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Abstract
Background: As numerous diseases involve errors in signal transduction, modern therapeutics
often target proteins involved in cellular signaling. Interpretation of the activity of signaling
pathways during disease development or therapeutic intervention would assist in drug
development, design of therapy, and target identification. Microarrays provide a global measure of
cellular response, however linking these responses to signaling pathways requires an analytic
approach tuned to the underlying biology. An ongoing issue in pattern recognition in microarrays
has been how to determine the number of patterns (or clusters) to use for data interpretation, and
this is a critical issue as measures of statistical significance in gene ontology or pathways rely on
proper separation of genes into groups.

Results: Here we introduce a method relying on gene annotation coupled to decompositional
analysis of global gene expression data that allows us to estimate specific activity on strongly
coupled signaling pathways and, in some cases, activity of specific signaling proteins. We
demonstrate the technique using the Rosetta yeast deletion mutant data set, decompositional
analysis by Bayesian Decomposition, and annotation analysis using ClutrFree. We determined from
measurements of gene persistence in patterns across multiple potential dimensionalities that 15
basis vectors provides the correct dimensionality for interpreting the data. Using gene ontology
and data on gene regulation in the Saccharomyces Genome Database, we identified the
transcriptional signatures of several cellular processes in yeast, including cell wall creation,
ribosomal disruption, chemical blocking of protein synthesis, and, criticially, individual signatures of
the strongly coupled mating and filamentation pathways.

Conclusion: This works demonstrates that microarray data can provide downstream indicators
of pathway activity either through use of gene ontology or transcription factor databases. This can
be used to investigate the specificity and success of targeted therapeutics as well as to elucidate
signaling activity in normal and disease processes.
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Data analysis flowchartFigure 1
Data analysis flowchart. The data was downloaded from Rosetta Inpharmatics and filtered to include only genes and exper-
iments that showed significant variation. Bayesian Decomposition analysis generated patterns and associated gene lists for all 
dimensionalities between 3 and 25. ClutrFree was used to interpret these results, including use of the MIPS database of ontol-
ogies.
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Background
Many diseases develop because of errors in signaling, and
newer therapeutics specifically target proteins involved in
cellular signaling [1,2]. However, these therapies are not
always effective [3], and the reason for failure, whether
inherent poor interaction or complex cellular response, is
unknown. In order to understand the development of dis-
ease and drug resistance in these cases, the recovery of the
process that led to the specific cellular malfunction must
be identified. Such errors generally involve the cellular sig-
naling networks that control cell growth, differentiation,
apoptosis, and motility [4,5]. Because of the extreme
underlying biological complexity of these pathways, dis-
eases that involve errors in signaling processes arise from
a myriad of different cellular malfunctions, for example in
cancers [6,7] and diabetes [8,9]. It is from this complex
background that functional genomics attempts to glean
insight to improve our understanding of diseases.

One of the major uses of microarrays has been elucidation
of gene expression in cancer, often focused on refining
cancer identification using computational and statistical
approaches [10-12]. In addition, the discovery of biomar-
kers in the form of differential levels of production of
mRNA has been a focus in a number of studies [13-15].
The fact that determination of the mRNA levels of a single
gene is easier than using an entire array has driven the
shift to the use of arrays to generate potential biomarkers,
so that the expression levels of these individual genes can
be screened for in a more economical way (see, for exam-
ple, [16]). For diabetes, microarrays have been used to
elucidate gene expression in both type I and type II dis-
eases, and customized chips targeting genes of interest
have been developed [17].

Many tools for statistical inference, pattern recognition,
and data mining have been developed for microarray data
analysis. Statistical tests include SAM [18], VERAandSAM
[19], ANOVA techniques [20,21], Bayesian approaches
[22,23], and rank tests [24]. Pattern recognition and data
mining techniques comprise both unsupervised tech-
niques, such as hierarchical clustering [25], singular value
decomposition [26], multidimensional scaling [27],
Bayesian mixture models [28,29], and other clustering
methods [30-34], and supervised techniques, such as sup-
port vector machines [35] and artificial neural networks
[36], (for a review see [37]).

