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Abstract
Background: We describe Support Vector Machine (SVM) applications to classification and
clustering of channel current data. SVMs are variational-calculus based methods that are
constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions
for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting
information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have
been successfully employed for notably better performance over standard kernels. Currently there
are two approaches for implementing multiclass SVMs. One is called external multi-class that
arranges several binary classifiers as a decision tree such that they perform a single-class decision
making function, with each leaf corresponding to a unique class. The second approach, namely
internal-multiclass, involves solving a single optimization problem corresponding to the entire data
set (with multiple hyperplanes).

Results: Each SVM approach encapsulates a significant amount of model-fitting information in its
choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed
for notably better performance over standard kernels. Two SVM approaches to multiclass
discrimination are described: (1) internal multiclass (with a single optimization), and (2) external
multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach,
along with further refinements to the internal-multiclass SVM algorithms that offer significant
improvement in training time without sacrificing accuracy. In situations where the data isn't clearly
separable, making for poor discrimination, signal clustering is used to provide robust and useful
information – to this end, novel, SVM-based clustering methods are also described. As with the
classification, there are Internal and External SVM Clustering algorithms, both of which are briefly
described.
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Background
Support Vector Machine
SVMs are fast, easily trained, discriminators [1,2], for
which strong discrimination is possible without the over-
fitting complications common to neural net discrimina-
tors [1]. SVMs strongly draw upon variational methods in
their construction and are designed to yield the best esti-
mate of the optimal separating hyperplane (for classifier,
see Fig. 1) with confidence parameter information
included (via hyperplane with margin optimization used
in structural risk minimization). The SVM approach also
encapsulates a significant amount of model fitting and
discriminatory information in the choice of kernel in the
SVM, and a number of novel kernels have been devel-
oped. In [3], novel, information-theoretic, kernels were
introduced for notably better performance over standard
kernels (with discrete probability distributions as part of
feature vector data). The classification approach adopted
in [3] is designed to scale well to multi-species classifica-
tion (or a few species in a very noisy environment). The
scaling is possible due to use of a decision tree architecture
and an SVM approach that permits rejection on weak data.
SVMs are usually implemented as binary classifiers, are in
many ways superior to neural nets, and may be grouped
in a decision tree to arrive at a multi-class discriminator.
SVMs are much less susceptible to over-training than neu-
ral nets, allowing for a much more hands-off training
process that is easily deployable and scalable. A multiclass
implementation for an SVM is also possible – where mul-
tiple hyperplanes are optimized simultaneously. A (sin-
gle-optimization, multi-hyperplane) multiclass SVM has a
much more complicated implementation, but the reward
is a classifier that is much easier to tune and train, espe-
cially when considering data rejection. The (single) multi-
class SVM, doesn't have as non-scalable a throughput
problem (with tree depth), and even appears to offer a
natural drop zone via its margin definition, so is being
considered in further refinements of the method.

SVMs use variational methods in their construction and
encapsulate a significant amount of discriminatory infor-
mation in their choice of kernel. In reference [3] informa-
tion-theoretic kernels provided notably better
performance than standard kernels. Feature extraction
was designed to arrive at probability vectors (i.e., discrete
probability distributions) on a predefined, and complete,
space of possibilities. (The different blockade levels, and
their frequencies, the emission probabilities, and the tran-
sition probabilities, for example.) This turns out to be a
very general formulation, wherein feature extraction
makes use of signal decomposition into a complete set of
separable states that can be interpreted or represented as a
probability vector. A probability vector formulation also
provides a straightforward hand-off to the SVM classifiers
since all feature vectors have the same length with such an

approach. What this means for the SVM, however, is that
geometric notions of distance are no longer the best meas-
ure for comparing feature vectors. For probability vectors
(i.e., discrete distributions), the best measures of similar-
ity are the various information-theoretic divergences:
Kullback-Leibler, Renyi, etc. By symmetrizing over the
arguments of those divergences a rich source of kernels is

A sketch of the hyperplane separability heuristic for SVM binary classificationFigure 1
A sketch of the hyperplane separability heuristic for SVM 
binary classification. An SVM is trained to find an optimal 
hyperplane that separates positive and negative instances, 
while also constrained by structural risk minimization (SRM) 
criteria, which here manifests as the hyperplane having a 
thickness, or "margin," that is made as large as possible in 
seeking a separating hyperplane. A benefit of using SRM is 
much less complication due to overfitting (a common prob-
lem with Neural Network discrimination approaches). Given 
its geometric expression, it is not surprising that a key con-
struct in the SVM formulation (via the choice of kernel) is the 
notion of "nearness" between instances (or nearness to the 
hyperplane, where it gives a measure of confidence in the 
classification, i.e., instances further from the decision hyper-
plane are called with greater confidence). Most notions of 
nearness explored in this context have stayed with the geo-
metric paradigm and are known as "distance kernels," one 
example being the familiar Gaussian kernel which is based on 
the Euclidean distance: KGaussian(x,y) = exp(-DEucl.(x,y)2/2σ2), 
where DEucl.(x,y) = [∑k(xk-yk)2]1/2 is the usual Euclidean dis-
tance. Those kernels are used in the signal pattern recogni-
tion analysis in Figure 8 along with a new class of kernels, 
"divergence kernels," based on a notion of nearness appro-
priate when comparing probability distributions (or probabil-
ity feature vectors). The main example of this is the Entropic 
Divergence Kernel: KEntropic = exp(-DEntropic.(x,y)2/2σ2), 
where DEntropic.(x,y) = D(x||y) + D(y||x) and D(..||..) is the 
Kullback-Leibler Divergence (or relative entropy) between x 
and y.
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obtained that works well with the types of probabilistic
data obtained.

The SVM discriminators are trained by solving their KKT
relations using the Sequential Minimal Optimization
(SMO) procedure [4]. A chunking [5,6] variant of SMO
also is employed to manage the large training task at each
SVM node. The multi-class SVM training generally
involves thousands of blockade signatures for each signal
class. The data cleaning needed on the training data is
accomplished by an extra SVM training round.

Binary Support Vector Machines
Binary Support Vector Machines (SVMs) are based on a
decision-hyperplane heuristic that incorporates structural
risk management by attempting to impose a training-
instance void, or "margin," around the decision hyper-
plane [1].

Feature vectors are denoted by xik, where index i labels the
M feature vectors (1 ≤ i ≤ M) and index k labels the N fea-
ture vector components (1 ≤ i ≤ N). For the binary SVM,
labeling of training data is done using label variable yi = ±
1 (with sign according to whether the training instance
was from the positive or negative class). For hyperplane
separability, elements of the training set must satisfy the
following conditions: wβxiβ-b ≥ +1 for i such that yi = +1,
and wβxiβ-b ≤ -1 for yi = -1, for some values of the coeffi-
cients w1, ..., wN, and b (using the convention of implied
sum on repeated Greek indices). This can be written more
concisely as: yi(wβxiβ-b) - 1 ≥ 0. Data points that satisfy the
equality in the above are known as "support vectors" (or
"active constraints").

