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Background
Complex networks of molecular and genetic interactions
are increasingly being studied for insights into biological

mechanisms

genome-wide protein-protein interactions [4]], large-scale

analysis and

Abstract

Background: The goal of information integration in systems biology is to combine information
from a number of databases and data sets, which are obtained from both high and low throughput
experiments, under one data management scheme such that the cumulative information provides
greater biological insight than is possible with individual information sources considered separately.

Results: Here we present PathSys, a graph-based system for creating a combined database of
networks of interaction for generating integrated view of biological mechanisms. We used PathSys
to integrate over |4 curated and publicly contributed data sources for the budding yeast (S.
cerevisiae) and Gene Ontology. A number of exploratory questions were formulated as a
combination of relational and graph-based queries to the integrated database. Thus, PathSys is a
general-purpose, scalable, graph-data warehouse of biological information, complete with a graph
manipulation and a query language, a storage mechanism and a generic data-importing mechanism
through schema-mapping.

Conclusion: Results from several test studies demonstrate the effectiveness of the approach in
retrieving biologically interesting relations between genes and proteins, the networks connecting
them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network
integration and a hypothesis generator system. The PathSys's client software, named
BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a
Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

construction of metabolic pathways [6], and development
of synthetic genetic interaction networks [7,8]. Here we
collectively call these different networks Molecular Interac-

[1-3]. Such studies include deciphering  tion Graphs (MIGs). The availability of MIGs has paved the

way for the emergence of a new paradigm of biology in

prediction of gene regulatory networks [5],  which networks of interactions are being analyzed for
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understanding of biological phenomena [3,9-12]. Truly
integrated analyses across multiple databases of different
functionalities are still rare yet promising [13]. Such
advances underscore the need to develop information
management frameworks for adequate modeling of
graph-structured data and graph-oriented operations
[14,15]. In the absence of an efficient information man-
agement system that allows biologists to query discrete
and large databases simultaneously, the full potential for
functional genomics resources will remain under-utilized.

Here we present PathSys as an information integration
system, which integrates MIGs and ontologies and show
how its integration engine can be used to address biolog-
ically relevant questions. We describe the capabilities of
the system based upon our current Yeast Data Warehouse,
where over 14 (for full list see Additional file or supple-
mental materials at [46]) curated and publicly contrib-
uted data sources for the budding yeast (S. cerevisiae) are
integrated. The system architecture, however, is designed
as a general-purpose tool for application to potentially
any biological model.

Related work

The most noted pathways source KEGG [16] has an API
and XML schema that is centered on enzymatic activities
in cellular process. No general ontology for representation
of cellular events or description of biological entities
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exists. The KEGG ontology is organized around the con-
cept of binary relation [17], defining relationships
between database objects (such as the relationship
between reactions, substrates and products; that between
an enzyme and its location in the metabolic pathway; or
that between an enzyme and a protein super family to
which it belongs).

Karp et al. [18,19], in BioCyc, on the other hand define
different types of molecules each with its own class, and
consider different states of a molecule as different mem-
bers within a class. Reactions are defined to be independ-
ent entities, and distinct relations, called slots, link
molecules to the reactions. Each molecule may optionally
be tagged with a cellular compartment. Their ontology
makes use of the "pathway" concept to define summary
abstractions, used for defining data at varying levels of
detail. However, like KEGG, the BioCyc system imple-
ments a specific data model for its own application.

The PathDB [14] is a relational database developed for
metabolic networks. Here the central element is a biochem,
(e.g. RNA, DNA, Compound) which is used to build other
biochem objects. The transition is modelled by the explicit
representation of a biochemical reaction whose sub-
strates, products, mediators with its kinetic properties are
recorded. The Pathways database system [15] models
pathways as a directed hypergraph where nodes represent
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Figure 2
The UML diagram of the internal data model.

pathway elements (substrates and products of a reaction).
Pathways support queries where operations such as short-
est path, unions and intersections of paths, and node-
neighbourhoods can be performed. However, since they
do not present a query language, the exact query capability
of the system is unclear. Other works include those of
Ochs et al. [20], who developed a metabolic map from a
relational model of biochemical interactions, and of
Bhalla [21], where a database of chemical reactions is
mapped to a system of pathway graphs.

