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Abstract

Background: Support Vector Machines (SVMs) — using a variety of string kernels — have been
successfully applied to biological sequence classification problems. While SVMs achieve high
classification accuracy they lack interpretability. In many applications, it does not suffice that an
algorithm just detects a biological signal in the sequence, but it should also provide means to
interpret its solution in order to gain biological insight.

Results: We propose novel and efficient algorithms for solving the so-called Support Vector
Multiple Kernel Learning problem. The developed techniques can be used to understand the
obtained support vector decision function in order to extract biologically relevant knowledge
about the sequence analysis problem at hand. We apply the proposed methods to the task of
acceptor splice site prediction and to the problem of recognizing alternatively spliced exons. Our
algorithms compute sparse weightings of substring locations, highlighting which parts of the
sequence are important for discrimination.

Conclusion: The proposed method is able to deal with thousands of examples while combining
hundreds of kernels within reasonable time, and reliably identifies a few statistically significant

positions.

| Background

Kernel based methods such as Support Vector Machines
(SVMs) have proven to be powerful for sequence analysis
problems frequently appearing in computational biology
(e.g. [1-4]). They employ a so-called kernel function
k(s; s;) which intuitively computes the similarity between
two sequences s;and s;. The result of SVM learning is a o
weighted linear combination of kernel elements and the
bias b (see Section 4.1 for more details):

f(s)=sign[§aiyik(si,s)+bJ (1)

i=1

where the s;s are N labeled training sequences
(y; € {+£ 1}). One of the problems with kernel methods
compared to probabilistic methods (such as position
weight matrices or interpolated Markov models [5]) is
that the resulting decision function (1) is hard to interpret
and, hence, difficult to use in order to extract relevant bio-
logical knowledge from it (see also [3,6]). We approach
this problem by considering convex combinations of M
kernels, i.e.

k(si,sj)=éﬁkkk(si13j) (2)
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with £,> 0 and >4, = 1, where each kernel k;, uses only a
distinct set of features of the sequence. For appropriately
designed sub-kernels k;, the optimized combination coef-
ficients can then be used to understand which features of
the sequence are of importance for discrimination. This is
an important property missing in current kernel based
algorithms.

In this work we consider the problem of finding the opti-
mal convex combination of kernels (i.e. determining the
optimal £'s in (2)). This problem is known as the Multiple
Kernel Learning (MKL) problem [4,7,8] (see also [9,10,38]
for related approaches). Sequence analysis problems usu-
ally come with large numbers of examples and one may
wish to combine many kernels representing many possi-
bly important features. Unfortunately, algorithms pro-
posed for Multiple Kernel Learning so far are not capable
of solving the optimization problem for realistic problem
sizes (e.g. = 10,000 examples) within reasonable time.
Even recently proposed decomposition algorithms for
this problem, such as the one proposed in [7], are not effi-
cient enough since they suffer for instance from the inabil-
ity to keep all kernel matrices (K; € RNV, j =1, ..., M) in
memory. (Note that kernel caching can become ineffec-
tive if the number of combined kernels is large.) We con-
sider the reformulation of the MKL problem into a semi-
infinite linear problem (SILP), which can be iteratively
approximated quite efficiently. In each iteration one only
needs to solve the classical SVM problem (with one of the
efficient and publicly available SVM implementations; cf.
references in [11] and also [12,39] to gain a further spee-
dup in case of string kernels) and then performs an update
of the kernel convex combination weights /. Separating
the SVM optimization from the optimization of the kernel
coefficients can thus lead to significant improvements for
large scale problems with general kernels (cf. Section 4 for
details).

We illustrate the usefulness of the proposed algorithm in
combination with a recently proposed string kernel on
DNA sequences - the so-called weighted degree (WD) ker-
nel [13]. Its main idea is to count the (exact) co-occur-
rence of k-mers at position I of two compared DNA
sequences of equal length L (e.g. a window around some
signal on the DNA). The kernel can be written as a linear
combination of d parts with coefficients g, (k = 1, ..., d):

4 Ik
k(s;,8;) =D Br D, Wuag(8;) = upey(s))s (3)
=1 =1

where L is the length of the sequences s, d is the maximal
oligomer length considered and uy,(s) is the oligomer of
length k at position [ of sequence s. Moreover, I(true) := 1
and 0 otherwise.

One question is how the weights £, for the various k-mers
in (3) should be chosen. So far, only heuristic settings in
combination with expensive model-selection methods
have been used (e.g. [13]). The MKL approach offers a
clean and efficient way to find the optimal weights 5: We
define d kernels

Lk
kie(si/87) = D Wuy(s;) = ty1(s))s (4)
=

and then optimize the convex combination of these ker-
nels (with coefficients f) using the MKL algorithm (cf.
(3)). The optimal weights £ indicate which oligomer
lengths are important for the classification problem at
hand (see results in Section 2.2).

Additionally, it is interesting to introduce an importance
weighting over the positions in the subsequence. Hence,
we define a separate kernel for each position and each oli-
gomer length, i.e.