Once training is complete, discrimination is based solely
on position relative to the discriminating hyperplane:
wβxiβ - b = 0. The boundary hyperplanes on the two classes
of data are separated by a distance 2/w, known as the
"margin," where w2 = wβwβ. By increasing the margin
between the separated data as much as possible the opti-
mal separating hyperplane is obtained. In the usual SVM
formulation, the goal to maximize w-1 is restated as the
goal to minimize w2. The Lagrangian variational formula-
tion then selects an optimum defined at a saddle point of
L(w,b;α) = (wβwβ)/2 - αγyγ(wβxγβ-b) - α0, where α0 = Σγαγ,
αγ ≥ 0 (1 ≤ γ ≤ M). The saddle point is obtained by mini-
mizing with respect to {w1, ...,wN,b} and maximizing
with respect to {α1, ..., αM}. If yi(wβxiβ-b) - 1 ≥ 0, then
maximization on αi is achieved for αi = 0. If yi(wβxiβ-b) - 1
= 0, then there is no constraint on αi. If yi(wβxiβ-b) - 1 < 0,
there is a constraint violation, and αi → ∞. If absolute sep-
arability is possible the last case will eventually be elimi-
nated for all αi, otherwise it's natural to limit the size of αi
by some constant upper bound, i.e., max(αi) = C, for all i.
This is equivalent to another set of inequality constraints

with αi ≤ C. Introducing sets of Lagrange multipliers, ξγ
and μγ(1 ≤ γ ≤ M), to achieve this, the Lagrangian
becomes:

L(w,b;α,ξ,μ) = (wβwβ)/2 - αγ[yγ(wβxγβ-b)+ξγ] + α0 + ξ0C -
μγξγ, where ξ0 = Σγξγ, α0 = Σγαγ, and αγ ≥ 0 and ξξ ≥ 0 (1 ≤ γ
≤ M).

At the variational minimum on the {w1, ...,wN,b} varia-
bles, wβ = αγyγxγβ, and the Lagrangian simplifies to: L(α) =
α0 - (αδyδxδβ αγyγxγβ/2, with 0 ≤ αγ ≤ C (1 ≤ γ ≤ M) and αγyγ
= 0, where only the variations that maximize in terms of
the αγ remain (known as the Wolfe Transformation). In
this form the computational task can be greatly simpli-
fied. By introducing an expression for the discriminating
hyperplane: fi = wβxiβ - b = αγyγxγβxiβ - b, the variational
solution for L(α) reduces to the following set of relations
(known as the Karush-Kuhn-Tucker, or KKT, relations): (i)
αi = 0 ⇔ yifi ≥ 1, (ii) 0 < αi < C ⇔ yifi = 1, and (iii) αi = C
⇔ yifi ≤ 1. When the KKT relations are satisfied for all of
the αγ (with αγyγ = 0 maintained) the solution is achieved.
(The constraint αγyγ = 0 is satisfied for the initial choice of
multipliers by setting the α's associated with the positive
training instances to 1/N(+) and the α's associated with the
negatives to 1/N(-), where N(+) is the number of positives
and N(-) is the number of negatives.) Once the Wolfe
transformation is performed it is apparent that the train-
ing data (support vectors in particular, KKT class (ii)
above) enter into the Lagrangian solely via the inner prod-
uct xiβxjβ. Likewise, the discriminator fi, and KKT relations,
are also dependent on the data solely via the xiβxjβ inner
product.

Generalization of the SVM formulation to data-depend-
ent inner products other than xiβxjβ are possible and are
usually formulated in terms of the family of symmetric
positive definite functions (reproducing kernels) satisfy-
ing Mercer's conditions [1].

Binary SVM Discriminator Implementation
The SVM discriminators are trained by solving their KKT
relations using the Sequential Minimal Optimization
(SMO) procedure of [4]. The method described here fol-
lows the description of [4] and begins by selecting a pair
of Lagrange multipliers, {α1,α2}, where at least one of the
multipliers has a violation of its associated KKT relations
(for simplicity it is assumed in what follows that the mul-
tipliers selected are those associated with the first and sec-
ond feature vectors: {x1,x2}). The SMO procedure then
"freezes" variations in all but the two selected Lagrange
multipliers, permitting much of the computation to be
circumvented by use of analytical reductions:

L(α1,α2;αβ'≥3) = α1 + α2 - (α1
2K11 + α2

2K22 + 2α1α2y1y2K12)/
2 - α1y1v1 - α2y2v2 + αβ'Uβ' - (αβ'αγ'yβ'Kβ'γ')/2,
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with β',γ' ≥ 3, and where Kij ≡ K(xi, xj), and vi ≡ αβ'yβ'Kiβ'
with β' ≥ 3. Due to the constraint αβyβ = 0, we have the
relation: α1 + sα2 = -γ, where γ ≡ y1αβ'yβ' with β' ≥ 3 and s ≡
y1y2. Substituting the constraint to eliminate references to
α1, and performing the variation on α2: ∂L(α2;αβ'≥3)/∂α2 =
(1 - s) + ηα2 + sγ(K11 - K22) + sy1v1 - y2v2, where η ≡ (2K12
- K11 + K22). Since vi can be rewritten as vi = wβxiβ - α1y1Ki1
- α2y2Ki2, the variational maximum ∂L(α2;αβ'≥3)/∂α2 = 0
leads to the following update rule:

α2
new = α2

old - y2((wβx1β-y1) - (wβx2β-y2))/η.

Once α2
new is obtained, the constraint α2

new ≤ C must be
re-verified in conjunction with the αβyβ = 0 constraint. If
the L(α2;αβ'≥3) maximization leads to a α2

new that grows
too large, the new α2 must be "clipped" to the maximum
value satisfying the constraints. For example, if y1 ≠ y2,
then increases in α2 are matched by increases in α1. So,
depending on whether α2 or α1 is nearer its maximum of
C, we have max(α2) = argmin{α2+(C-α2); α2+(C-α1)}.
Similar arguments provide the following boundary condi-
tions: (i) if s = -1, max(α2) = argmin{α2; C+α2-α1}, and
min(α2) = argmax{0; α2-α1}, and (ii) if s = +1, max(α2) =
argmin{C; α2+α1}, and min(α2) = argmax{0; α2+α1-C}.
In terms of the new α2

new, clipped, clipped as indicated
above if necessary, the new α1 becomes:

α1
new = α1

old + s(α2
old-α2

new, clipped),

where s ≡ y1y2 as before. After the new α1 and α2 values are
obtained there still remains the task of obtaining the new
b value. If the new α1 is not "clipped" then the update
must satisfy the non-boundary KKT relation: y1f(x1) = 1,
i.e., fnew(x1) - y1 = 0. By relating fnew to fold the following
update on b is obtained:

bnew1 = b - (fnew(x1) - y1) - y1(α1
new - α

1
old)K11 - y2(α2

new,

clipped - α2
old)K12.

If α1 is clipped but α2 is not, the above argument holds for
the α2 multiplier and the new b is:

bnew2 = b - (fnew(x2) - y2) - y2(α2
new - α

2
old)K22 - y1(α1

new,

clipped - α1
old)K12.

If both α1 and α2 values are clipped then any of the b val-
ues between bnew1 and bnew2 is acceptable, and following
the SMO convention, the new b is chosen to be:

bnew = (bnew1 + bnew2)/2.

Multiclass SVM Methods
The SVM binary discriminator offers high performance
and is very robust in the presence of noise. This allows a
variety of reductionist multiclass approaches, where each

reduction is a binary classification (for classifying cards by
suit, maybe classify as red or black first, then as heart or
diamond for red and spade or club for black, for exam-
ple). The SVM Decision Tree is one such approach, and a
collection of them (a SVM Decision Forest) can be used to
avoid problems with throughput biasing. Alternatively,
the variational formalism can be modified to perform a
multi-hyperplane optimization situation for a direct mul-
ticlass solution [7-9], and that is what is described next.

SVM-Internal Multiclass
In the formulation in [7], there are 'k' classes and hence 'k'
linear decision functions – a description of their approach
is given here. For a given input 'x', the output vector corre-
sponds to the output from each of these decision func-
tions. The class of the largest element of the output vector
gives the class of 'x'.