By contrast to KEGG or BioCyc, PathSys is based upon a
generic graph model that can integrate any combination
of graph data sources. Consequently it represents a wider
range of data types and relationships and can be extended
by including any new data source or ontology. Unlike any
previous system, PathSys is a general-purpose graph ware-
house with its own data definition and query language,
augmented with biological data types, and hence can
implement any specific graph-structured biological
model. The benefit of having an integration platform such
as PathSys is that it can be constructed over those data-
bases that typically focus on specific interaction studies
[22-24], as well as those of process-specific databases such
as BioCyc and KEGG focusing on specific biological proc-
esses.

Results

The PathSys system

Architecture

The system architecture of PathSys is shown in Figure 1.
The system is designed around a warehouse that holds the
data according to an internal schema (discussed in the
next subsection), a number of specialized index structures
that facilitate graph operations, and a Data Manager that
keeps the data and external indices synchronized.

We consider two kinds of users. The first is a typical infor-
mation systems person who creates a new integrated
schema through the Integration client, to add a new data
source to an existing integrated schema or to define new
queries to support a specific kind of analysis. The process
of adding a new data source is as follows. The user first
determines that the data schema is specified in a language
accepted by PathSys (e.g., a relational schema, an XML
schema). Next, the schema is sent to PathSys, which vali-
dates it and stores in the Schema Library. The user then
specifies the mapping between the schema element and
the internal data model of PathSys described in Figure 2.
Finally, it is stored in the Schema Map Library and the data
are ingested into PathSys warehouse through the Data
Importer much like the bulk loading operation in a stand-
ard DBMS.
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The second category of users is a biologist who enters
PathSys through the visualization client, BiologicalNet-
works [47]. In one sense the visualization and graph
manipulation capabilities of BiologicalNetworks are com-
parable to that of existing visual information integration
systems such as Cytoscape [25] and VisANT [26,27] as
well as commercially available tools such as GeneGO [28]
and PathwayAssist [29]. A user's query to the system is first
analyzed by the User Query Manager and then decom-
posed into a combination of acyclic graph and regular
graph queries, which are handled by their respective query
engines (Figure 1). The system uses two graph query
engines to execute specialized algorithms [30] customized
for each kind of graph. Both engines access the stored data
and indices through an API exposed by the Warehouse
Manager that provides logical access to the stored data and
indices.

In contrast to the visual integration systems such as Cyto-
scape and VisANT, PathSys has a more comprehensive
data model such that the semantic concepts of biological
objects, molecular states, and interaction types are more
closely mapped to the data elements as shown in Figure 2.
The former visual integration systems have a client-end
graph manipulation engine with some basic operations,
and most data manipulation operations are performed
through plug-in function modules. These, however, do
not have a server-side graph and relational query engine
that can evaluate and optimize arbitrary combinations of
operations in a scalable fashion. While the BiologicalNet-
works interface does allow a subset of these operations,
the full power of the PathSys engine is accessible through
the query language described in a later section.

The PathSys data model

A number of systems such as Cytoscape models MIGs as a
ternary relation (nodel, edge-label, node2), where the
edge-label specifies the nature of interaction. We find that
model to be inadequate for the following reasons:

(1) Nodes should not only represent proteins or genes,
but should also designate their state while participating in
an interaction.

(2) For complex molecules, one needs to distinguish
between the interactions of the complex and those of the
component molecules.

(3) Mechanism should be available to add as many inter-
action properties as needed and capture more abstract
types than is possible with simple labeled edge.