Ky i(sir 8) = Ty i(s;) = wy,i(s))),

and optimize the weightings of the combined kernel,
which may be written as

k(Si,S]‘) =
d Lk
DD Brallug i (si) = g 1 (s5))

k=1 1=1

= Brikii(si.s)). (5)
ol

The simpler case would be to only consider one kernel per

e L .
position in the sequence: k(s; s;) = 2 1 Biki(s;,s;) with

d
ki(si,87) = D Vil (s;) = g (35)), (6)
k=1
where yis the default weighting as used in [13].

Obviously, if one would be able to obtain an accurate
classification by a sparse weighting /3, , then one can quite
easily interpret the resulting decision function. For
instance for signal detection problems (such as splice site
detection), one would expect a few important positions
with long oligomers near the site and some additional
positions within the exon capturing the nucleotide com-
position (short oligomers; cf. Sections 2.4 and 2.5).

While the proposed MKL algorithms are applicable to
arbitrary kernels, we particularly consider the case of
string kernels and show how their properties can be
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In this "figure matrix", columns correspond to the noise level, i.e. different numbers of nucleotides randomly substituted in the
motif of the toy data set (cf. Appendix A.l). Each sub-figure shows a matrix with each element corresponding to one kernel
weight: columns correspond to weights used at a certain sequence position (I1-50) and rows to the oligomer length used at
that position (1-7). The first row of the figure matrix shows the kernel weights that are significant, while the second row

depicts the likelihood of every weight to be rejected under H,.

exploited in order to significantly speedup the computa-
tions. We extend previous work by [8,14,15] and employ
tries [16] during training and testing. In Section 4 we
develop a method that can avoid kernel caching and we
therefore obtain very memory efficient and fast algo-
rithms (which also speedup standard SVM training).

By bootstrapping and applying a combinatorial argu-
ment, we derive a statistical test that discovers the most
important kernel weights. Using this test, we elucidate on
simulated pseudo-DNA sequences with two hidden 7-
mers which k-mers in the sequence were used for the SVM
decision. Additionally we apply our method to the prob-
lem of splice site classification (C. elegans acceptor sites)
and to the problem recognizing alternatively spliced
exons [17].

2 Results and Discussion

The main goal of this work is to provide an explanation of
the SVM decision rule, for instance by identifying
sequence positions that are important for discrimination.
As a first test we apply our method to a toy problem where
everything is known and we can directly validate the find-
ings of our algorithm with the underlying truth. As a next
step, we show that our MKL algorithm performs as well or
slightly better than the standard SVM and leads to SVM
classification functions that are computationally more

efficient. In the remaining part we show how the weights
can be used to obtain a deeper understanding of how the
SVM classifies sequences and match it with knowledge
about the underlying biological process.

2.1 MKL Learning Detects Motifs in Toy Data set

As a proof of concept, we test our method on a toy data set
with two hidden 7-mers (at positions 10 & 30) at four dif-
ferent noise levels (we used different numbers of random
positions in the 7-mers that were replaced with random
nucleotides; for a detailed description of the data see
Appendix A. 1). We use the kernel as defined in (5) with
one sub-kernel per position and oligomer length. We con-
sider sequences of length L = 50 and oligomers up to
length d = 7, leading to M = 350 sub-kernels. For every
noise level, we train on 100 bootstrap replicates and learn
the 350 WD kernel parameters in each run. On the result-
ing 100 weightings we performed the reliability test (cf.
Section 4.3). The results are shown in Figure 1 (columns
correspond to different noise levels — increasing from left
to right). Each figure shows a kernel weighting 5 where
columns correspond to weights used at a certain sequence
position and rows to the k-mer length used at that posi-
tion. The plots in the first row show the weights that are
detected to be important at a significance level of @ = 0.05
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in bright (yellow) color. The likelihood for every weight to
be detected by the test and thus to reject the null hypo-
thesis H is illustrated in the plots in the second row (cf.
Section 4.3 for details). Bright colors mean that it is more
likely to reject H .

As long as the noise level does not exceed 2/7, longer
matches of length 3 and 4 seem sufficient to distinguish
sequences containing motifs from the rest. However, only
the 3-mer is detected with the test procedure. When more
nucleotides in the motifs are replaced with noise, more
weights are determined to be of importance. This becomes
especially obvious in column 3 were 4 out of 7 nucleo-
tides within each motif were randomly replaced, but still
an average ROC score of 99.6% is achieved. In the last col-
umn the ROC score drops down to 83% (not shown), but
only weights in the correct range 10 ... 16 and 30 ... 36 are
found to be significant.

2.2 Optimization of WD Kernel Weights Speeds up
Computations and Improves Accuracy

We compare the standard SVM with WD kernel (default
weighting as in [13]) and kernel caching (SVM-light
implementation [18]) and our MKL-SVM algorithm with
WD kernel (optimized weighting) and using tries (cf. Sec-
tion 4). We applied both algorithms on the C. elegans
acceptor splice data set using 100,000 sequences in train-
ing, 100,000 examples for validation and 60,000 exam-
ples to test the classifiers performance (cf. Appendix A.2).
In this data set each sequence is a window centered
around a AG dimer containing 141 nucleotides (nt),
together with the corresponding label +1 for true acceptor
splice sites and -1 for decoys (cf. [13] and Appendix A.2
for more details). Using this setup we perform 5-fold
cross-validation over the maximal oligomer length d €
{10,12,15,17,20} (cf. (3)) and the SVM regularization
constant C € {0.5, 2, 5, 10}. A detailed comparison of the
WD kernel approach with other state-of-the-art methods
is provided in [13] and goes beyond the scope of this
work.