Each decision function is given by: fm(x) = wm.x + bm for
all m = (1,2, ..., k). If yi is the class of the input xi, then for
each input data point, the misclassification error is
defined as follows: maxm{fm(xi) + 1 - δi

m} - fyi(xi), where
δi

m is 1 if m = yi and 0 if m ≠ yi. We add the slack variable
ζi where ζi ≥ 0 for all i that is proportional to the misclas-
sification error: maxm{fm(xi) + 1 - δi

m} - fyi(xi) = ζi, hence
fyi(xi) - fm(xi) + δi

m ≥ 1 - ζi for all i, m. To minimize this
classification error and maximize the distance between
the hyper-planes (Structural Risk Minimization) we have
the following formulation:

Minimize: ∑iζi + β(1/2)∑mwm
Twm + (1/2)∑mbm

2,

where β > 0 is defined as a regularization constant.

Constraint: wyi.xi + byi - wm.xi - bm - 1 + ζi + δi
m ≥ 0 for all

i,m

Note: the term (1/2)∑mbm
2 is added for de-coupling, 1/β

= C, and m = yi in the above constraint is consistent with
ζi ≥ 0. The Lagrangian is:

L(w,b,ζ) = ∑iζi + β(1/2)∑mwm
Twm + (1/2)∑mbm

2 - ∑i∑-

mαi
m(wyixi + byi - wm.xi - bm - 1 + ζi + δi

m)

Where all αi
ms are positive Lagrange multipliers. Now tak-

ing partial derivatives of the Lagrangian and equating
them to zero (Saddle Point solution): ∂L/∂ζi = 1 - ∑mαi

m =
0. This implies that ∑mαi

m = 1 for all i. ∂L/∂bm = bm + ∑iαi
m

- ∑iδi
m = 0 for all m. Hence bm = ∑i(δi

m - αi
m). Similarly:

∂L/∂wm = βwm + ∑iαi
mxi - ∑iδi

mxi = 0 for all m. Hence wm =
(1/β)[∑i(δi

m - αi
m)xi] Substituting the above equations

into the Lagrangian and after simplification reduces into
the dual formalism:
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Maximize: -1/2∑i,j∑m(δi
m - αi

m)(δj
m - αj

m)(Kij + β) -
β∑i,mδi

mαi
m

Constraint: 0 ≤ αi
m, ∑mαi

m = 1, i = 1...1; m = 1...k

Where Kij = xi.xj is the Kernel generalization. In vector
notation:

Maximize: -1/2∑i,j(Δyi - Ai)(Δyj - Aj)(Kij + β) - β∑iΔyiAi

Constraint: 0 ≤ Ai, Ai. 1 = 1, i = 1 ...1

Let τi = Δyi - Ai. Hence after ignoring the constant: -1/
2∑i,jτi.τj(Kij + β) + β∑iΔ;yiτi, subject to: τi ≤ Δyi, τi.1 = 0, i =
1 ...l. The dual is solved (determine the optimum values
of all the τs) using the decomposition method.

Minimize: 1/2∑i,jτi
m.τj

m(Kij + β) - β∑i,mδi
mτi

m

Constraint: τi ≤ Δyi, τi.1 = 0, i = 1 ...l

The Lagrangian of the dual is:

L = 1/2∑i,j,mτi
m.τj

m(Kij + β) - φ∑i,mδi
mτi

m - ∑i,mui
m(δi

m - τi
m)

- ∑ivi∑mτi
m

Subject to ui
m ≥ 0

We take the gradient of the Lagrangian with respect to τi
m:

▼τ
m[L] = ∑iτj

m(Kij + β) - βδi
m + ui

m - vi = 0

Introducing f(τ) = ∑iτj
m(Kij + β) - βδi

m + ui
m - vi = 0 and fi

m

= ∑iτj
m(Kij + β) - βδi

m, then f(τ) = fi
m + ui

m - vi = 0. By KKT
conditions we get two more equations:

ui
m(δi

m - τi
m) = 0 and ui

m ≥ 0

Case I: if δi
m = τi

m, then ui
m ≥ 0, hence fi

m ≤ vi. Case II: if
τi

m < δi
m, then ui

m = 0, hence fi
m = vi. Note: There is atleast

one 'm' for all i such that τi
m < δi

m is satisfied.

Therefore combining Case I & II, we get:

maxm{fi
m} ≤ vi ≤ minm: τi

m < δi
m{fi

m}

Or maxm{fi
m} ≤ minm: τi

m < δi
m{fi

m}

Or maxm{fi
m} - minm: τi

m < δi
m{fi

m} ≤ ε

Note: τi
m < δi

m implies that αi
m > 0. Since ∑mαi

m = 1, for
any i each αi

m is treated as the probability that the data
point belongs to class m. Hence we define KKT violators
as:

maxm{fi
m} - minm: τi

m < δi
m{fi

m} > ε for all i.

Decomposition Method to Solve the Dual
Using the method in [7] to solve the Dual, maximize

Q(τ) = -1/2∑i,jτi.τj(Kij + β) + β∑iΔyiτi

Subject to: τi ≤ Δyi, τi.1 = 0, i = 1 ...l

Expanding in terms of a single 'τ' vector:

Qp(τp) = -1/2Ap(τp. τp) - Bp.τp + Cp

Where:

Ap = Kpp + β

Bp = -βΔyp + ∑i≠pτi(Kip + β)

Cp = -1/2∑i,j≠pτi.τj(Kij + β) + β∑i≠pτiΔyi

Therefore ignoring the constant term 'Cp', we have to min-
imize:

Qp(τp) = 1/2Ap(τp. τp) + Bp.τp

Subject to: τp ≤ Δyp and τp.1 = 0

The above equation can also be written as:

Qp(τp) = 1/2Ap(τp + Bp/Ap).(τp + Bp/Ap) - Bp.Bp/2Ap

Substitute v = (τp + Bp/Ap) & D = (Δyp + Bp/Ap) in the above
equation. Hence, after ignoring the constant term Bp.Bp/
2Ap and the multiplicative factor 'Ap' we have to mini-
mize:

Q(v) = 1/2v.v = 1/2||v||2

Subject to: v ≤ D and v.1 = D.1 - 1

The Lagrangian is given by:

L(v) = 1/2||v||2 - ∑mρm(Dm - vm) - σ[∑m(vm - Dm) + 1]

Subject to: ρm ≤ 0

Hence ∂L/∂vm = vm + ρm - σ = 0. By KKT conditions we
have: ρm(Dm - vm) = 0 & ρm ≥ 0, also vm ≤ Dm. Hence by
combining the above in-equalities, we have: vm =
Min{Dm, σ}, or ∑mvm = ∑mMin{Dm, σ} = ∑mDm - 1. The
above equation uniquely defines the 'σ' that satisfies the
above equation AND that 'σ' is the optimal solution of the
quadratic optimization problem. (Refer to [7] for a formal
proof).
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Solve for 'σ': We have Min{Dm, σ} + Max{Dm, σ} = Dm +
σ, hence ∑m[Dm + σ - Max{Dm, σ}] = ∑mDm - 1, or σ = 1/
K[∑mMax{Dm, σ} - 1], hence we find σ (iteratively) that
satisfies the equation: |(σl - σl+1)/σl| ≤ tolerance. The ini-
tial value for 'σ' is set to σ1 = 1/K[∑mDm - 1].

Update rule for 'τ': Once we have 'σ', τnew
m = vm - Bp

m/(Kpp
+ β), or:

τnew
m = vm - fp

m/(Kpp + β) + τold
m

SVM-Internal Clustering
Let {xi} be a data set of 'N' points in Rd. Using a non-linear
transformation φ, we transform 'x' to some high-dimen-
sional space called Kernel space and look for the smallest
enclosing sphere of radius 'R'. Hence we have: ||φ(xj) - a ||2

≤ R2 for all j = 1,...,N; where 'a' is the center of the sphere.
Soft constraints are incorporated by adding slack variables
'ζj':

||φ(xj) - a ||2 ≤ R2 + ζj for all j = 1,...,N

Subject to: ζj ≥ 0

We introduce the Lagrangian as:

L = R2 - ∑jβj(R2 + ζj - ||φ(xj) - a ||2) - ∑jζjμj + C∑jζj

Subject to: βj ≥ 0, μj ≥ 0,

where C is the cost for outliers and hence C∑jζj is a penalty
term. Setting to zero the derivative of 'L' w.r.t. R, a and ζ
we have: ∑jβj = 1; a = ∑jβjφ(xj); and βj = C - μj.