(4) One needs to represent the fact that one interaction
can be regulated by the occurrence of other interactions,

http://www.biomedcentral.com/1471-2105/7/55

thus necessitating a (hyper-)edge that connects two (or
more) other edges.

In PathSys we distinguish three types of nodes: primary
node, connector node and graph node.

Primary node

All macromolecules (e.g. DNAs, RNAs and proteins),
small molecules (e.g. ions, ATP, lipids) and physical
events (heat, radiation, mechanical stress) are under 'pri-
mary node' definition.

Connector node

A connector node is designed to depict the properties of a
relationship between a set of source nodes and a set of tar-
get nodes. All types of interactions (binding, chemical
reaction, expression, etc.) are represented by connector
nodes. Note that a connector node is not a simple edge
label but a placeholder for "interaction type" and "inter-
action properties", as shown in Figure 3. The interactions
as we stated are m:n relations. Hence we can represent
interactions such as chemical reactions with m reactants
and n products. The reason for implementing edges as
connector nodes with their own properties is that an inte-
gration system should be designed to be extensible to
hold different information coming from multiple sources.
If we have two sources describing a protein-DNA interac-
tion between a protein-node P and a "chromosome-frag-
ment" node D, it is quite possible that these two sources
will specify two different properties about this interaction.
For example, one source could state that the interaction is
that of "transcription factor binding" while another
source might state that this interaction is conserved in
other species. Modeling the connectors as special nodes
allows us to seamlessly scale up by adding as many node
properties as needed as information on that edge grows.
This could not be accomplished if interactions were mod-
eled just as labeled edges. We illustrate the role of a con-
nector node in terms of the expressive power of the
system. Consider the edge as a triple (n1 'activates' n2),
where n1, n2 are node constants and 'activates' is an edge
name (i.e., an edge label). Our query system allows us to
associate a variable x to the edge, thus representing it as x:
(nl 'activates' n2). Now the triple (n3 'inhibits' x) is
equivalent to the statement "n3 inhibits the activation of
n2 by nl1". Graphically, this would be represented as an
"edge" between the node n3 to the connector node
between n1 and n2. Now we can construct queries like
"Find all proteins which have properties P1 and P2 and
regulate the activation of n2". The answer will find n3 (if
n3 has P1 and P2). Similarly, we can represent "compet-
ing" interactions as x: (n1 'activates' n2), y: (n3 'activates'
n4), (x 'competes_with' y), where the last clause is an
"edge" between a pair of connector nodes.
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Representation of a simplified model of mating pheromone activated signal transduction pathway.

Graph node (Hypernode)

In biological systems molecules often form clusters and
groups for performing tasks, behaving like a single state.
In our system all complex objects (protein complexes, cel-
lular processes) that might contain graphs are defined by
graph nodes (hypernodes) (VisANT [26,27]. Binding rela-
tions within the hypernode are presented as well. A
molecular complex like the proteasome is treated as a
hypernode, of the type molecular complex. The hyper-
node gets its own node identifier that is distinct from all
nodes (proteins that form subunits of the proteasome). A
hypernode may have interactions with single nodes or
other hypernodes in the graph. Moreover, members of the
hypernode can independently participate in different
processes. A hypernode may contain members from dif-

ferent cellular compartments. These features are incorpo-
rated in the notion of Graph Node. For visual
representation of metanodes see Additional file or supple-
mental materials at [[46], Section: Data Visualization].

Hypernodes play a crucial role in processing graph queries
such as path and neighborhood finding, the algorithmic
details of the use of hypernodes in query evaluation are
provided in supplementary materials.

The internal data model of the graph (Figure 2) consists of
a node type hierarchy N ('child of relation in the Node-
Type view), an attribute category hierarchy A ('child of
relation in the AttributeTypeCategory view), bags of
nodes N and edges E and a data source D.
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For some node types, e.g. gene, one can specify rules to
automatically create derived node types such as
mRNA(gene) and protein(gene). The node type hierarchy N
can be a directed acyclic graph because it admits multiple
inheritance; for example, an nuclear transcription factor is
both an nuclear-localized protein and a transcription factor
protein.