While these techniques are useful, they have certain limi-
tations as regards more advanced uses in the elucidation
of mechanisms operating in diseased tissues. New thera-
peutics specifically target proteins involved in cellular sig-
naling [1-3,38-40]. As noted above, these therapies are
not always effective, and a method to understand the rea-
son for their ineffectiveness is highly desirable. If the fail-

ure modes for the targeted therapeutics are understood,
new therapeutics can be designed or combination thera-
pies undertaken. In addition, to design new therapies that
work alone or in combination with other therapies, an
understanding of signaling networks is required. Microar-
ray measurements can provide insight into these issues.

Unfortunately, the recovery of pathway information from
transcriptional data requires complex analysis, since sign-
aling protein activity is not generally linked to the mRNA
expression levels of genes encoding the signaling proteins
themselves [41], nor are protein levels tightly coupled to
transcript levels even in yeast [42,43]. This makes it
impossible to directly link an increase in mRNA expres-
sion of the gene encoding a signaling protein, such as the
therapeutic target, with activity of the protein and there-
fore of the signaling pathway. Instead, an analysis must
treat changes in mRNA levels as downstream indicators of
activity.

An important issue to resolve in order to correctly inter-
pret patterns in microarray data is the underlying dimen-
sionality of the data, since statistical analysis of genes in
groups relies on correct separation. The dimensionality
provides an estimate of the number of patterns required to
explain the variation in the data not related to noise,
which is equivalent to the number of basis vectors
required mathematically to describe the data or the
number of principal components required to span the
data.

We present here a new application of Bayesian Decompo-
sition [44-48] and ClutrFree [49] that estimates dimen-
sionality by measuring the consistency of assignment of
genes to patterns. With this approach, transcriptional sig-
natures are linked to signaling activities through gene
ontology [50] using the MIPS database [51] and through
analysis of transcription factor activity [52]. We demon-
strate this technique on the Rosetta deletion mutant data-
set [53], which is a compendium of genome-wide
transcription measured for 6300 genes across 300 condi-
tions (mostly deletion mutants, but some chemical treat-
ments). Figure 1 details the workflow of our analysis.
Previous studies of the compendium were performed
using hierarchical clustering [53], non-negative matrix
factorization [54], and Bayesian Decomposition [44]. The
dimensionality of the data was estimated in various ways
in these studies leading to estimates from 7 to 50 dimen-
sions.

Results
Dimensionality of the data
We propose a value for the Rosetta dataset dimensionality
based on the average persistence calculations at each tree
level made with ClutrFree using multiple Bayesian
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Decomposition simulations. The dimensionality has been
inferred from the average persistence defined in the Meth-
ods section. As the number of basis vectors (i.e., patterns)
k is increased, the curve shows a dramatic drop for k > 15
(see Figure 2). This drop is due to the reorganization of
the groups of mutants constituting the basis vectors for k
> 15 patterns, leading to an overly low average persistence.

The freedom to move between branches leads also to
some loss of consistency in the annotations as one moves
down a branch. This contrasts with the behavior of basis
vectors obtained for less than 15 patterns where biological
functions split logically as the number of patterns
increases. We also observed a reduction in the number of
genes related to each basis vector for 16 patterns in com-
parison to 15. Also, the standard deviation across samples
of the obtained vectors is significantly higher for 16 pat-
terns (1.7 × 10-3) than for 15 patterns (7.9 × l0-4) indicat-
ing that the Markov chain sampling is not as tightly
constrained by the probability distribution. The behavior
observed occurs because of the potential to overfit the
data with 16 basis vectors allowing the algorithm to find
multiple configurations to explain the variation in the
data.

Identifying patterns and functions
Bayesian Decomposition retrieves the two linked matri-
ces: the P matrix (pattern matrix) groups mutants that
share cellular functions, which can be deduced from the
genes linked to each pattern contained in the A matrix.