Substituting the above equations into the Lagrangian, we
have the dual formalism as:

W = 1 - ∑i,jβiβjKij where 0 ≤ βi ≤ C; Kij = exp(-||xi - xj||2/2σ2)

Subject to: ∑iβi = 1

By KKT conditions we have: ζjμj = 0 and βj(R2 + ζj - ||φ(xj)
- a ||2) = 0.

In the kernel space of a data point 'xj' if ζj > 0, then βj = C
and hence it lies outside of the sphere i.e. R2 < ||φ(xj) - a
||2. This point becomes a bounded support vector or BSV.
Similarly if ζj = 0, and 0 < βj < C, then it lies on the surface
of the sphere i.e. R2 = ||φ(xj) - a ||2. This point becomes a
support vector or SV. If ζj = 0, and βj = 0, then R2 > ||φ(xj)
- a ||2 and hence this point is enclosed with-in the sphere.

Nanopore Detector based Channel Current 
Cheminformatics
All data analyzed is obtained from a nanopore detector
and relates to single molecule blockades of a single pro-
tein channel. The protein channel is the α-hemolysin
pore-forming toxin from Staphylococcus aureus, which has
a molecule-sized channel opening for partial capture, if
not translocation, of biomolecules drawn in by electro-
phoretic forces (such as DNA) [3,10-20]. Further details
on the detector and signal processing architecture are
shown in Fig. 2. Further detail on the components of the
extracted SVM feature vectors (on events due to individual
blockade events), are given in the Methods. Although the
figure can only show one SVM classifier implementation
(that used in [3]), the data sets examined by all the SVMs
described are kept the same (for comparative purposes),
so the signal acquisition and feature extraction stages
show how the SVM feature vectors are obtained.

Information measures
The fundamental information measures are Shannon
entropy, mutual information, and relative entropy (also
known as the Kullback-Leibler divergence or distance).
Shannon entropy, σ = -Σxp(x)log(p(x)), is a measure of
the information in distribution p(x). Mutual Information,
μ = ΣxΣyp(xy)log(p(xy)/p(x)p(y)), is a measure of infor-
mation one random variable has about another random
variable. Relative Entropy (Kullback-Leibler distance): ρ =
Σx p(x) log(p(x)/q(x)), is a measure of distance between
two probability distributions. Mutual information is a
special case of relative entropy between a joint probability
(two-component in simplest form) and the product of
component probabilities.

Khinchin derivation of Shannon entropy
In his now famous 1948 paper, Claude Shannon [21] pro-
vided a qualitative measure for entropy in connection
with communication theory. The Shannon entropy meas-
ure was later put on a more formal footing by A. I.
Khinchin in an article where he proves that with certain
reasonable assumptions the Shannon entropy is unique
[22]. A statement of the theorem is as follows:

Khinchine Uniqueness Theorem
Let H(p1,p2,...,pn) be a function defined for any integer n
and for all values p1,p2,...,pn such that pk≥0 (k = 1,2,...,n),
and Σkpk = 1. If for any function n this function is contin-
uous with respect to its arguments, and if the function
obeys the three properties listed below, then
H(p1,p2,...,pn) = -λΣkpklog(pk), where λ is a positive con-
stant (with Shannon entropy recovered for convention λ
= 1). The three properties are:

(1) For given n and for Σkpk = 1, the function takes its larg-
est value for pk = 1/n (k = 1,2,...,n). This is equivalent to
Page 6 of 18
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Laplace's principle of insufficient reason, which says if
you don't know anything assume the uniform distribu-
tion (also agrees with Occam's Razor assumption of min-
imum structure).

(2) H(ab) = H(a) + Ha(b), where Ha(b) = -
Σap(a)log(p(b|a)), is the conditional entropy. This is con-
sistent with H(ab)=H(a)+H(b), for probabilities of a and
b independent, with modifications involving conditional
probability being used when not independent.

(3) H(p1,p2,...,pn,0) = H(p1,p2,...,pn). This reductive rela-
tionship, or something like it, is implicitly assumed when
describing any system in "isolation."

Relative Entropy Uniqueness
This falls out of a geometric formalism on families of dis-
tributions: the Information Geometry formalism
described by S. Amari [23-25]. Together with Laplace's
principle of insufficient reason on the choice of "refer-
ence" distribution in the relative entropy expression, this
will reduce to Shannon entropy, and thus uniqueness on
Shannon entropy from a geometric context. The parallel
with geometry is the Euclidean distance for "flat" geome-
try (simplest assumption of structure), vs. the "distance"
between distributions as described by the Kullback-Lei-
bler divergence.

a. (A) shows a nanopore device based on the α-hemolysin channelFigure 2
a. (A) shows a nanopore device based on the α-hemolysin channel. It has been used for analysis of single DNA molecules, such 
as ssDNA, shown, and dsDNA, a nine base-pair DNA hairpin is shown in (B) superimposed on the channel geometry. The 
channel current blockade trace for the nine base-pair DNA hairpin blockade from (B) is shown in (C). b shows the signal 
processing architecture that was used to classify DNA hairpins with this approach: Signal acquisition was performed using a 
time-domain, thresholding, Finite State Automaton, followed by adaptive pre-filtering using a wavelet-domain Finite State 
Automaton. Hidden Markov Model processing with Expectation-Maximization was used for feature extraction on acquired 
channel blockades. Classification was then done by Support Vector Machine on five DNA molecules: four DNA hairpin mole-
cules with nine base-pair stem lengths that only differed in their blunt-ended DNA termini, and an eight base-pair DNA hairpin. 
The accuracy shown is obtained upon completing the 15th single molecule sampling/classification (in approx. 6 seconds), where 
SVM-based rejection on noisy signals was employed.

                     (a)           (b) 
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The Success of Distributions of Nature suggests 
Generalization from Geometric Feature-Space Kernels to 
Distribution Feature-Space Kernels
Using the Shannon entropy measure it is possible to
derive the classic probability distributions of statistical
physics by maximizing the Shannon measure subject to
appropriate linear momentum constraints. Constrained
variational optimizations involving the Shannon entropy
measure can, thus, provide a unified framework with
which to describe all, or most, of statistical mechanics.
The distributions derivable within the maximum entropy
formalism include the Maxwell-Boltzmann, Bose-Ein-
stein, Fermi-Dirac, and Intermediate distributions. The
maximum entropy method for defining statistical
mechanical systems has been extensively studied by [26].

Both statistical estimation and maximum entropy estima-
tion are concerned with drawing inferences from partial
information. The maximum entropy approach estimates a
probability density function when only a few moments
are known (where there are an infinite number of higher
moments). The statistical approach estimates the density
function when only one random sample is available out
of an infinity of possible samples. The maximum entropy
estimation may be significantly more robust (against
over-fitting, for example) in that it has an Occam's Razor
argument that "cuts both ways" – use all of the informa-
tion given and avoid using any information not given.
This means that out of all of the probability distributions
consistent with the set of constraints, choose the one that
has maximum uncertainty, i.e., maximum entropy [27].

At the same time that Jaynes was doing his work, essen-
tially an optimization principle based on Shannon
entropy, Soloman Kullback was exploring optimizations
involving a notion of probabilistic distance known as the
Kullback-Leibler distance, referred to above as the relative
entropy [28]. The resulting minimum relative entropy
(MRE) formalism reduces to the maximum entropy for-
malism of Jaynes when the reference distribution is uni-
form. The information distance that Kullback and Leibler
defined was an oriented measure of "distance" between
two probability distributions. The MRE formalism can be
understood to be an extension of Laplace's Principle of
Insufficient Reason (e.g., if nothing known assume the uni-
form distribution) in a manner like that employed by
Khinchine in his uniqueness proof, but now incorporat-
ing constraints.