On the validation set we find that for the SVM using the
standard WD kernel (using the default weighting), d = 20
and C = 0.5 gives best classification performance (ROC
score 99.66% on validation set), while the MKL-SVM
using the WD kernel (optimized weighting) gives best
results for d = 12 and C = 1 (ROC score also 99.66% on
validation set). Figure 2 shows the WD kernel weights
computed by the MKL-SVM approach. It suggests that 12-
mers and 6-mers seem to be of high importance and 1-4-
mers are also important. On the test data set the resulting
SVM classifier with standard WD kernel performs as good
as on the validation data set (ROC score 99.66% again),
while the classifier obtained by MKL-SVMs with opti-

mized WD kernel weights achieves a 99.67% ROC score.
Astonishingly training the MKL-SVM (i.e. with weight
optimization and tries) was 1.5 times faster than training
the original SVM (with kernel caching). Also, the resulting
classifier provided by the new algorithm is considerably
faster than the one obtained by the classical SVM since
many S-weights are zero (see also [19]).

It should be noted that the obtained weighting in this
experiment is only partially useful for interpretation. In
the case of splice site detection, it is unlikely that k-mers
of length 12 play the most important role. More likely to
be important are oligos of length up to six. We believe that
the large weight for the longest oligo is an artifact which
comes from the fact that we are combining kernels with
quite different properties. (The 12th kernel leads to a ker-
nel matrix that is most diagonally dominant, which we
believe is the reason for having a large weight. This prob-
lem can be partially alleviated by including the identity
matrix in the convex combination. However as €,-norm
soft margin SVMs can be implemented by adding a con-
stant to the diagonal of the kernel [20,21], this leads effec-
tively to an additional €,-norm penalization.) In the
following example we consider one weight per position.
In this case the combined kernels are more similar to
each-other and we expect more interpretable results.

0.4

0.35¢

o
w

o
—h

1234567 8 9101112
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Figure 2
Optimized WD Kernel Weights.
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(left) Value of the learned weightings of an SVM with a WD kernel of 60 first-order sub-kernels, (right) relative entropy
obtained between the Positional Weight Matrices for the positive and the negative class, both trained for acceptor splice site

detection.

2.3 Optimal Positional Importance Weighting is Related to
Positional Weight Matrices

An interesting relation of the learned weightings to the rel-
ative entropy between Positional Weight Matrices
(PWMs) can be shown with the following experiment: We
train an SVM with a WD kernel that consists of 60 first-
order sub-kernels (i.e. only single nucleotide matches are
considered) on acceptor splice sites from C. elegans
(100,000 sequences for training, 160,000 sequences for
validation). The characteristic acceptor splice site AG
dimer is at positions 31 & 32. We extracted the sequences
from a window (-30, +28) around the dimer. The learned
weights £, are shown in Figure 3 (left). For comparison we
computed the PWMs (Markov chains of zero-th order) for
the positive and the negative class separately (denoted by

p;t j and p;;). Additionally, we computed the relative

entropy A; between the two probability estimates p;’ j and

pij at each position j by A;= 2; p;fj log(p;j /9ii)
leading to Figure 3 (right). The shape of both plots is quite
similar, i.e. both methods consider upstream informa-
tion, as well as a position directly after the splice site to be
highly important. As a major difference the WD-weights

in the exons remain on a high level. Note that both meth-
ods use only zero-th order information. Nevertheless the
classification accuracy is already quite high. On the sepa-
rate validation set the SVM already achieves a ROC score
of 99.07% and the Positional Weight Matrices a ROC
score of 98.83%.

2.4 Positional WD Kernel Weights Helps Understanding
Splice Site Classification

Note that Markov chains become intractable and less
accurate for high orders, which seem on the other hand
necessary for achieving high accuracies in many sequence
analysis tasks. SVMs, however, are efficient and accurate
even for great oligomer lengths. We therefore expect that
MKL-SVMs may also in this case provide useful insights at
which positions the discriminative information is hidden.

In order to illustrate this idea we perform another experi-
ment: We considered the larger region from -50 nt to +60
nt around the splice site and used the WD kernel with d =
15. We defined a kernel for every position that only
accounts for substrings that start at the corresponding
position (up to length 15). To get a smoother weight-
ing and to reduce the computing time we only used
[111/2] = 56 weights (combining every two positions to
one weight). Figure 4 shows the average computed
weighting on ten bootstrap runs trained on about 65,000
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Optimized WD kernel weights considering subsequences
starting at different positions (one weight per two positions).

examples. Several regions of interest can be identified: a)
The region -50 nt to -40 nt, which corresponds to the
donor splice site of the previous exon (many introns in C.
elegans are very short, often only 50 nt), b) the region -25
nt to -15 nt that coincides with the location of the branch
point, ¢) the intronic region closest to the splice site with
greatest weight (-8 nt to -1 nt; the weights for the AG
dimer are zero, since it appears in splice sites and decoys)
and d) the exonic region (0 nt to +50 nt). Slightly surpris-
ing are the high weights in the exonic region, which we
suspect only model triplet frequencies. The decay of the
weights seen from +15 nt to +45 nt might be explained by
the fact that not all exons are actually long enough. Fur-
thermore, since the sequence ends in our case at +60 nt,
the decay after +45 nt is an edge effect as longer substrings
cannot be matched.