We distinguish between the type of the attribute, which
reflects its storage data type, which might be the tuple
{int, int} for a specific case, from its semantic category
which might be a "chromosomal interval". In our model,
attributes are attached to node instances rather than node
types. Thus, if one source provides one set of attributes for
a node and a second source provides a different set of
attributes for the same node, we can combine both sets of
attributes. This enables us, for example, to unite putative
transcription factor binding sites from Yeast Promoter
database from Cold Spring Harbor Labs and intergenic
binding probability information from MIT data [24] on
compatible chromosomal intervals.

To illustrate our graph model, consider the highly simpli-
fied fact that activation of Stell to the phosphorylated
state Stel1(p) increases the rate of phosphorylation of
another protein Ste7 that is thereby activated (Figure 3).
Simultaneously, the molecular complex of Ste4 and Ste18
proteins also increases Ste7 phosphorylation. Activated
Ste7 ultimately inhibits the process of cell cycle by pro-
ducing a G1 mitotic checkpoint arrest [31]. The nodes in
this case are Stel1, Ste7, Ste4, Stel8, Ste11(p) (phospho-
rylated), Ste7(p) of protein type and kinase subtype; two
Graph Nodes: protein complex and cell cycle pathway;
and Connector Nodes: two nodes of type phosphorylation,
and one node of type Cellular Process. An edge incident to
a connector node denotes that the source nodes partici-
pate in the process depicted by the connector node. An
edge from a connector node denotes that the process rep-
resented by the connector node impacts the target nodes
of the edge. The choice of using the connector node
implies that the so-called edge label is now a property of
the connector node. Syntactic sugar in the query language
can specify a query in terms of the edge label, and the sys-
tem translates it to a query on the connection nodes.
Defining a few special edge types can connect two primary
nodes without having to go through a connector node. We
describe two such special edge types here. The first is a sub-
graph edge (edge.relationship = 'subgraph') - it goes from
a graph type node to another graph type node where the
latter is a subgraph of the former, which, for example, can
create named subgraphs. A subgraph may be named (i.e.
assigned a separate id) for semantic reasons; for instance,
it represents a functional subgroup of interacting proteins
within a larger interaction graph. Alternately, a subgraph
is named because it has a special property. For example,
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the system indexes all cliques with more than 3 members.
These cliques are denoted as special graph nodes that are
used during query processing. A second special edge is a
member-of edge between a node n and a graph-typed node
g that designates that n belongs to the graph represented

by g.

Graph attributes

A significant class of systems biology queries addresses
graph-theoretic properties of source graphs as well as the
integrated graph. PathSys maintains a set of graph
attributes for each source graph to answer these aggregate
queries. At present they include in and out degrees,
betweenness centrality and clustering coefficient. Central-
ity is defined as by = 2;; (g;;/8;;), where g;; is the number of
shortest paths from node i to node j, and gy is the number
of shortest path from i to j that pass through k. For node
k, clustering coefficient is the ratio of the number of k's
edges to the maximum number of possible edges between
k's neighbors. These parameters, together with other
measures, such as the graph diameters, are maintained
and indexed using conventional index structures. For
regions of the graph where neighboring nodes have high
clustering coefficient, a "clustering coefficient" attribute is
maintained by creating a system-defined graph node that
represents the highly connected neighbors. Inclusion of
any number of such attributes is possible.

Integrating graph sources

The task of integrating a new data source to an existing
integrated graph schema consists of three steps — defining
a new, unpopulated data source in the integrator, map-
ping the just-imported schema to nodes, node attributes,
and edges of the integrated graph, and expressing conflict
resolution policies.