Each mutant (a column of the P matrix) can belong to
multiple patterns, which models the fact that each mutant
will have many cellular functions active. Each gene (a row
of the A matrix) can be assigned to multiple patterns,
reflecting the fact that evolution has led to genes being
involved in multiple cellular processes. Interpretation of
the results involves identifying cellular processes from the
genes that are significantly expressed in a pattern (i.e.,
within a column of A).

We proceed by using the dimensionality estimate of 15
patterns and exploring for each pattern the genes associ-
ated with that pattern. These genes are interpreted using
the MIPS ontology for yeast [51] in order to predict the
cellular processes associated with a pattern. In addition,
for patterns that can be linked to signaling pathways, we
discuss the use of data on genes regulated by specific tran-
scription factors and validate the results by analysis of spe-
cific key deletion mutants. For each pattern that shows
enhancement of ontological terms we provide the terms,
the enhancement (as defined in the methods section),
and the p value for a hypergeometric test on the term.

We summarize the results in terms of patterns previously
identified in other studies using this data set, then we
present the new results isolating signatures for activity of
the mating and filametation pathways.

Patterns identified in previous studies
Examination of pattern 1 shows expression of the overall
common minimal processes necessary for survival, with
386 annotated genes associated with this pattern at a 3σ
level. Measure of enhancement, e, of cellular functions,
reveals two highly represented functional groups: 1)
groups related to protein synthesis and 2) groups related
to DNA synthesis. Group 1 includes genes enhanced in
Protein Targeting, Sorting and Translocation (Term 14.04,
e = 1.84, p = 0.0022), Protein Synthesis (Term 12, e = 1.55,
p = 0.024), and Ribosome Biogenesis (Term 12.01, e =
1.60, p = 0.059). Group 2 includes DNA Processing (Term
10.01, e = 1.32, p = 0.097), DNA Recombination and
DNA Repair (Term 10.01.05, e = 1.31, p = 0.16), and DNA
Synthesis (Term 10.01.03, e = 1.58, p = 0.16). The p-values
for the ontology terms remain high, due to the large
number of genes associated with this pattern.

This pattern, which essentially includes genes necessary
for viability, contains all the mutants of the dataset,
although the Ssn6∆ mutant shows a lower level for this
pattern than other mutants. As the Ssn6∆ mutant exhibits
substantially greater overall expression than any other
mutant (including the Tup1∆ mutant with the second
highest level), this may reflect the high association of the
Ssn6∆ mutant seen in almost all patterns, which will have
some gene overlap with this pattern.

The average persistence across all dimensionsFigure 2
The average persistence across all dimensions. The 
average persistence across the dimensions is plotted for 3 to 
25 dimensions. The significant drop between 15 and 16 
dimensions suggests that 15 patterns provides the correct 
dimensionality for analysis.
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Pattern 5 contains 172 annotated genes. Highly enhanced
ontologies include transport-related functions: Trans-
ported Compounds (Term 20.01, e = 2.02, p < 10-4), C-
compound and Carbohydrate Transport (Term 20.01.03,
e = 2.60, p < 3 × 10-4), and Cellular Transport, Transport
Facilitation and Cellular Routes (Term 20, e = 1.62, p < 6
× 10-4), in addition to other transport terms at p < 10-3.
The pattern contains the two deletion mutants, Ssn6∆ and
Tup1∆, and represents the strong response seen in the
original study [53]. Ssn6p and Tup1p form a system of
transcriptional repression that appears to be highly con-
served in eukaryotes [55]. In yeast, the complex acts as a
global transcriptional repressor over a large number of
genes (more that 150), coordinating several cellular sys-
tems, including haploid specific genes, glucose repressible
genes, and oxygen utilization genes [56]. Turning off this
repression leads to a large overall increase in gene expres-
sion (the overall expression in these two mutants is many
fold higher than in other mutants).