In their book Entropy Optimization Principles with Applica-
tions [27], Kapur and Kesavan argue for a generalized
entropy optimization approach to the description of dis-
tributions. They believe every probability distribution,
theoretical or observed, is an entropy optimization distri-
bution, i.e., it can be obtained by maximizing an appro-

priate entropy measure, or by minimizing a relative
entropy measure with respect to an appropriate a priori
distribution. The primary objective in such a modeling
procedure is to represent the problem as a simple combi-
nation of probabilistic entities that have a simple set of
moment constraints. Generalized measures of distribu-
tional distance can also be explored along the lines of gen-
eralized measures of geometric distance. In physics, not
every geometric distance is of interest, however, since the
special theory of relativity tells us that spacetime is locally
flat (Lorentzian, which is Euclidean on spatial slices), with
metric generalization the Riemannian metrics. Likewise,
perhaps not all distributional distance measures are cre-
ated equal either. What the formalism of Information
Geometry [23-25] reveals, among other things, is that rel-
ative entropy is uniquely structureless (like flat geometry)
and is perturbatively stable, i.e., has a well-defined Taylor
expansion at short divergence range, just like the locally
Euclidean metrics at short distance range.

Results
SVM Kernel/Algorithm Variants
The SVM Kernels of interest are "regularized" distances or
divergences, where they are regularized if in the form of an
exponential with argument the negative of some distance-
measure squared (d2(x,y)) or symmetrized divergence
measure (D(x,y)), the former if using a geometric heuristic
for comparison of feature vectors, the latter if using a dis-
tributional heuristic. For the Gaussian Kernel: d2(x,y) =
Σk(xk-yk)2; for the Absdiff Kernel d2(x,y)=(Σk|xk-yk|)1/2;
and for the Symmetrized Relative Entropy Kernel D(x,y)=
D(x||y)+D(y||x), where D(x||y) is the standard relative
entropy. Results are shown in Fig. 3.

The SVM algorithm variants being explored are only
briefly mentioned here. In the standard Platt SMO algo-
rithm, η = 2*K12-K11-K22, and speedup variations are
described to avoid calculation of this value entirely. A
middle ground is sought with the following definition "η
= 2*K12-2; If (η >= 0) { η = -1;}" (labeled WH SMO in Fig.
3, underflow handling and other implementations differ
slightly in the implementation shown as well).

SVM-Internal Speedup via differentiating BSVs and SVs
Fig. 4 shows the percent increase in iterations-to-conver-
gence against the 'C' value. Fig. 5 shows the number of
bounded support vectors (BSV) as a function of 'C' value.
Since the algorithm presented in [7] does not differentiate
between SV and BSV, a lot of time is spent in trying to
adjust the weights of the BSV i.e. weak data. The weight of
a BSV may range from [0, 0.5) in their algorithm. In our
modification to the algorithm, shown below, as soon as
we identify the BSV (as specified by Case III conditions),
its weight is no longer adjusted. Hence faster convergence
is achieved without sacrificing accuracy:
Page 8 of 18
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For the BSV/SV-tracking speedup, the KKT violators are
redefined as:

For all m ≠ yi we have:

αi
m{fyi - fm - 1 + ζi} ≥ 0

Subject to: 1 ≥ αi
m ≥ 0; ∑mαi

m = 1;ζi ≥ 0 for all i,m

Where fm = (1/β)[wm.xi + bm] for all m

Case I:

If αi
m = 0 for m S.T fm = fm

max

Implies αi
yi > 0 and hence ζi = 0

Hence fyi - fm
max - 1 ≥ 0

Case II:

If 1 > αi
m > 0 for m S.T fm = fm

max and αi
yi > αi

m

Implies ζi = 0

Hence fyi - fm
max - 1 = 0

Case III:

If 1 ≥ αi
m > 0 for m S.T fm = fm

max and αi
yi ≤ αi

m

The number of bounded support vectors (BSV) as a function of 'C' valueFigure 5
The number of bounded support vectors (BSV) as a function 
of 'C' value. There are many BSVs for very low values of 'C' 
and very few BSVs for large values of 'C'. Thus we can say 
that the number of BSVs plays a vital role in the speed of 
convergence of the algorithm.

Comparative results are shown on performance of Kernels and algorithmic variantsFigure 3
Comparative results are shown on performance of Kernels 
and algorithmic variants. The classification is between two 
DNA hairpins (in terms of features from the blockade signals 
they produce when occluding ion flow through a nanometer-
scale channel). Implementations: WH SMO (W); Platt SMO 
(P); Keerthi1 (1); and Keerthi2 (2). Kernels: Absdiff (a); 
Entropic (e); and Gaussian (g). The best algorithm/kernel on 
this and other channel blockade data studied has consistently 
been the WH SMO variant and the Absdiff and Entropic Ker-
nels. Another benefit of the WH SMO variant is its significant 
speedup over the other methods (about half the time of Platt 
SMO and one fourth the time of Keerthi 1 or 2).

9TA vs 9GC
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The percent increase in iterations-to-convergence against the 'C' valueFigure 4
The percent increase in iterations-to-convergence against 
the 'C' value. For very low values of 'C' the gain is doubled 
while for very large values of 'C' the gain is low (almost con-
stant for C > 150). Thus we note the dependence of the gain 
on 'C' value.
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Implies ζi > 0

Hence fyi - fm
max - 1 + ζi = 0

Or fyi - fm
max - 1 < 0

Data Rejection Tuning with SVM-Internal vs SVM-External 
Classifiers
The SVM Decision Tree shown in Fig. 2b obtained nearly
perfect sensitivity and specificity, with a high data rejec-
tion rate, and a highly non-uniform class signal-calling
throughput. In Fig. 6, the Percentage Data Rejection vs
SN+SP curves are shown for test data classification runs
with a binary classifier with one molecule (the positive,
given by label) versus the rest (the negative). Since the sig-
nal calling wasn't passed through a Decision Tree, the way
these curves were generated, they don't accurately reflect
total throughput, and they don't benefit from the "shield-
ing" shown in the Decision Tree in Fig. 2b prototype. In
the SVM Decision Tree implementation described in Fig.
2b[3], this is managed more comprehensively, to arrive at
a five-way signal-calling throughput at the furthest node
of 16% (in Fig. 1a, 9CG and 9AT have to pass to the fur-
thest node to be classified), while the best throughput, for
signal calling on the 8GC molecules, is 75%.

The SVM Decision Tree classifier's high, non-uniform,
rejection can be managed by generalizing to a collection
of Decision Trees (with different species at the furthest

node). The problem is that tuning and optimizing a single
decision tree is already a large task, even for five species (as
in Fig. 2). With a collection of trees this problem is seem-
ingly compounded, but can actually be lessened in some
ways in that now each individual tree need not be so well-
tuned/optimized. Although more complicated to imple-
ment than an SVM-External method, the SVM-Internal
multiclass methods are not similarly fraught with tuning/
optimization complications. Fig. 7 shows the Percentage
Data Rejection vs SN+SP curves on the same train/test
data splits as used for Fig. 6, except now the drop curves
are to be understood as simultaneous curves (not sequen-
tial application of such curves as in Fig. 6). Thus, compa-
rable, or better, performance is obtained with the
multiclass-internal approach and with far less effort since
there is no managing and tuning of Decision Trees.
Another surprise, and even stronger argument for the
SVM-Internal approach to the problem, is that a natural
drop zone is indicated by the margin.

