1(8)).8 € G

=1

Results

Gene function prediction is a multi-class classification
problem since genes typically play multiple roles biologi-
cally. Given an unclassified gene and multiple possible
functional classes C = {c;, c,,..., ¢,}, our program needs to
decide the most likely N classes for the unknown gene; the
predictions can then be given to biologists for experimen-
tal validation. As such, we face a more challenging classi-
fication problem than typical binary classification that
only needs to determine whether a gene belongs to a par-
ticular functional class or not.

Experimental setup

For evaluation, we compare our proposed FNC method
with two widely adopted methods, i.e. Support Vector
Machines [18] and k nearest neighbors [15]. For each of
the classification methods in our evaluation, we perform
5 randomly-seeded runs of 5-fold cross-validation.

Data set

We use a composite dataset from six different experimen-
tal studies described in [19,20] and [21]. Each study's
dataset consists of gene expression levels of the entire
yeast genome under various experimental conditions (see
Table 1). Together, they form a composite dataset com-
prising the gene expression levels of 6221 genes under 80
different conditions. We represent the data as a matrix of

Table I: Experimental conditions in composite dataset

6221 rows and 80 columns. The composite dataset can be

obtained from Eisen's lab [4] at http://rana.lbl.gov/Eisen

Data.htm.

Note that there are many missing values in the original
6221-by-80 data as some gene expression values were not
obtained under certain conditions in the studies due to
experimental limitations or irregularities. We further
refine the dataset by filtering out those rows (genes) with
more than 20 missing values, resulting in a reduction of
classifiable genes to 5775. Some of these genes may still
have missing expression values. Although there are vari-
ous involved methods for filling in or predicting missing
values [22], we simply fill in the missing values with
zeroes here without loss of generality.

MIPS functional annotation

In our study, we use the MIPS Comprehensive Yeast
Genome Database (CYGD) [23] as the source of function
annotations. MIPS uses a numeric, hierarchical system to
denote the various classes of biological functions. In this
work, we use a functional granularity up to MIPS level 2.
We then keep only those functional classes that contained
at least ten genes so that there are sufficient training data
for each function. In all, 48 MIPS functional classes were
selected classifying the 5775 yeast genes using the 80-col-
umn datasets.

Evaluation metric

We introduce here a new evaluation metric called the "top
N accuracy" (TNA). For each given gene, the TNA metric
requires a prediction algorithm to produce a ranked
ordering of all putative functional categories (there are 48
in the current case), in the order of decreasing likelihood
for class membership. The algorithm is considered to have
made a correct prediction if any of the N most likely
classes is actually a function of the gene. The overall "top
N accuracy" is then the percentage of test genes that are
correctly predicted in this fashion. We set N = 4 here since
in the MIPS system, a yeast gene typically has at most four
different functions (only 2.3% of genes have 5 or more
functions).

The TNA metric can be easily used on any algorithm
whose outputs are continuous variables. For evaluation, it

Dataset Type of condition # conditions Ref
| Nitrogen deficiency 13 [19]
2 Glucose depletion 7 [20]
3 Factor-based synchronization 18 [21]
4 Cdc|5-based synchronization 25 [21]
5 Elutriation synchronization 14 [21]
6 Cln3 and CIb2 experiments 3 [21]
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has numerous advantages over existing metrics such as
accuracy, F-measure and cost-savings [16]. Compared to
the traditional "accuracy" metric (used in [24]), TNA is
more robust to unbalanced training sets (which is the
present situation), where the negative examples outweigh
positive examples by many times, such that a trivial algo-
rithm that always returns a negative outcome will have a
very high accuracy. Our TNA metric overcomes this by
using a ranking system instead.

As compared to the "cost-savings" metric used in [16],
TNA is more intuitive because it is similar to the familiar
notion of accuracy. Also, the cost measure in [16] is
defined as FP + (2 x FN), where FP and FN are the number
of false positives and false negatives respectively. This for-
mula not only makes the assumption that false negatives
are twice as costly as false positives, it does not take into
account the number of true positives and true negatives.

Furthermore, TNA is more intuitive and "usable" com-
pared to F-measure, which is the harmonic mean of recall
and precision. Having a combined metric that takes both
recall and precision into account makes for easier compar-
isons, but lowers the interpretability of the results. For
instance, what does an F-measure of 0.5 mean? In con-
trast, a TNA of 50% when N = 4 is easily and unambigu-
ously interpreted to mean that given a set of genes, half of
them will have at least 1 correctly predicted function
among their top 4 predicted functions.