Pattern 7 is related to the lack of cell wall functions (Cell
Wall, Term 42.01, e = 0.0), as 28 cell wall genes (of 32
total) are absent from this pattern, while the other four
genes have multiple annotations suggesting they have
roles unrelated to Cell Wall function. Enhancement is
present for Protein Modification (Term 14.07, e = 4.7, p <
10-4) and Fermentation (Term 02.16, e = 4.5, p < 0.01).
This pattern contains the mutants Gas1∆ and Fks1∆,
which impair cell-wall synthesis, as well as the mutant
YER083c∆, annotated as disrupting the cell wall in the
original study [53]. The pattern contains other mutants
disrupting ergosterol biosynthesis as well, including
Erg2∆, She4∆, as well as YER044c∆. In addition, the pat-
tern includes yeast treated with the drugs that are known
to disrupt the cell wall, such as Tunicamycin and Glu-
cosamine.

Pattern 11 is related to ribosomal function, with enhance-
ments in terms for Ribosome Biogenesis (Term 12.01, e =
6.32, p < 4 × 10-4) and Protein Synthesis (Term 12, e =
3,89, p < 6 × 10-3). The pattern contains 8 mutants related
to ribosomal proteins, Rpll2a∆, Rpl27a∆, Rpl34a∆,
Rpl6b∆, Rp18a∆, Rps24a∆, Rps24a∆ (haploid), and
Rps27b∆, as well as some mutants with deleted ORFs of
unknown function, YOR078w∆, YMR269w∆, and
YHR034c∆, proposed to be involved in ribosomal func-
tions [53].

Patterns related to cellular signalling pathways
The two patterns that represent new insights into this data
are 13 and 15, which appear related to two strongly cou-
pled developmental pathways in yeast. Previous studies
[44,53] have identified the mating pathway transcrip-
tional response, however this has included both the fila-
mentation response and the mating response. It is difficult
to separate these signatures, as the mating and filamenta-
tion pathways share many common elements in a MAPK
cascade as shown in Figure 3[57-59].

Gene ontology (GO) was used to determine the biological
function described by each pattern, with a term added
specifically for transposable elements, as these are known
to play a role during filamentation [60,61]. The terms that
showed enhancement are summarized in Table 1. The
patterns show strong overlap, since many genes are shared
between the mating and filamentation responses. How-
ever, the filamentation ontology term is significantly
higher only in pattern 15, which also shows a strong sig-
nature of transposable element genes. Meanwhile, the GO
terms for meiosis and morphogenesis (such as for bud-
ding in S. cerevisiae) are significantly enhanced only in
pattern 13. This allows association of pattern 13 with acti-
vation of the mating pathway, and pattern 15 with activa-
tion of the filamentation pathway.

Yeast MAPK signaling for mating and filamentationFigure 3
Yeast MAPK signaling for mating and filamentation. 
The strongly linked MAPK signaling pathways for mating and 
filamentation are shown schematically with black arrows indi-
cating mating pathway signaling and gray arrows showing fila-
mentation pathway signaling. The mating pathway is initiated 
by binding to Ste2p or Ste3p receptors, while the causative 
molecular trigger for filamentation is unclear. The pathways 
share many components.
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In addition, we analyzed the 10 genes whose expression is
most strongly linked to each pattern. These are shown in
Table 2, which summarizes which genes are known to be
regulated by the transcriptional activators related to the
mating (Ste12p) and filamentation (Ste12p-Tec1p com-
plex) pathways. The results show that the top 10 genes
related to pattern 13 have 9 genes of known function, with
8 related to the mating response, of which five are known
to be regulated by Ste12p. For pattern 15, 7 of the top 10
genes are known to be transposable element genes, with
three other genes having unknown functions. This again
links pattern 13 to mating and pattern 15 to filamenta-
tion.