Source definition

An external data source can be a relational database
schema, a tree-structured XML document, an RDF-styled
triplet that describes an edge set of a graph, or a DAG
structured OWL [32] document. Typically, a new ontology
or a node/attribute type hierarchy, such as the phenotype
classification tree from MIPS, is presented to the system
using a tree (here as an OWL description) data, and a col-
lection of node/edge instances and node properties are
presented as relational data. To import this data into Path-
Sys, we first define a new data source

CREATE DATA SOURCE yeast phenotype (
fullname 'Yeast Phenotype Classification’,
reference localhost://phenotype.owl’,
description...)
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format XML-RDF-OWL;

where the newly imported data is nicknamed yeast phe-
notype. XML-RDF-OWL is a format known to the system.
For a relational data source, we would declare the format
as SQL. With the data source defined, now we specify a
PathSys schema element for the new source.

CREATE TREE phenotype tree (
version STRING VALUE '2.3',. . )
SOURCE yeast phenotype;

Schema mapping

The task of schema mapping is to specify how an element
of the imported source should be interpreted as an ele-
ment of the internal schema of PathSys. In PathSys a tree
is a special case of graph that is internally used for query
evaluation. In a tree structure source, the OWL schema
populates the node type hierarchy in Figure 2. The map-
ping declarations are:

IMPORT NODE TYPE FROM yeast phenotype (
Class as name,

)GRAPH phenotype tree

IMPORT RELATIONSHIP FROM yeast phenotype(
subClassOf as child of

)GRAPH phenotype tree

In relational mapping the source integration imports a
relational schema (a fragment of the MIPS database) into
the graph elements of the internal model (see supplemen-
tal material for detail). For each schema mapping, the
wrapper generator automatically creates the code to pop-
ulate the PathSys schema from the new data source.

Once the new graph is integrated, the system computes all
graph indices for the new incoming graph and updates
indices for the whole integrated graph. Detailed informa-
tion on how the data are physically represented and the
Data Definition Language are provided in Additional file
or supplemental materials at [[46], Section: Architecture].

Conflict resolution

Crucial to information integration process is resolution of
data conflicts. Reconciliation problems are detected by a
set of conflict detection rules and are resolved by expert
user intervention. Here are some example rules:

http://www.biomedcentral.com/1471-2105/7/55

(1) Two genes with the different names have the same
chromosomal location. For this, we have an automated
reconciliation procedure assigning multiple names as syn-
onyms to the same ORF.

(2) Two genes with the same name have different chro-
mosomal location. Problems like this are due to different
assigning of gene boundaries, alternative splicing etc. and
are resolved by scientists.

(3) Several genes have names such that one name is con-
tained in the other, e.g., 'IME1', 'IME1-TAP(342-531)'
and 'IME1(modified:Thr:210)". The first record refers to
the gene IME1, the second to a fragment of gene IME1 that
is modified by fusion to a domain called TAP, and the
third to the protein encoded by IME1 (IME1p) with the
qualifier that the amino acid 'Thr' at the 210-th position
was modified. Thus, the records seemingly referring to an
item called 'IME1" really refer to objects that are not equal
and must be resolved by an expert.

(4) Two genes with different names and chromosomal
locations have over 95% similar graph neighborhoods.
Products of such genes are likely to be part of the same
protein complex and/or have physical interaction. Cases
like this can be the starting points for biological discovery
to identify functionally related candidate genes.

Querying graphs in PathSys

BioNetSQL, our query language for interaction networks,
has the flavor of SQL that can be queried on sets and bags
of nodes, edges and their attributes, but additionally
allows the returned values to be bags of paths, trees and
graphs. Further, the language allows path, tree and graph
operations. While a complete description of the language
and the query evaluation process is beyond the scope of
this paper, we present a few features of the language
through one example where we use graph operations in
the body of the query and the return data type is a graph.
"Find networks of co-localized proteins that are parts of
protein complex and are connected by either a 2-hybrid
(v2h) edge or a coimmunoprecipitation (colP) edge."