Compared techniques
As mentioned earlier, we compare our FNC technique
with Support Vector Machines and k Nearest Neighbors.

Support Vector Machines (SVMs) [18] are a commonly
used kernel-based machine learning technique for micro-
array data analysis. We use the SVMIlight software http://
svmlight.joachims.org/ in our evaluation. Among the var-
ious possible kernel functions, we use the two popular
kernels, the linear kernel and radial basis function (RBF)
kernel, denoted as L-SVM and RBF-SVM respectively.

Note that SVMs perform binary classification; as such, we
need to adapt it to perform multi-class classification for
our purpose. To do so, we first trained 48 different binary
SVMs, one for each function class. For prediction, each
SVM outputs a real value (instead of a 1 or 0). Tradition-
ally, a threshold of 0 is used to determine if the test sam-
ple is in the function class or not. Here, we compare the
real values output by the 48 binary classifiers, and take the
N predictions with the highest values. Note also that for
RBF-SVM, the performance varies with 2 built-in parame-
ters, y and c. Parameter 7y is the "width" of the RBF while ¢
determines the trade-off between the training error and
the width of the margin separating the positive and nega-

tive training examples. Both parameters were determined
heuristically, using the "grid-search method" (i.e. system-
atically trying various {y, ¢} pairs). In preliminary experi-
ments, we found that varying the parameters
exponentially (e.g. ¢ = [1, 10, 100, 1000]) is a reasonable
approach because performance is essentially unchanged
over small changes in parameter values. We performed the
grid-search at two levels of granularity, first finding a
coarse interval that produces good results, and then
searching within that interval.

k nearest neighbors (KNN) is another standard machine
learning technique [15]. For a given gene, its k nearest
neighbors are found, and the function class label pos-
sessed by the majority of these k neighbors is assigned to
the gene. For N = 4, we use k = 14 to match the mean value
of k for ENC. For multi-class predictions, the N most com-
mon labels among the k nearest neighbors are assigned to
the unclassified gene.

Experimental results

We compare the four different prediction techniques in
terms of our evaluation metric TNA. Table 2 shows the
detailed classification results of the 5 random runs (note
that a 5-fold cross validation comparison is performed in
each run) for the top 20 functional classes in size. The
results show that our FNC method outperforms the other
gene function prediction methods, obtaining a TNA value
of 65.27%, which is 4.55%, 23.17%, and 4.76% higher
than KNN, L-SVM, RBF-SVM respectively.

Compared with the other techniques, FNC consistently
achieved the best prediction results, indicating that our
method is suited for systematic gene function prediction
to help biologists in their continuing search for the bio-
logical functions of genes. Furthermore, in terms of the
computational processing time, the closest performing
prediction method, RBF-SVM, required close to an order
of magnitude more time than FNC.

Table 3 shows the overall comparison results of the differ-
ent prediction techniques for all the 48 functional classes.
Our FNC method outperformed with 22.11%, 3.85%,
and 5.5% higher than the TNA values obtained by L-SVM,
RBF-SVM, and KNN respectively, confirming that its supe-
rior results were not limited to the larger-sized functional
classes.

We also investigate the performance of FNC with respect
to two specific issues for gene function prediction on
expression data: heterogeneity and multiple functions.

Heterogeneity
As mentioned earlier, there can be much inherent hetero-
geneity in the functional classes as biological processes are
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Table 2: Classification results (%) for largest 20 functional classes. Values in bold indicate the top performance in each row.

Functional Class FNC KNN L-SVM RBF-SVM

Mitochondrion 73.9 783 57.2 78.7
Cytoskeleton 69.7 74.7 46.7 61.3
Nucleotide metabolism 39.4 333 259 38.1
Protein targeting, sorting and translocation 58.6 48.6 40.0 47.7
Protein degradation 54.2 54.6 38.6 54.2
Cell growth/morphogenesis 67.5 68.7 444 59.7
Lipid, fatty acid and isoprenoid metabolism 315 299 29.3 34.4
Stress response 572 58.7 36.9 55.0
Amino acid metabolism 53.1 43.6 41.0 57.3
Cellular sensing and response 63.1 62.7 47.8 56.8
Protein modification 44.1 395 353 47.3
Ribosome biogenesis 90.0 94.5 84.8 94.1
RNA processing 50.7 484 31.6 47.7
DNA processing 71.0 63.1 395 64.7
Transported compounds 73.8 60.4 36.8 68.7
Fungal/microorganismic cell type differentiation 735 76.2 45.6 66.0
C-compound and carbohydrate metabolism 76.3 63.9 41.2 69.7
Cell cycle 86.5 79.1 44.3 76.0
RNA synthesis 83.1 64.3 337 66.5
Transport routes 88.3 72.1 414 66.1