In order to validate that the patterns were actually meas-
uring activity of the mating and filamentation pathways,
we explored deletion mutants related to these pathways
[61,62]. The mating response in S. cerevisiae is mediated
via a MAPK signaling cascade initiated by binding to the
Ste2p or Ste3p membrane receptors (Figure 3). The signal
is transduced through Ste11p, Ste7p, and Fus3p with
Ste5p serving as a scaffolding protein. The signal activates
the Ste12p transcription factor, leading to transcription of
mating response genes. In addition, the signal is trans-
duced to the MAPK cascade from the membrane receptor
by a G protein complex or through the Ste20p protein.
Pattern 13 shows near zero signal for the deletion mutants
Ste11∆, Ste7∆ Fus3∆, Ste12∆, Ste5∆, and Ste2∆, while
showing signal for deletion mutants of Ste20∆ and Tec1∆.
This is exactly as expected, with the membrane receptor,
all signaling proteins in the cascade, and the transcription
factor necessary to generate the transcriptional response
related to the mating signal (note that the Ste3∆ mutant is
not in the data set). Ste20p is not necessary to raise the
mating response, since the G-protein complex can trigger

activation of Ste11p directly. For pattern 15, the response
is very similar. The signal is near zero for the deletion
mutants Ste2∆, Ste11∆, Ste7∆, and Ste12∆. The Fus3∆
mutant shows a signal for pattern 15, as appropriate,
while the Fus3∆, Kss1∆ double deletion mutant does not.
In addition, the Tec1∆ mutant shows no signal for pattern
15, indicating that Tec1p is required for filamentation
[61]. Finally, the signal is greatly reduced for the Ste20∆
deletion mutant in pattern 15 relative to pattern 13, which
agrees with previous work suggesting that the filamenta-
tion pathway is more dependent on Ste20p signaling than
is the mating pathway [62].

Discussion
Microarrays and GeneChips™ have become the tools of
choice for the investigation of genome-wide transcription
in most biological systems. The resulting data comprises
noisy estimates of transcription levels for roughly 6,000
genes in yeast to more than 20,000 genes in typical mam-
malian studies. Numerous statistical and data mining
methods have been applied to this data in order to iden-
tify individual genes showing differential expression, to
identify patterns related to physiological states, and to
identify groups of genes comprising biological processes.
These studies generally have not focused on the estima-
tion of cellular signaling from the data, despite the preva-
lence of cellular signaling in many diseases.

As noted in the introduction, the recovery of signaling
pathway information from transcription data requires
complex analysis, since protein levels do not correlate
well with mRNA levels and signaling protein activity is
not generally linked to the mRNA expression levels of
genes encoding the signaling proteins themselves. As
such, changes in mRNA levels are limited to being a

Table 1: The most enhanced gene ontology terms in patterns 13 and 15. Each term is presented together with a measure of how 
overrepresented it is compared to a random draw of the same number of genes. These were also confirmed to be significant by 
hypergeometric tests.

Pattern 13 Pattern 15

Pheromone response, mating-type determination 6.31 Transposable elements, viral and plasmid 8.42
development 6.09 Pheromone response, mating-type determination 7.26
Fungal/microorganism development 6.09 Transmembrane signal transduction 6.41
Mating (fertilization) 6.09 G-protein mediated signal transduction 6.10
Transmembrane signal transduction 4.98 development 5.69
Chemoperception and response 4.47 Fungal/microorganism development 5.69
Cellular sensing and response 4.25 Mating (fertilization) 5.69
Interaction with cellular environment 2.94 Chemoperception and response 5.47
Meiosis 2.86 Cellular sensing and response 5.21
Cell growth/morphogenesis 2.77 Cellular communications 4.45
Cellular communications 2.77 Enzyme mediated signal transduction 3.81
Development of asco- basidio- or zygospore 2.57 Interaction with cellular environment 3.61
Enzyme mediated signal transduction 2.37 Enzyme activator 3.56
Protein kinase cascades 2.37 Intracellular signaling 3.14
G protein mediated signal transduction 2.37 Budding, cell polarity, filamentation 2.87
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downstream indicator of activity. If a complete model for
the transcription of genes, including all known transcrip-
tional regulators and biological processes regulating tran-
scription, was available, the inference of activity would be
straightforward. Unfortunately, the network models and
even gene annotations are still far from being complete. In
addition, the growing evidence supporting the important
role of non-coding RNAs in regulation of gene expression
(including antisense transcripts and micro-RNAs, see for
example [63-65]) further undermines the potential of
using mRNA species as markers for proteins and their
activities [66].