2.5 Finding Motifs for Splice Site Detection

We again consider the classification of acceptor splice sites
against non-acceptor splice sites (with centered AG dimer)
from the C. elegans (cf. Appendix A.2 for details on the
generation of the data sets). We trained our Multiple Ker-
nel Learning algorithm (C = 2) on 5,000 randomly chosen
sequences of length 111 nt with a maximal oligomer
length of d = 10. This leads to M = 1110 kernels in the con-
vex combination. Figure 5 shows the results obtained for
this experiment (similarly organized as Figure 1). We can
observe (cf. Figure 5b&c) that the optimized kernel coeffi-
cients are biologically plausible: longer significant oli-
gomers were found close to the splice site position,
oligomers of length 3 and 4 are mainly used in the exonic
region (modeling triplet usage) and short oligomers near

the branch site. Note, however, that one should use more
of the available examples for training in order to extract
more meaningful results (adapting 1110 kernel weights
may have lead to overfitting). In some preliminary tests
using more training data we observed that longer oligom-
ers and also more positions in the exonic and intronic
regions become important for discrimination.

Note that the weight matrix would be the outer product of
the position weight vector (cf. Figure 5a) and the oli-
gomer-length weight vector (cf. Figure 5d), if position and
oligomer length would be independent. This is clearly not
the case: it seems very important (according to the weight
for oligomer-length 5) to consider longer oligomers for
discrimination (see also Figure 2) in the central region,
while it is only necessary and useful to consider mono-
mers and dimers in other parts of the sequence.

2.6 Understanding the Recognition of Alternatively Spliced
Exons

In this section we consider the problem of recognizing
one major form of alternative splicing, namely the exclu-
sion of exons from the transcript. It has been shown that
alternatively spliced exons have certain properties that dis-
tinguish them from constitutively spliced exons (cf. [17]
and references therein). In [17] we developed a method
that only uses information that is available to the splicing
machinery, i.e. the DNA sequence itself, and accurately
distinguishes between alternatively and constitutively
spliced exons (50% true positive rate at a 1% false positive
rate; see http://www.fml.tuebingen.mpg.de/raetsch
projects/RASE for more details). Using our MKL method
we have identified regions near the 5' and 3' end of the
considered exons that carry most of the discriminative
information. We show that these regions contain many
hexamers that are significantly more often present than
average in constitutively spliced exons.

In order to recognize alternatively spliced exons we con-
sider the 5' and 3' end of the exons separately and use an
extended version of the WD kernel (exhibiting an
improved positional invariance, cf. [17]) on a 201 nt win-
dow centered around the exon start and end together with
additional kernels capturing information about the length
of the exon and the flanking introns [17].

To interpret the SVM classifiers result we employ Multiple

Kernel Learning to determine the weights ﬂS, and ﬁ3/ for

the two WD kernels around the acceptor (5') and donor
(3") site. In Figure 6 the learned weighting is shown
(weights for other subkernels not shown). A higher weight
at a certain position in the sequence corresponds to an
increased importance of substrings starting at this loca-
tion. Given this weighting, we can identify five regions
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Figure a) shows the average weight (over 10 runs) of the weights per position (one weight for two positions) and d) the aver-
aged weights per oligomer length (uniform position weighting). Figures b) displays the position and oligomer length combina-
tions that were found to be significantly used (40 bootstrap runs). Figure c) shows the likelihood for rejecting H . In all runs

we used 5, 000 training examples.

which seem particularly important for discrimination: a-
b) within the upstream intron the region -70 nt to -40 nt
and -30 nt to 0 nt (relative to the end of the intron), c) the
exon positions +30 nt to +70 nt (relative to the beginning
of the exon) and d) -90 nt to -30 nt (relative to the end of
the exon). And finally e) the downstream intron positions
0 - 70 nt (relative to the beginning of the intron).

To illustrate that these regions represent distinct discrimi-
native features for the problem at hand, we counted the
occurrence of all hexamers in the positive and negative
examples. Using the frequency p- of occurrence of a hex-
amer in the negative examples as background model, we
computed how likely it is to observe the frequency p* in
the positive sequences (E-value; using the binomial distri-
bution). In Table 1 we display for each of the five regions
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Figure 6

We use Multiple Kernel Learning to determine weights for
the WD kernel. Shown is learned weighting for the WD ker-
nel at the acceptor and at the donor site. From areas of
higher weight (upstream intron: regions -70 nt to -40 nt and -
30 nt to 0 nt, Exon: +30 nt to +70 nt and -30 nt to -90 nt,
downstream intron 0 nt to +70 nt) overrepresented hexam-
ers have been extracted and are shown in Table I.

the six hexamers with highest E-value. In region a) the
motif CTAACC frequently appears in various variations,
while region b) is rich with C's and T's. Particularly inter-
esting seem the motifs AGTGAG and CAGCAG which
only appear significantly in the region near the exon start
and exon end, respectively. The downstream intron con-
tains many G's and T's. (Members of the CELF gene family
bind for instance to GT-rich regions; A. Zahler, personal
communication).) A more complete list of the over-repre-
sented hexamers are found on the supplementary web-site

http://www.fml.tuebingen.mpg.de/raetsch/projects/
RASE.