Marginal Drop with SVM-Internal
Suppose we define the criteria for dropping weak data as
the margin: For any data point xi; let maxm{fm(xi)} = fyi,
and Let fm = maxm{fm(xi)} for all m ≠ yi, then we define
the margin as: (fyi - fm), hence data point xi is dropped if
(fyi - fm) = Confidence Parameter. (For this data set using
Gaussian, AbsDiff & Sentropic kernel, a confidence
parameter of at least (0.00001)*C was required to achieve
100% accuracy.) The results are shown in Table 1. Using
the margin drop approach, there is even less tuning, and

The Percentage Data Rejection vs SN+SP curves are shown for test data classification runs with a multiclass discriminatorFigure 7
The Percentage Data Rejection vs SN+SP curves are shown 
for test data classification runs with a multiclass discrimina-
tor. The following criterion is used for dropping weak data: 
for any data point xi; if maxm{fm(xi)} ≤ Confidence Parameter, 
then the data point xi is dropped. For this data set using 
AbsDiff kernel (σ2 = 0.2) performed best, and a confidence 
parameter of 0.8 achieve 100% accuracy.

The Percentage Data Rejection vs SN+SP curves are shown for test data classification runs with a binary classifier with one molecule (the positive, given by label) versus the rest (the negative)Figure 6
The Percentage Data Rejection vs SN+SP curves are shown 
for test data classification runs with a binary classifier with 
one molecule (the positive, given by label) versus the rest 
(the negative). Since the signal calling wasn't passed through a 
Decision Tree, it doesn't accurately reflect total throughput, 
and they don't benefit from the "shielding" shown in the 
Decision Tree in Fig. 1 prototype. The Relative Entropy Ker-
nel is shown because it provided the best results (over Gaus-
sian and Absdiff).
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there is improved throughput (approximately 75% for all
species).

SVM-Internal Clustering
The SVM-Internal approach to clustering was originally
defined by [29]. Data points are mapped by means of a
kernel to a high dimensional feature space where we
search for the minimal enclosing sphere. In what follows,
Keerthi's method is used to solve the dual (see Methods
for further details).

The minimal enclosing sphere, when mapped back into
the data space, can separate into several components; each
enclosing a separate cluster of points. The width of the
kernel (say Gaussian) controls the scale at which the data
is probed while the soft margin constant helps to handle
outliers and over-lapping clusters. The structure of a data-
set is explored by varying these two parameters, maintain-
ing a minimal number of support vectors to assure
smooth cluster boundaries.

We have used the algorithm defined in [29] to identify the
clusters, with methods adapted from [30,31 for their han-
dling. If the number of data points is 'n', then we require
n(n-1)/2 number of comparisons. We have made modifi-
cations to the algorithm such that we eliminate compari-
sons that do not have an impact on the cluster
connectivity. Hence the number of comparisons required
will be less than n(n-1)/2.

In each comparison we sub-divide the line segment con-
necting the two data points into 20 parts; hence we obtain
19 different points on this line segment. The two data
points belong to the same cluster only if all the 19 points
lie inside the cluster. Given the cost of evaluating utmost
19 points for every comparison, the need to eliminate
comparisons that do not have an impact on the cluster
connectivity becomes even more important. Finally we
have used Depth First Search (DFS) algorithm for the clus-
ter harvest. Results are shown in Tables 2 and 3. The
approach to the solving the Dual problem is shown in the
Methods.

SVM-External Clustering
As with the multiclass SVM discriminator implementa-
tions, the strong performance of the binary SVM enables
SVM-External as well as SVM-Internal approaches to clus-
tering. Our external-SVM clustering algorithm clusters
data vectors with no a priori knowledge of each vector's
class. The algorithm works by first running a Binary SVM
against a data set, with each vector in the set randomly
labeled, until the SVM converges (Fig. 8). In order to
obtain convergence, an acceptable number of KKT viola-
tors must be found. This is done through running the SVM
on the randomly labeled data with different numbers of
allowed violators until the number of violators allowed is
near the lower bound of violators needed for the SVM to
converge on the particular data set. Choice of an appropri-
ate kernel and an acceptable sigma value also will affect

Table 1: The table shows the results of dropping data that falls in the margin. For any data point xi; let maxm{fm(xi)} = fyi, and Let fm = 
maxm{fm(xi)} for all m ≠ yi, then we define the margin as: (fyi - fm), hence data point xi is dropped if (fyi - fm) ≤ Confidence Parameter. 
Using the margin drop approach, there is even less tuning, and there is improved throughput (approximately 75% for all species).

Kernel 8GC 9AT 9CG 9GC 9TA

Gaussian P: 1268
TP: 1087
SN+SP: 1.76
P: 1087
TP: 1087
SN+SP: 2
Drop = 9.42

P: 1178
TP: 934
SN+SP: 1.57
P: 934
TP: 934
SN+SP: 2
Drop = 22.17

P: 1166
TP: 904
SN+SP: 1.53
P: 904
TP: 904
SN+SP: 2
Drop = 24.67

P: 1172
TP: 897
SN+SP: 1.51
P: 897
TP: 897
SN+SP: 2
Drop = 25.25

P: 1216
TP: 1027
SN+SP: 1.70
P: 1027
TP: 1027
SN+SP: 2
Drop = 14.42

AbsDiff P: 1407
TP: 1134
SN+SP: 1.75
P: 1134
TP: 1134
SN+SP: 2
Drop = 5.5

P: 1151
TP: 928
SN+SP: 1. 58
P: 928
TP: 928
SN+SP: 2
Drop = 22.67

P: 1177
TP: 906
SN+SP: 1.53
P: 906
TP: 906
SN+SP: 2
Drop = 24.5

P: 1050
TP: 870
SN+SP: 1.55
P: 870
TP: 870
SN+SP: 2
Drop = 27.5

P: 1215
TP: 1040
SN+SP: 1.72
P: 1040
TP: 1040
SN+SP: 2
Drop = 13.33

Entropic P: 1165
TP: 1038
SN+SP: 1.75
P: 1038
TP: 1038
SN+SP: 2
Drop = 13.5

P: 1480
TP: 995
SN+SP: 1.50
P: 991
TP: 991
SN+SP: 2
Drop = 17.42

P: 1348
TP: 922
SN+SP: 1.45
P: 920
TP: 920
SN+SP: 2
Drop = 23.33

P: 960
TP: 804
SN+SP: 1.50
P: 803
TP: 803
SN+SP: 2
Drop = 33.08

P: 1047
TP: 970
SN+SP: 1.73
P: 970
TP: 970
SN+SP: 2
Drop = 19.17
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convergence. After the initial convergence is achieved, the
sensitivity + specificity will be low, likely near 1. The algo-
rithm now improves this result by iteratively relabeling
the worst misclassified vectors, which have confidence
factor values beyond some threshold, followed by rerun-
ning the SVM on the newly relabeled data set. This contin-
ues until no more progress can be made. Progress is
determined by an increasing value of sensitivity + specifi-
city, hopefully nearly reaching 2. After this process, a high
percentage of the previously unknown class labels of the
data set will be known. With sub-cluster identification
upon iterating the overall algorithm on the positive and
negative clusters identified (until the clusters are no
longer separable into sub-clusters), this method provides
a way to cluster data sets without prior knowledge of the
data's clustering characteristics, or the number of clusters.
Figures 9 and 10 show clustering runs on a data set with a
mixture of 8GC and 9GC DNA hairpin data. The set con-
sists of 400 elements. Half of the elements belong to each
class. The SVM uses a Gaussian Kernel and allows 3% KKT
Violators.