In order to overcome this incompleteness, we have cre-
ated the method described here. We couple identification
of transcriptional signatures with our Bayesian Decompo-
sition algorithm to a consistency analysis for gene assign-
ment to patterns determined by comparison of different
dimensionalities using ClutrFree. This allows the identifi-
cation of the correct dimensionality to be applied to sub-
sequent ontology and transcription factor analyses.
ClutrFree is also used to determine the ontological terms
enhanced within each pattern and to obtain a list of genes
tied to this pattern, which can then be linked to specific
transcription factors. In this way, the biological processes
associated with conditions can be identified, and infer-
ences can be made on the activity of specific transcription
factors. This then allows inference on the activity of sign-
aling pathways, which cannot be obtained with methods
previously applied to microarray data. Overall, the
method requires many separate steps, each modeling an
aspect of the biological system, in order to make proper
inferences on signaling from the data.

In the application to the Compendium data presented
here, our analysis was able to extract the common features
for a set of mutants that eliminated related pathways. As

in previous studies, the global transcriptional repressor
complex Ssn6-Tupl has been isolated in a single group. In
addition, patterns for cell-wall synthesis, ribosomal func-
tion, and the global functions necessary for continued via-
bility of yeast were isolated. In contrast to previous
analyses of this data, two pathways related to the MAPK
cascade were isolated, one related to mating and the other
to filamentation. Once the correct dimensionality was
determined, Bayesian Decomposition was able to identify
transcriptional signatures unique for each pathway. The
assignment was validated by an investigation of the dele-
tion mutants known to adversely affect these pathways.

Conclusion
Microarray studies have been widespread in biological
and medical research, often focusing on identification of
genes significantly correlated with various disease states.
However, many diseases arise from disruptions in cellular
signaling, and in these cases gene expression only pro-
vides a downstream indicator of signaling activity. This
greatly complicates the analysis. The new approach intro-
duced here recovered signatures allowing us to make vali-
dated inferences on strongly overlapping signaling
pathways.

The results demonstrate that for Saccharomyces cerevisiae,
the mating and filamentation pathways can be distin-
guished from transcriptional signatures determined from
analysis of microarray data, despite the intrinsic high
noise, confounding transcriptional activity, and tightly
coupled nature of the pathways. The next step will be to
apply these methods to more complex signaling networks
in worms, flies, and mammals.

Table 2: The genes most strongly associated with patterns 13 and 15 in order of strength of association. For pattern 13, it is noted 
whether the genes are known to be regulated in the mating process, and whether the gene is known to be directly regulated by Stel2p. 
For pattern 15, the gene function is shown. All data is from the Saccharomyces Genome Database [73, 74].

Pattern 13 Pattern 15

Gene Mating? Ste12p Gene Function

Fig1 Yes No YCL019W Transposable element gene
Prm6 Yes Yes YER138C Transposable element gene
Fus1 Yes Yes YER117C Verified ORF, Prm5
Ste2 Yes Yes YER160C Transposable element gene
Aga1 Yes No YJR029W Transposable element gene
Fus3 Yes Yes YBR012W Removed from SGD
Pes4 No No YML045W Transposable element gene
Prm1 Yes Yes YAR009C Transposable element gene
ORF -- -- YJR027W Transposable element gene
Bar1 Yes No YLR334C Hypothetical ORF
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:99 http://www.biomedcentral.com/1471-2105/7/99
Methods
The Rosetta deletion mutant data set
The Rosetta Compendium comprises 300 conditions,
including 276 deletion mutants, 11 tetracycline regulated
genes, and 13 drug treatments, in S. cerevisiae growing in
rich medium [53]. The data were generated from a two
color cDNA microarray hybridization assay [67], and
transcriptional profiles were measured both with techni-
cal replication and biological replication (151 mutants).
In parallel with the 300 experiments, 63 controls of wild-
type S. cerevisiae were grown in identical conditions and
compared against each other, permitting creation of a
gene-specific error model. The data was downloaded from
Rosetta Inpharmatics.