3 Conclusion

In this work we have developed a novel Multiple Kernel
Learning algorithm applicable to large-scale sequence
analysis problems that additionally assists in understand-
ing how decisions are made. Using a novel reformulation
of the MKL problem, we were able to reuse available SVM
implementations that, in combination with using tries,
have lead us to a very efficient MKL algorithm suitable for
the analysis of large scale sequence analysis problems. In
experiments on toy, splice-site detection and alternative
exon recognition problems we have illustrated the useful-
ness of the Multiple Kernel Learning approach. The opti-

mized kernel convex combination gives valuable hints at
which positions discriminative oligomers of which length
are located in the sequences. This solves to a certain extent
one of the major problems with Support Vector Machines:
now the decisions become interpretable. On the toy data
set we re-discovered hidden sequence motifs even in pres-
ence of a large amount of noise. In the first experiments
on the acceptor splice site detection problem we discov-
ered patterns in the optimized weightings which are bio-
logically plausible. For the recognition of alternatively
spliced exons we have identified several regions near the
5'and 3' end of the exons that display distinguished pat-
terns. It is future work to extend our computational eval-
uation and to consider other signal detection problems.

4 Methods

4.1 Support Vector Machines

We use Support Vector Machines [22] which are exten-
sively studied in the literature (e.g. [11,20,21]). Their clas-
sification function can be written as in (1). The ¢;'s are the
Lagrange multipliers and b is the usual bias which are the
results of SVM training. The kernel k is the key ingredient
for learning with SVMs. It implicitly defines the feature
space and the mapping @ via

k(s,s')= <d>(s),d)(s')>.

In case of the afore mentioned WD kernel, ® maps into a
feature space RP of all possible k-mers of length up to d for
each sequence position (D ~ 44+1L). For a given sequence
s, a dimension of @ (s) is 1, if it contains a certain sub-
string at a certain position. The dot-product between two

mapped examples then counts the co-occurrences of sub-
strings at all positions.

For a given set of training examples (s;, y;) (i=1, ..., N), the
SVM solution is obtained by solving the following

optimization problem that maximizes the soft margin
between both classes [23]:

. 1 2 ol
min —HWH +C2§i
2 i=1
wrt. we RP be R Ec RY (7)
s.t. y{(<w'®(si)>+b)21_§i’ l’=1,..4,N,

where the parameter C determines the trade-off between
the size of the margin and the margin errors ¢. The dual
optimization problem is as follows:
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Table I: Shown are the top six ranked hexamers (by E-value) extracted for the upstream intron the in between exon and the following
downstream exon. The first column in the upper part shows the most important hexamers in the intron for the region -70 nt to -40 nt
relative to the end of the intron. The lower part states 6-mers contained -30 nt until the end of the upstream intron. Similarly the
second column displays hexamers in the exon from +30 nt to +70 nt (upper half, relative to exon start) and -30 nt to - 90 nt (lower part,
relative to exon end) and the last column 6-mers in the downstream intron from 0 nt to +70 nt.

Upstr. Intron Exon Downstr. Intron
6-mer E-val. 6-mer E-val. 6-mer E-val.
CTAACC 1.2e-17 AGTGAG 4.2e-11 TGTGTG 5.9e-31
CCCCCC 3.8e-11 TTTTTT 2.7e-09 TTGTGT 1.7e-24
TAACCC 9.8e-10 ATATAT 1.3e-08 GTGTGT 3.6e-16
CACTTT 6.2e-09 TATATA 3.6e-07 GTTGTG 4.4e-15
ATCCCC 1.6e-07 ATAGGT 4.8e-07 TGTTGT 33e-14
CTTTCC 2.4e-07 TAGGTT 5.0e-07 TGCATG 1.3e-13
CATTCT 1.3e-09 TTTAAA 1.8e-12
CTCTCT 1.9e-09 AATTTT 2.2e-10
GCATGT 4.4e-09 ATTTTA 2.9e-09
GTTGTC 4.4e-09 CAGCAG 1.2e-08
TCTCTA 2.2¢-08 TAATTT 8.3e-08
CTCTAT I.1e-07 TTCCCC 2.1e-07
N N 2
1 M N
max a; —— a0y ik(s; s:), . 1
; i 2_2_4 iojyiy jk(s;s;) min — zdjﬁj”Wj" +C2<§i (9)
i=1 i,j=1 21 4 2 ‘
(8) j=1 i=1
N & k
. . _ i N M
wrt. ae R witha SCandz{a,yl =0. wrt. w=(wp,..,wy)w;eR7,§eR} BeRY beR
1=

Note that there exist a large variety of different software
packages that can efficiently solve the above optimization
problem even for more than one hundred thousand of
examples (cf. references in [11] and also [12] to gain fur-
ther speedups when string kernels are used).