Machine Learning and Cheminformatics Tools are 
Accessible via Website
The web-site provides an interface to several binary SVM
variants (with other novel kernel selections), to a multi-
class (internal) SVM, an FSA-based nanopore spike detec-
tor, and an HMM-based channel current feature
extraction. New, web-accessible, channel current analysis
tools, have also been developed for kinetic feature extrac-
tion (via channel current sub-level lifetimes), and cluster-
ing. The website is designed using HTML and CGI scripts
that are executed to process the data sent when a form
filled in by the user is received at the web server – results

are then e-mailed to the address indicated by the user. The
interface to this and all other software described is availa-
ble via the group Home Page: http://logos.cs.uno.edu/
~nano/ (see Fig. 11). The SVM interface offers options on
chunk processing for large training sets (SV-carry by
appending to next training chunk and SV-carry by main-
taining state and injecting ("unfreezing") the next training
chunk (a specialized α-heuristic). The interface offers use
of arbitrary or structured feature vectors – where struc-
tured, in this case, corresponds to feature vector compo-
nents that satisfy the properties of a non-trivial, non-
reducible, discrete probability distribution. There is an
SVM interface for a new single-optimization multiclass
SVM discriminator (it simultaneously optimizes multiple
hyperplanes). There is also an interface for our SVM-based
clustering methods.

Discussion
Adaptive Feature Extraction/Discrimination
Adaptive feature extraction and discrimination, in the
context of SVMs, can be accomplished by small batch
reprocessing using the learned support vectors together
with the new information to be learned. The benefit is that
the easily deployed properties of SVMs can be retained
while at the same time co-opting some of the on-line
adaptive characteristics familiar from on-line learning
with neural nets. This is also compatible with the chunk-
ing processing that is already implemented. A situation
where such adaptation might prove necessary in nanop-
ore signal analysis is if the instrumentation was found to
have measurable, but steady, drift (at a new level of sensi-
tivity for example). At the forefront of online adaptation,
where the discrimination and feature extraction optimiza-
tions are inextricably mixed, further progress may derive

Table 3: The table shows clustering predictions when working with 1200 Samples (600 each of 9GC & 9CG) with a Gaussian Kernel 
with Width = 50 (σ2 = 0.01).

C Value Number of SV Percent of Outliers Number of Clusters Number of 
Comparisons

0.00833 106 5.8 4 10873
0.00417 37 18.25 2 232021
0.00333 31 23.8 2 203278
0.00278 23 29.08 2 177533

Table 2: The table shows clustering predictions when working with 400 Samples (200 each of 9GC & 9CG) with a Gaussian Kernel with 
Width = 50 (σ2 = 0.01).

C Value Number of SV Percent of Outliers Number of Clusters Number of 
Comparisons

0.25 91 0 10 39005
0.025 87 1.25 5 37020
0.0125 44 13.75 4 29202
0.01 29 21.75 2 24145
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benefit from the Information-Geometrical methods of S.
Amari [23-25].

Robust SVM performance in the presence of noise
In a parallel datarun to that indicated in Fig. 2a, with 150
component feature vectors, feature vectors with the full set
of 2600 components were extracted (i.e., no compression
was employed on the transition probabilities). SVM per-
formance on the same train/test data splits, but with 2600
component feature vectors instead of 150 component fea-
ture vectors, offered similar performance after drop opti-
mization. This demonstrates a significant robustness to
what the SVM can "learn" in the presence of noise (some
of the 2600 component have richer information, but even
more are noise contributors).

AdaBoost Feature Selection
If SVM performance on the full HMM parameter set (the
features extracted for each blockade signal) offers equiva-

lent performance after rejecting weak data, then the possi-
bility for significant improvement with selection on good
parameters. An AdaBoost method is being used to select
HMM parameters by representing each feature vector
component as an independent Naïve Bayes classifier
(trained on the data given), that then comprise the pool
of experts in the AdaBoost algorithm [32-34]. The experts
AdaBoost assigns heaviest weighting will then the compo-
nents selected in the new, AdaBoost assigned, feature vec-
tor compression.

Conclusion
• External Multi-class SVM gave best results with Sentropic
Kernel while Internal Multi-class SVM gave best results
with AbsDiff kernel.

• Internal Multi-class approach overcomes the need to
search for the best performing tree out of many possibili-

Shown is the schematic for an "external" SVM clustering algorithmFigure 8
Shown is the schematic for an "external" SVM clustering algorithm.

1. Label & Converge: 2. Change Weakest Labels: 

3. Converge on new Labels: 4. Iterate until Separability: 
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(a) The percentage correct classification (an indication of the clustering success) is shown with successive iteration of the clus-tering algorithmFigure 9
(a) The percentage correct classification (an indication of the clustering success) is shown with successive iteration of the clus-
tering algorithm. Five separate test runs are shown, on different data from the same classes. Note that the plateau at around 
0.9, this is approximately the performance of a supervised binary SVM on the same data (i.e., perfect separation isn't possible 
with this data without employing weak-data rejection). (b) The degradation in clustering performance for less optimal selec-
tion of kernel and tuning parameter (variance in case of Gaussian). (c) The degradation in clustering performance for non-opti-
mal selection of kernel and tuning parameter (variance in case of Gaussian). (d) Summary of the degradation in clustering 
performance for less optimal selection of kernel and tuning parameter – with averages of the five test-runs are used as repre-
sentative curves for that kernel/tuning selection in the above.

(a)

(b) 

(c)

(d) 

Percentage of Correctly Clustered Data Vectors for 

8GC/9GC (400-Sigma=0.2) DNA Hairpin Data

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clustering Iterations

P
e
rc

e
n

ta
g

e
 o

f 

C
o

rr
e

c
tl

y
 C

lu
s

te
re

d
 

D
a
ta

 V
e
c
to

rs

Percentage of Correctly Classified Clusters for 

8GC/9GC(400-Sigma=0.02) DNA Hairpin Data

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clustering Iterations

P
e
rc

e
n

ta
g

e
 o

f 

C
o

rr
e
c
tl

y
 C

lu
s
te

re
d

 

D
a
ta

 V
e
c
to

rs

Percentage of Correctly Classified Clusters for 

8GC/9GC (400-Sigma=0.001) DNA Hairpin Data

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clustering Iterations

P
e

rc
e

n
ta

g
e

 o
f 

C
o

rr
e
c
tl

y
 C

la
s
s
if

ie
d

 

D
a

ta
 V

e
c

to
rs

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0

Clustering Iterations

%
 C

o
rr

e
c

tl
y

 C
lu

s
te

re
d

 D
a

ta 0.0001

0.001
0.005

0.02

0.03
0.04

0.06

0.08
0.1

0.2



BMC Bioinformatics 2006, 7(Suppl 2):S4
ties. This is a huge advantage especially when the number
of classes is large.

• Using a margin to define the drop zone for the internal
multi-class approach produced far better results i.e. fewer
data were dropped to achieve 100% accuracy.

• Additional benefit of using the margin is that the drop
zone tuning to achieve 100% accuracy becomes trivial.

• External and Internal SVM Clustering Methods were also
examined. The results show that our SVM-based clustering
implementations can separate data into proper clusters
without any prior knowledge of the elements' classifica-
tion. this can be a powerful resource for insight into data
linkages (topology).

Methods
The Feature Extraction used to obtain the Feature Vectors 
for SVM analysis
Signal Preprocessing Details
The Nanopore Detector is operated such that a stream of
100 ms samplings are obtained (throughput was approx-
imately one sampling per 300 ms in [3]). Each 100 ms sig-
nal acquired by the time-domain FSA consists of a
sequence of 5000 sub-blockade levels (with the 20 μs ana-
log-to-digital sampling). Signal preprocessing is then used
for adaptive low-pass filtering. For the data sets examined,
the preprocessing is expected to permit compression on
the sample sequence from 5000 to 625 samples (later
HMM processing then only required construction of a
dynamic programming table with 625 columns). The sig-
nal preprocessing makes use of an off-line wavelet station-

arity analysis (Off-line Wavelet Stationarity Analysis,
Figure 2b, also see [35]).