Data preprocessing
The data was filtered to retain only conditions character-
ized by at least a variation of 3 fold in a minimum of 2
genes. Then all genes that did not vary by 3-fold in at least
2 conditions were also removed, leading to a data matrix
comprising 764 genes and 228 conditions.

The data used by Bayesian Decomposition included both
the mean log ratio for each data point and the uncertainty
in this measurement determined by the Rosetta error
model. Since Bayesian Decomposition as applied here
requires positivity [45], the log ratios were converted to
ratios and the uncertainties propagated to uncertainties
on the ratios. Although analysis of residuals suggested
that seven dimensions fit the data [44], the analysis pre-
sented here suggests that this is due to overestimation of
uncertainty in the data. Bayesian Decomposition is not
highly sensitive to minor misestimations of noise how-
ever, so that this should not be a problem for this analysis.

Analysis with Bayesian Decomposition
Bayesian Decomposition (BD) has been applied to multi-
ple types of data: in vivo spectroscopic data [68], medical
imaging [69], microarray data from single cell organisms
[44,45], mammalian model organisms [47], humans
[70], and on phylogenomic sequence data [71]. A detailed
description of the algorithm [46] and a review of applica-
tions [48] have been published.

Briefly, BD models the microarray data, comprising a
matrix of estimates of the ratio of expression between the
experimental condition and a control, as the result of the
multiplication of two matrices describing behaviors
across conditions (the P or pattern matrix) and the distri-
bution of genes within those behaviors (the A or ampli-
tude matrix). Naturally, the data, D, includes noise, so
that the full relationship is defined by

where Dij is the estimated ratio for gene i in mutant j, Aik
is the strength of gene i in pattern k, Pkj is the strength of
mutant j in pattern k, and εij is the noise for gene i in
mutant j estimated by the Rosetta error model. BD esti-
mates A and P by a Markov chain Monte Carlo (MCMC)
simulation. For the fixed noise estimate, ε, A and P are
inferred from the marginal probability distribution

p (D | A,P) p (A,P)  [2]

where p(A,P) is the prior probability and p (D | A,P) is
given by the likelihood such that

The prior is used here to require positivity and to mini-
mize structure in the estimates of A and P [46].

The analysis with BD is similar mathematically to an anal-
ysis with singular value decomposition (SVD) or with
principal component analysis (PCA), since all methods
estimate two matrices that together reconstruct the data.
In both PCA and SVD, orthogonality conditions force
each row of P to be linearly independent, deriving P from
either the data matrix (SVD) or the covariance matrix
(PCA) using deterministic algorithms. Since patterns of
expression related to biological processes will not gener-
ally be independent, BD uses the MCMC approach to
avoid orthogonality. The resulting rows of P are usually
easier to relate to biological processes than those from
SVD or PCA.

BD was run at each posited dimensionality, K (as in equa-
tion 1), between 3 and 25, generating a mean estimate
and an uncertainty (i.e., standard deviation from samples
of the posterior probability distribution) for each element
of A and P. The dimensionality is equivalent to the
number of patterns, as the patterns can be viewed as non-
orthogonal basis vectors for D.

Persistence and dimensionality
The results of Bayesian Decomposition across the differ-
ent estimated dimensionalities, K, were compared with
ClutrFree in order to visualize stable basis vectors and a
persistence measurement on them [49]. Each independ-
ent BD analysis provides a tree level, with each pattern
represented by a node (see Figure 4). The analysis with the
fewest patterns is placed at the top of the tree, and addi-
tional levels of analyses are added creating a tree from
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fewer to larger numbers of patterns. Connections in the
tree are created in a greedy way. Level N+1 (e.g., 4) is con-
nected to level N (e.g., 3) by finding the node in level N+1
with the highest correlation to a node in level N. The cor-
relation is given by the Pearson correlation for the
strength of the assignment of mutants to a pattern (i.e.,
between Pkj for the nodes). These nodes are connected and
removed. From the remaining nodes, the maximum cor-
relation between a node at level N+1 and one at N is
found again, and this process is repeated until only a sin-
gle node remains at level N+1. This node is then con-
nected to the node at level N that yields the highest
correlation.