4.2 The Multiple Kernel Learning Optimization Problem
4.2.1 Idea

In the Multiple Kernel Learning (MKL) problem one is
given N data points (§;, y;) (y; € {+ 1}), where §; is sub-

divided into M components §; = (s;;, ..., 8;y) with

s(ij)e R and k;is the dimensionality of the j-th com-

ponent. Then one solves the following convex optimiza-
tion problem [7], which is equivalent to the linear SVM
forM =1:

S.t. Yi

M
2ﬂf<wjfsi,j>+b >1-¢,v;=1,..,N
j=1

<

Bj =1,
1

-
Il

where d; is a prior weighting of the kernels (in [7],
dj = 1/2,-<5i,jr5i,j > has been chosen such that the com-

bined kernel has trace one). For simplicity, we assume
that d; = 1 for the rest of the paper and that the normaliza-
tion is done within the mapping ¢ (if necessary). Note
that the €,-norm of S is constrained to one, while one is
penalizing the ¢,-norm of w; in each block j separately.
The idea is that €,-norm constrained or penalized varia-
bles tend to have sparse optimal solutions, while €,-norm
penalized variables do not [24]. Thus the above optimiza-
tion problem offers the possibility to find sparse solutions

on the block level with non-sparse solutions within the
blocks.

4.2.2 Reformulation as a Semi-Infinite Linear Program
The above optimization problem can also be formulated
in terms of support vector kernels [7]. Then each block j
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corresponds to a separate kernel (K)),, = k(s,; s,;) com-
puting the dot-product in feature space of the j-th compo-
nent. In [7] it has been shown that the following
optimization problem is equivalent to (9):

. 1
min E’J/z —Zai
i
wrt. ye Rae RN
st.  0<as<CYmy; =0

1

zaras)/rys (Kj )r,s < 72

s

=S(a)

]

In order to solve (10), one may solve the following saddle
point problem (Lagrangian):

(11)

M
Li= 72 =T+ X B(S;@)-12)
i j=1

minimized w.r.t. a € Rf, 7 € R (subject to & < C and

2 ay; = 0) and maximized w.r.t. § € Rﬂ\f. Setting the

derivative w.r.t. to y to zero, one obtains the constraint

z]ﬂj :% and (11) simplifies to:

1 M
j=1 i

=S(ax)

Assume a* would be the optimal solution, then 6* :=
S(a*) - 2; ;is minimal and, hence, S(a) - %; ;> 6* for
all & (subject to the above constraints). Hence, finding a
saddle-point of (12) is equivalent to solving the following
semi-infinite linear program:

max 60

wrt. 6eR,fe RQA wichﬁj =1
j

M1 (13)
j=1 i

forallawithO <@ < Cand ) yo; =0

1

4.2.3 A Column Generation Method

Note that there are infinitely many constraints (one for
every vector ). Typically algorithms for solving semi-infi-
nite problems work by iteratively finding violated con-
straints, i.e. « vectors, for intermediate solutions (5, 6).
Then one adds the new constraint (corresponding to the

new «) and resolves for  and 8 [25]. The pseudo-code is
outlined in Algorithm 1. Note, however, that there are no
known convergence rates for such algorithms [25], but it
often converges to the optimal solution in a small number
of iterations [26,27]. (It has been shown that solving
semi-infinite problems like (13), using a method related
to boosting (e.g. [28]) one needs at most

T :O( log(M)/&? ) iterations, where € is the unnormal-

ized constraint violation and the constants may depend
on the kernels and the number of examples N [24,29]. At
least for not too small values of € this technique produces
reasonably fast good approximate solutions. See [8] for
more details.)

Fortunately, finding the constraint that is most violated
corresponds to solving the SVM optimization problem for
a fixed weighting of the kernels:

M1
Z ﬂj [Esj(a) - Zai ): EarasyrysKr,s - Zah
j=1 i r,s i

where K =2, 8K;. Due to the number of efficient SVM opti-
mizers, the problem of finding the most violated con-
straint can be solved efficiently, too.

Finally, one needs some convergence criterion. Note that
the problem is solved when all constraints are satisfied
while the fs and @ are optimal. Hence, it is a natural
choice to use the normalized maximal constraint viola-
tion as a convergence criterion. In our case this would be:

Zﬁlﬂ;(isj(at)_zz“f)
1-

et

’

& =

where (£, &) is the optimal solution at iteration ¢ - 1 and
at corresponds to the newly found maximally violating
constraint of the next iteration (i.e. the SVM solution for
weighting /#; cf. Algorithm 1 for details). We usually only
try to approximate the optimal solution and stop the opti-
mization as soon as & < & were g was set to 104 or 10-3in
our experiments.

4.2.4 A chunking algorithm for simultaneous optimization of a. and [3
Usually it is infeasible to use standard optimization tools
(e.g. MINOS, CPLEX, LOQO) for solving the SVM training
problems on data sets containing more than a few thou-
sand examples. So-called decomposition techniques over-
come this limitation by exploiting the special structure of
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the SVM problem. The key idea of decomposition is to
freeze all but a small number of optimization variables
(working set) and to solve a sequence of constant-size
problems (subproblems of (8)).

The general idea of Chunking and Sequential Minimal
Optimization (SMO) algorithm has been proposed by
[30,31] and is implemented in many SVM software pack-
ages. Here we would like to propose an extension of the
Chunking algorithm to optimize the kernel weights fand
the example weights « at the same time. The algorithm is
motivated from an insufficiency of the column-genera-
tion algorithm described in the previous section: If the f's
are not optimal yet, then the optimization of the 's until
optimality is not necessary and therefore inefficient. It
would be considerably faster if for any newly obtained «
in the Chunking iterations, we could efficiently recom-
pute the optimal £ and then continue optimizing the o's
using the new kernel weighting.