Average 65.27 60.72 42.10 60.51

necessarily complex, carried out by gene and protein
groups that perform various roles that contribute toward
the overall biological functions (see Figures 1 and 2 for an
example). We investigate whether the prediction methods
are affected by the underlying heterogeneity in the expres-
sion data for each biological function. We use the hetero-
geneity measure as defined in [17] to quantify the degree
of heterogeneity for different functional classes. The corre-
lation of the prediction performance against the degree of
heterogeneity in the functional classes is then computed
for each prediction method. Based on our evaluation
dataset, the Pearson correlations were -0.50, -0.53, -0.54,
-0.64 for FNC, KNN, L-SVM and RBF-SVM respectively.
The results showed that our method FNC is least corre-
lated (hence, most robust) with the degree of the underly-
ing heterogeneity in the functional classes.

Multi-function predictions

Biological functions are not stand-alone but inter-related
cellular processes; as such, it is common for a gene to hold
multiple functional roles. An important issue for gene

function prediction is whether we can predict all the func-
tions for those genes with multiple functions.

Figure 3 shows the prediction results for genes with 2, 3
and 4 functions respectively. Here, we only show the
results for up to the top 20 predictions (N < 20) due to
space constraints. In all three cases, the prediction accu-
racy in terms of our TNA metric increases with N, as
expected. Calculations of area-under-the-curve (where
perfect performance gives an area of 1.0) confirmed that
the ranking produced by our FNC method is consistently
the best amongst all the methods (Figure 4). This means
that our method FNC is more competent than the existing
techniques in ranking the true functional classes in its top-
ranked predictions. However, we should also note that
there is still much room for improvement, as the accuracy
values are still not high enough for small N.

Conclusion

The recent advances in microarray technology have cer-
tainly revolutionized the way molecular biologists study
the functional relationships among genes. While we are

Table 3: Comparison of results (%) of whole-genome functional classification. Values are derived from the mean of 5 random

repetitions of 5-fold cross-validation.

Method Run | Run 2 Run 3 Run 4 Run 5 Mean
L-SVM 35.30 34.82 34.02 34.02 34.08 34.45
RBF-SYM 53.20 53.20 51.80 52.44 52.92 52.71
KNN 50.90 50.98 51.14 51.54 50.74 51.06
FNC 56.76 56.52 56.02 56.98 56.50 56.56
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Figure 3

Comparison or results for genes with multiple (2, 3 and 4) functions (top to bottom respectively).
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Figure 4

Comparison of areas under curves for genes with multiple functions. Note that we use the full curves (up to N=48) for calcu-
lating the area, while Figure 3 shows the results for only up to N=20 due to space constraints.

now able to monitor gene expression at the genomic scale
using microarray technology, there are still gaps toward
whole-genome functional annotation of genes using the
gene expression data.

Gene function prediction is challenging because of several
factors. For example, the larger functional classes are usu-
ally heterogeneous, while each gene in the genome can
also play multiple functional roles. In this paper, we have
described a robust Fuzzy Nearest-Cluster method for the
systematic functional annotation of unclassified genes
using DNA expression data. For each function, we do not
assume homogeneity; instead, hierarchical clustering is
first used to detect the homogeneous co-expressed sub-
groups for each functional class. This addresses the func-
tional heterogeneity issue. Our FNC method then
classifies the unknown genes based on their overall simi-
larities to each detected functional clusters in a multi-class
fashion. This addresses the possibilities of genes' playing
multiple functional roles in the cellular processes. Our
comprehensive comparative experimental results with
yeast gene expression data showed that our method can
accurately predict the genes' functions, even those with
multiple functional roles, and at the same time, our
method's prediction performance is also the most inde-
pendent of the underlying heterogeneity of the complex

functional classes, as compared to the other conventional
gene function prediction approaches.
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