HMMs and Supervised Feature Extraction Details
With completion of preprocessing, an HMM [36] is used
to remove noise from the acquired signals, and to extract
features from them (Feature Extraction Stage, Fig. 2b). The
HMM is, initially, implemented with fifty states, corre-
sponding to current blockades in 1% increments ranging
from 20% residual current to 69% residual current. The
HMM states, numbered 0 to 49, corresponded to the 50
different current blockade levels in the sequences that are
processed. The state emission parameters of the HMM are
initially set so that the state j, 0 <= j <= 49 corresponding
to level L = j+20, can emit all possible levels, with the
probability distribution over emitted levels set to a discre-
tized Gaussian with mean L and unit variance. All transi-
tions between states are possible, and initially are equally
likely. Each blockade signature is de-noised by 5 rounds of
Expectation-Maximization (EM) training on the parame-
ters of the HMM. After the EM iterations, 150 parameters
are extracted from the HMM. The 150 feature vector com-
ponents are extracted from the 50 parameterized emission
probabilities, a 50-element compressed representation of
the 502 transition probabilities, and an a posteriori infor-
mation from the Viterbi path solution which is, essen-
tially, a de-noised histogram of the bloackade sub-level
occupation probabilities (further details in [3]). This
information elucidates the blockade levels (states) charac-
teristic of a given molecule, and the occupation probabil-
ities for those levels, but doesn't directly provide kinetic
information. An HMM-with-Duration has recently been
introduced to better capture the latter information, but
such feature vectors are not used in the studies shown in
this paper, so this approach isn't discussed further in this
paper.

Solving the Dual (Based on Keerthi's SMO [37])
The dual formalism is: 1 - ∑i,jβiβjKij where 0 ≤ βi ≤ C; Kij =
exp(-||xi - xj||2/2σ2), also ∑iβi = 1. For any data point 'xk',
the distance of its image in kernel space from the center of
the sphere is given by: R2(xk) = 1 - 2∑iβiKik + ∑i,jβiβjKij. The
radius of the sphere is R = {R(xk) | xk is a Support Vectors},
hence data points which are Support Vectors lie on cluster
boundaries. Outliers are points that lie outside of the
sphere and therefore they do not belong to any cluster i.e.
they are Bounded Support Vectors. All other points are
enclosed by the sphere and therefore they lie inside their
respective cluster. KKT Violators are given as: (i) If 0 < βi <
C and R(xi) ≠ R; (ii) If βi = 0 and R(xi) > R; and (iii) If βi =
C and R(xi) < R.

The Wolfe dual is: f(β) = Min β {∑i,jβiβjKij - 1}. In the SMO
decomposition, in each iteration we select βi & βj and
change them such that f(β) reduces. All other β's are kept

Efforts are underway to use simulated annealing in the number of KKT Violators tolerated on each iteration of the external clustering algorithm, to accelerate the convergence (clustering) processFigure 10
Efforts are underway to use simulated annealing in the 
number of KKT Violators tolerated on each iteration of the 
external clustering algorithm, to accelerate the convergence 
(clustering) process. Our current approach, results shown, 
approximately halves the cluster time needed.
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constant for that iteration. Let us denote β1 & β2 as being
modified in the current iteration. Also β1 + β2 = (1 - ∑i =

3βi) = s, a constant. Let ∑i = 3βiKik = Ck, then we obtain the
SMO form: f(β1,β2) = β2

1 + β2
2 + ∑i,j = 3βiβjKij + 2β1β2K12 +

2β1C1 + 2β2C2. Eliminating β1: f(β2) = (s - β2)2 + β2
2 + ∑i,j

= 3βiβjKij + 2(s - β2)β2K12 + 2(s - β2)C1 + 2β2C2. To mini-
mize f(β2), we take the first derivative w.r.t. β2 and equate
it to zero, thus f'(β2) = 0 = 2β2(1 - K12) - s(1 - K12) - (C1 -
C2), and we get the update rule: β2

new = [(C1 - C2)/2(1 -
K12)] + s/2. We also have an expression for "C1 - C2" from:

Several channel current cheminformatics tools are available for use via web interfaces at http://logos.cs.uno.edu/~nano/Figure 11
Several channel current cheminformatics tools are available for use via web interfaces at http://logos.cs.uno.edu/~nano/. These 
tools include a variety of SVM interfaces for classification and clustering (binary and multiclass), and HMM tools for feature 
extraction and structure identification (with applications to both channel current cheminformatics and computational genom-
ics).
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R(x1
2) - R(x2

2) = 2(β2 - β1)(1 - K12) - 2(C1 - C2), thus C1 -
C2 = [R(x2

2) - R(x1
2)]/2 + (β2 - β1)(1 - K12), substituting, we

have:

β1
new = β1

old - [R(x2
2) - R(x1

2)]/[4(1 - K12)]

Keerthi Algorithm
Compute 'C': if percent outliers = n and number data
points = N, then: C = 100/(N*n)

Initialize β: Initialize m = int(1/C) - 1 number of ran-
domly chosen indices to 'C'

Initialize two different randomly chosen indices to values
less than 'C' such that ∑iβi = 1

Compute R2(xi) for all 'i' based on the current value of β.

Divide data into three sets: Set I if 0 < βi < C; Set II if βi =
0; and Set III if βi = C.

Compute R2_low = Max{ R2(xi) | 0 ≤ βi < C} and R2_up =
Min{ R2(xi) | 0 < βi ≤ C}.

In every iteration execute the following two paths alterna-
tively until there are no KKT violators:

1. Loop through all examples (call Examine Example sub-
routine)

Keep count of number of KKT Violators.

2. Loop through examples belonging only to Set I (call
Examine Example subroutine) until R2_low - R2_up <
2*tol.

Examine Example Subroutine

a. Check for KKT Violation. An example is a KKT violator
if:

Set II and R2(xi) > R2_up; choose R2_up for joint optimi-
zation

Set III and R2(xi) < R2_low; choose R2_low for joint opti-
mization

Set I and R2(xi) > R2_up + 2*tol OR R2(xi) < R2_low -
2*tol; choose R2_low or R2_up for joint optimization
depending on which gives a worse KKT violator

b. Call the Joint Optimization subroutine

Joint Optimization Subroutine

a. Compute η = 4(1 - K12) where K12 is the kernel evalua-
tion of the pair chosen in Examine Example

b. Compute D = [R2(x2) - R2(x1)]/η

c. Compute Min{(C - β2), β1} = L1

d. Compute Min{(C - β1), β2} = L2

e. If D > 0; then D = Min{D, L1}

Else D = Max{D, -L2}

f. Update β2 as: β2 = β2 + D

g. Update β1 as: β1 = β1 - D

h. Re-compute R2(xi) for all 'i' based on the changes in β1
& β2

i. Re-compute R2_low & R2_up based on elements in Set I,
R2(x1) & R2(x2)

The SVM-External Clustering Method
The SVM-clustering software is written in Perl. It runs data
on a separate Binary SVM also written in Perl. This SVM
uses a C file for kernel calculations. The data run on the
SVM is created by running raw data through a tFSA/
HMM(written in C), which creates a data set that contains
151 feature vectors for each element. The following is a
simple step-by-step description of the basic algorithm
used for SVM-clustering on this data:

1. Start with a set of data vectors (obtained through run-
ning raw data through tFSA/HMM feature extraction in
Fig. 2b).

2. Randomly label each vector in the set as positive or neg-
ative.

3. Run the SVM on the randomly labeled data set until
convergence is obtained (random relabeling is needed if
prior random label scheme does not allow for conver-
gence).

4. After initial convergence is obtained for the randomly
labeled data set, relabel the misclassified data vectors,
which have confidence factor values greater than some
threshold.

5. Rerun the SVM on the newly relabeled data set.

6. Continue relabeling and rerunning SVM until no vec-
tors in the data set are misclassified (or there is no
improvement).
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