SELECT

graph(N2(n.name, n.source),
E2(e.label, e.source))

FROM

yeastGraphDBG1(N, E)

WHERE
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n:N and ¢:N and e:E

and n.type << 'protein'

and c.type = 'protein complex'

and (e.label = 'y2h' or e.label = 'colP")

and pathExpr(G1, ¢// [member of]n) = true

The query declares a variable c whose type is protein com-
plex. The query returns a graph whose nodes n should be
tuples with the attributes name and source (i.e., data
source), and whose edges e has a label and a source from
which that edge is known. Recall that the system will con-
vert this to a query on a connector node. The << operation
specifies that the type of the node is "under" "protein" in
the node type hierarchy N. The last line reads as "n has an
edge whose label has the value member, and this edge
points to ¢", where c is declared above. Note that we did
not mention the relationship between nodes n and edges
e, namely, an instance of the returned edge set e connects
instances of the returned node set n. This constraint,
expressed as n.edge = e, is implied by the construct of line
2, where n and e are constrained to be parts of the same
graph. For more features of the language and examples see
supplemental material.

Discussion
We developed PathSys to address the limitations of using
information from single databases for biological discov-

ery.

Using the high throughput query abilities of PathSys and
custom-designed queries for data retrieval (for detailed
description of the experiments: filtering procedures, sam-
ple queries and results, statistics see Case Study section of
Addition file or supplementary materials at [50]), we con-
structed a global, high confidence network of protein-pro-
tein interaction in S. cerevisiae. Any of the sub-networks or
modules from this comprehensive network can further be
extracted and extended to include DNA-protein interac-
tions and genetic interactions to gain more insights into
transcriptional regulation of interacting proteins as dem-
onstrated by the MAPK and cell cycle queries outlined
below. Additional applications of network queries
include expansion to low-confidence interactions for
hypothesis generation, network topology studies, deriving
regulatory networks for dynamic modeling etc.

Construction of high confidence integrated network

A challenge in using high-throughput data is selecting
high confidence information. We used the strategy of re-
enforced edges to minimize error propagation. Using a set
of graph queries we performed the following. 1) Protein-
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protein interactions from MIPS were filtered to remove
high-throughput (HTP) interactions contributed by yeast
two-hybrid (y2h) and co-immunoprecipitation (co-IP)
studies to construct MIPS_HC (1207 nodes, 1785 edges).
2) To get high confidence interactions (HTP_HC_all) we
took the union of two y2h data sets [23,33] and its inter-
section with union of two co-IP data sets [34,35], using
matrix interpretation for co-IP data. Intersection was taken
to enhance credibility of true positives over false positives.
3) High confidence DNA-protein network (MIT_HC,
2420 nodes, 4365 interactions) was constructed from Lee
et al. |24] data filtered for a P-value threshold of 0.001. 4)
Genetic interactions from MIPs and Tong et al. [7,8] were
added to the high confidence DNA-protein interaction
data and all interactions from this data set that were sup-
ported by at least one high throughput protein-protein
interaction evidence were used to construct genetic. HC
(289 nodes, 490 interactions). 5) A high confidence, inte-
grated interaction network (All_HC) was derived by tak-
ing the union of MIPS_HC, HTP_HC all and genetic HC
(1469 nodes, 2997 interactions, connected component of
1037 nodes). The strategy to either combine or intersect
the various datasets was determined depending upon the
propensity of false positives and false negatives in individ-
ual datasets, always aiming for maximum coverage across
the genome. This network (see summary Venn diagram of
the data in supplementary materials) is a potential first
goal for a user interested in a more specific biological
process. A more comprehensive network (FYI_HMI)
incorporating MIPS complexes and computational predic-
tions [36] for reinforcement as well as retrieval of Cell
cycle network is provided in Supplementary materials. In
all these applications an important impact of the "infor-
mation integration" is to place different forms of interac-
tions (such as physical interactions, and different forms of
direct and indirect genetic interactions) between proteins
and their transcribing genes on the same combined graph.
This does not necessarily mean that the physical interac-
tions imply the genetic interaction or vice versa. It simply
represents a comprehensive picture of what is known
about the neighbourhood of a pair of genes, from which
a scientist might develop a hypothesis based on the inte-
grated information.