Following our previous work [49], we use a measure of
persistence to quantify the robustness of a pattern across
the variation of the number of patterns. An example cal-
culation is shown in Figure 5. The assignment of a mutant
to a pattern (i.e., a node) is binarized based on the mean

and uncertainty of the assignment of the mutant to the
pattern determined by the MCMC sampling, using a
requirement that the mutant be assigned to the pattern at
greater than 3σ above zero. In Figure 5, it is assumed there
are four mutants in a pattern, thus there are four binarized
values. Then at each node, each mutant is compared for
consistency in presence of the mutant in linked nodes
within the tree. For example, for the highlighted node in
Figure 5, the first mutant is present in the node above and
the node below, so it is present in all 3 connected nodes.
For the second mutant it is present in 2, and the third and
fourth mutants are absent. The average persistence for the
node is therefore (3+2+0+0)/4 = 1.25 as noted in Figure 5.
For branches, the mutant status is only required to agree
in a single branch to be counted. The average persistence
at a dimension is then the average of the persistence for all
nodes at that dimension (i.e., a row in Figure 4).

Relationship of patterns across dimensionalitiesFigure 4
Relationship of patterns across dimensionalities. The results for all patterns identified in all runs of Bayesian Decompo-
sition are summarized here. The top row shows three patterns from an analysis with 3 dimensions, while the bottom row 
shows 25 dimensions. The highlighted node is pattern 13 in 15 dimensions, which is the pattern identified as the mating 
response. Nodes are connected as described in the text using Pearson correlation measures. The numbers within the nodes 
are indices and have no intrinsic meaning. Each number provides the row index for P and column index for A for the analysis 
at that level.
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We assessed the dimensionality of the data using meas-
urements of persistence. The persistence was measured for
analyses from 3 – 25 patterns and the dimension chosen
where a significant drop occurred in an otherwise slow
monotonic decline, which was expected due to the
branching nature of the tree. Figure 2 shows the signifi-
cant drop between 15 and 16 dimensions, so 15 patterns
were chosen for further analysis.

Ontology and function
To assign ontological terms to the genes contained in
basis vectors, we annotated our data using the gene ontol-
ogies from the Comprehensive Yeast Genome Database
(CYGD) hosted at the Munich Information center for Pro-
tein Sequences (MIPS) [51,72]. The analysis here utilizes
the Functional Catalog (FunCat) format that describes
each gene using a hierarchical ontological model.

Similar to persistence, we defined enhancement as a
measure of the over-representation, or under representa-
tion, of a gene function in a subset of the data [47]. It is
the ratio of the frequency of occurrence of genes anno-
tated by a particular ontological term in the pattern to the
frequency of occurrence of the same term in the whole
dataset,

with gp being the number of genes annotated with the
term t in pattern p, np the total number of genes in the pat-

tern p, G the number of genes annotated by the term t in
the data, and N being the total number of genes in the
dataset. In addition, we apply a hypergeometric test to
estimate a p-value for each term. Function was then deter-
mined by inspection of enhanced ontological terms.

Transcription factor analysis
The genes were also analyzed for the patterns determined
to be related to signaling pathways by exploration of the
ten genes most strongly associated with the pattern. Each
gene was analyzed using the Saccharomyces Genome
Database [73] to determine whether it was known to be
associated with mating or filamentation processes and to
determine if it was directly regulated by the Ste12p tran-
scription factor.
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A sample calculation of the average persistence for a single nodeFigure 5
A sample calculation of the average persistence for a single node. The average persistence is calculated by comparing 
the persistence at each node in the tree given in Figure 4. Each assignment of each mutant (4 are shown here) to a pattern is 
binarized as described in the text, then the average persistence for a node is calculated by checking on the number of times the 
mutant assigned to the pattern occurs in the connected nodes. The mutant can occur in any branch below the node of interest 
to be considered as present. If it occurs in multiple child nodes at a single level, that is still treated as a single occurrence for 
that level. The average for a dimension is then the average of the persistence of all nodes at that level.
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