Intermediate Recomputation of S Recomputing S
involves solving a linear program and the problem grows
with each additional a-induced constraint. Hence, after
many iterations solving the LP may become infeasible.
Fortunately, there are two facts making it still possible: (1)
only a small number of the added constraints are active
and one may for each newly added constraint remove an
old inactive one - this prevents the LP from growing arbi-
trarily and (2) for Simplex-based LP optimizers such as
CPLEX there exists the so-called hot-start feature which
allows one to efficiently recompute the new solution, if
one, for instance, only adds a few additional constraints.
The SVM-light optimizer which we are going to modify,

internally needs the output fj =2,y k(s; s;) for all train-

ing examples in order to select the next variables for opti-
mization [18]. However, if one changes the kernel

weights, then the stored f; values become invalid and

need to be recomputed. In order to avoid the full re-com-
putation one has to additionally store a M x N matrix f, ;

=2,a YK (s; ), i.e. the outputs for each kernel separately.

If the f#'s change, then fj can be quite efficiently recom-

puted by f; = Z,f))-

Faster o Optimization using Tries Finally, in each itera-
tion the Chunking optimizer may change a subset of the

a's. In order to update fj and f;, one needs to compute

full rows j of each kernel for every changed ¢;. Usually one

uses kernel-caching to reduce the computational effort of
this operation, which is, however, in our case not efficient
enough since the effect of the kernel caches degrades dras-
tically in the case of having many kernels. Fortunately, for
the WD kernel there is a way to avoid this problem by
using so-called tries (cf. [16]; similarly proposed by [14]
and others). While we cannot improve a single kernel
evaluation (which is already O (L)), it turns out to be pos-
sible to drastically speedup the computation of a linear
combination of kernels, i.e.

8(s) = D ak(s;,s),

iel

where I is the index set. The idea is to create a trie for each
position [ =1, ..., L of the sequence. We propose to attach
weights to internal nodes and the leaves of the trie, allow-
ing an efficient storage of weights for k-mers (1 <k < d).
Now we may add all k-mers (k =1, ..., d) of s; (i € I) start-
ing at position I to the trie associated with position !
(using weight ;8 operations per position: O (d|I])).
Once created, the I-th trie can be traversed down in order
to lookup which k-mers in a test sequence (starting at
position I) have a non-zero contribution to g(s):

Following the path defined by the k-mer u one adds all
weights along the way and stops when no children exists
(see Figure 7). Note that we now can compute g in O (Ld)
operations (compared to O (|I|Ld) in the original formu-
lation). Empirically we noticed that the proposed Chunk-
ing algorithm is often 3-5 times faster than the column-
generation algorithm proposed in the last section, while
achieving the same accuracy. In the experiments in Sec-
tion 2 we only used the Chunking algorithm with a chunk
size of Q = 41.

The pseudo-code of the algorithm which takes the discus-
sion of this section into account is displayed in Algorithm
2.

4.3 Estimating the Reliability of a Weighting

Finally we want to assess the reliability of the learned
weights . For this purpose we generate T bootstrap sam-
ples and rerun the whole procedure resulting in T weight-

ings /.

To test the importance of a weight S, ; (and therefore the
corresponding kernels for position and oligomer length)
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Figure 7
Three sequences AAA, AGA, GAA beeing added to the trie.
The plot displays the resulting weights at the nodes.

we apply the following method: We define a Bernoulli

variable Xj,; € {0,1},k=1,..,d,i=1,.., L t=1,..,Tby

t — t
Xk, =4l Pri > 7= By X
/L '
0, else

The sum Z,; = Zthl Xltz,i has binomial distribution Bin
(T, po)
po = #(Pii > 1)/ ™,

observe P( X;tm- = 1), Vk, i, t. We test whether Z, ; is as large

po unknown. We estimate p, with

i.e. the empirical probability to

as could be expected under Bin(T, p, ) or larger, i.e. the
null-hypothesisis Hy:p <c* (vs H;:p>c*). Here c* is
defined as p +2Std,;, X},; and can be interpreted as an

upper bound of the confidence interval for p,. This choice
is taken to be adaptive to the noise level of the data and
hence the (non)-sparsity of the weightings /. The hypoth-
eses are tested with a Maximume-Likelihood test on an o-
level of & = 0.05; that is ¢** is the minimal value for that
the following inequality hold:

. T
0.05= O‘ZP‘HO (reject‘Ho):P,Ho (Zk,i >c” ) z ( ]Po(l Po )

j=c

For further details on the test see [32] or [33]. This test is

carried out for every ﬁ,i,i. (We assume independence

between the weights in one single f and hence assume
that the test problem is the same for every £, ;). If H, can

be rejected, the kernel learned at position i on the k-mer is
important for the detection and thus (should) contain
biologically interesting knowledge about the problem at
hand.

Authors' contributions

GR proposed and implemented the SILP formulation of
the MKL problem, prepared data sets, drafted the manu-
script and helped in carrying out experiments. SS invented
the Weighted Degree Kernel, analyzed several weighting
schemes and reformulated it as a MKL problem, helped
implementing the MKL algorithms and carried out most
of the experiments. CS developed the statistical signifi-
cance test and critically revised the article.

A Data Generation

A.l Toy Data

We generated 11,000 sequences of length 50, where the
symbols of the alphabet {A, C, G, T} follow a uniform dis-
tribution. We chose 1,000 of these sequences to be posi-
tive examples and hid two motifs of length seven: at
position 10 and 30 the motifs GATTACA and AGTAGTG,
respectively. The remaining 10,000 examples were used as
negatives. Thus the ratio between examples of class +1 and
class -1 is ® 9%. In the positive examples, we then ran-
domly replaced s € {0, 2, 4, 5} symbols in each motif.
Leading to four different data sets which where randomly
permuted and split such that the first 1,000 examples
became training and the remaining 10,000 validation
examples.

A.2 Splice Site Sequences

We collected all known C. elegans ESTs from Wormbase
[34] (release WS118; 236,868 sequences), dbEST [35] (as
of February 22, 2004; 231,096 sequences) and UniGene
[36] (as of October 15, 2003; 91,480 sequences). Using
blat [37] we aligned them against the genomic DNA
(release WS118). We refined the alignment by correcting
typical sequencing errors, for instance by removing minor
insertions and deletions. If an intron did not exhibit the
GT/AG or GC/AG dimers at the 5' and 3' ends, respec-
tively, then we tried to achieve this by shifting the bound-
aries up to 2 nucleotides. For each sequence we
determined the longest open reading frame (ORF) and
only used the part of each sequence within the ORF. In a
next step we merged agreeing alignments, leading to
135,239 unique EST-based sequences. We repeated the
above with all known ¢cDNAs from Wormbase (release
WS118; 4,848 sequences) and UniGene (as of October 15,
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2003; 1,231 sequences), which lead to 4,979 unique
sequences. We removed all EST matches fully contained in
the cDNA matches, leaving 109,693 EST-based sequences.

We clustered the sequences in order to obtain independ-
ent training, validation and test sets. In the beginning each
of the above EST and cDNA sequences were in a separate
cluster. We iteratively joined clusters, if any two sequences
from distinct clusters a) match to the genome at most 100
nt apart (this includes many forms of alternative splicing)
or b) have more than 20% sequence overlap (at 90% iden-
tity, determined by using blat). We obtained 17,763 clus-
ters with a total of 114,672 sequences. There are 3,857
clusters that contain at least one cDNA. Finally, we
removed all clusters that showed alternative splicing.

Since the resulting data set is still too large, we only used
sequences from randomly chosen 20% of clusters with
c¢DNA and 30% of clusters without cDNA to generate true
acceptor splice site sequences (15,507 of them). Each
sequence is 398 nt long and has the AG dimer at position
200. Negative examples were generated from any occur-
ring AG within the ORF of the sequence (246,914 of them
were found). We used a random subset of 60,000 exam-
ples for testing, 100,000 examples for parameter tuning
and up to 100,000 examples for training (unless stated
otherwise).

Algorithms
Algorithm 1 The column generation algorithm employs a
linear programming solver to iteratively solve the semi-

infinite linear optimization problem (13). The accuracy
parameter ¢ is a parameter of the algorithm.

1
D0=1,01=0, /3',5:M fork=1,.., M

fort=1,2,..do

M
obtain SVM's o with kernel k' (s;, ) := 2 Biky(s;,s i)
k=1

fork=1,..,Mdo
1
D}tz = Ezaiastyryskk(sr'ss) _zaﬁ
T,s T

end for

M
D' =, pip
k=1

Dt
if |1—-—|< ¢ then break
et

(B1+1,9t+1) = argmax 0

wrtfe RY, 0e Rwith Y B, =1
k

M
s.t. 2 BiDp, =0 forr =1,...,t

k=1
end for
Algorithm 2 Outline of the Chunking algorithm (exten-
sion to SVM-light) that optimizes « and the kernel weight-
ing f simultaneously. The accuracy parameter ¢ and the
subproblem size QQ are assumed to be given to the algo-
rithm. For simplicity we omit the removal of inactive con-
straints. Also note that from one iteration to the next the
LP only differs by one additional constraint. This can usu-

ally be exploited to save computing time for solving the
LP.

- 1
fri=0, fi=0,0;=0, ﬁi:ﬁ fork=1,..,Mandi=1,

.. N
fort=1,2,..do

Check optimality conditions and stop if optimal

select Q suboptimal variables i), ... i based on f and &
o= ¢

solve (8) with respect to the selected variables and
update «

create trie-structures to prepare efficient computation of
_\VQ o poldy )
8k (S) = zq=1 (alq aiq )qu kk (Slq ’ S)

fri=fi+ & (s)forallk=1,..,Mandi=1,.. ,N
fork=1,..,Mdo

Dltz = %zrfk,rar)’r - Zrar

end for
M
D' =3 . BiDi
t
if [1-2 > ¢
Gt
(Bl+1,9t+1) = argmax 0
wrtfe RM, 6e Rwith 3,6,=1

M
s.t. zkzlﬁkD;Z >0 forr=1,..,t
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else

61 =6

end if

J?i = zkﬁ}gﬂfk,i foralli=1,.. N

end for
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