Retrieving complex interaction network

To compare the organizational structure of primary pro-
tein interaction network to that of a higher order network
of organized protein complexes (hypernodes), we derived
a network of high confidence protein complexes from
MIPS that are directly linked to each other via high-confi-
dence protein-protein interactions (see figure in Supple-
mental materials). In this network with 164 nodes and
482 interactions, each node represents a protein complex
identified by a complex_ID label from MIPS and edges are
inter-complex protein-protein interactions from high-
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confidence HMI network. We analyzed this network for
betweenness centrality (BC) to see which of these com-
plexes are potential connection hubs providing shortest
paths for communication between different complexes
representing various functional modules. The motivation
arises from the finding that high BC proteins are function-
ally significant [37]. Here we address the centrality of pro-
tein complexes rather than individual proteins.
Complexes with fifteen highest BC values and their func-
tional annotations are shown in Table #1 in Supplemen-
tal materials. As expected, majority of the high BC nodes
include protein complexes forming cytoskeletal structural
elements (actin, tubulin, spindle pole body) as well as
complexes involved in general regulatory mechanisms
such as SAGA complex, SRB mediator complex and RNA
polll complex.

Integration generates new knowledge

An excellent benchmark against which to validate our
approach is MAPK pathways involved in pheromone
response, filamentous growth, and maintenance cell wall
integrity (Figure 4), one of the most thoroughly studied
networks in yeast, conserved across all eukaryotes. The
pathways are activated by G protein-coupled receptors
and characterized by a core cascade of MAP kinases that
activate each other through sequential binding and phos-
phorylation reactions.

Two sub-networks were constructed from the MIPS HC as
well as ALL_HC networks by selecting for genes whose
names begin with STE* and their immediate neighbors.
The sub-network derived from MIPS (MAPK_MIPS)
shows 37 genes and 74 interactions where as the sub-net-
work from ALL_HC (MAPK_allhc) shows 39 genes and
106 interactions (for the whole network of MAPK neigh-
borhood and intermediate networks see Additional file or
supplemental materials at [[46], Section: Case Studies]).

Validation and insights from integration

To show the impact of MIG integration in understanding
biology, we present a comparison between our results and
those obtained from KEGG. First, we start with ALL. HC
and extract a subnetwork of genes related to "pheromone
response” (Figure 4b1). Compared to KEGG (Figure 4a),
our results include more members of heterotrimetric G
protein complex, including the alpha, beta, and gamma
subunits, the GDP-GTP exchange factor, and the GTPase-
activating protein (Gpalp, Ste4p, Stel8p, Cdc24p, and
Sst2p, respectively). The Sst2p does not appear in KEGG
MAPK pathways. Our model also includes Farlp, a pro-
tein necessary for pheromone-induced cell cycle arrest in
G1 [38], Mpt5p, a protein necessary for recovery from cell
cycle arrest [39], and Bem1p and Sph1p, both of which
are necessary for establishment of cell polarity during
budding [40,41]. Neither Mpt5p, nor Sphlp appears in

http://www.biomedcentral.com/1471-2105/7/55

the KEGG MAPK pathway. In addition to direct interac-
tion between pheromone receptor (Ste2p and Ste3p) and
heterotrimetric G protein complex (Stedp/Stel8p/
Gpalp), our result contains the interaction of Akrlp, a
known inhibitor of signaling in the pheromone pathway
[42], with the G protein complex, a fact missed in KEGG
MAPK pathways for pheromone response.

Figure 4b2 shows the result of extracting network for the
function "cell wall remodeling" from ALL_HC. It contains
both GTPase constituents, Rhol and Cdc42p, as well as
associated GAPs and other interactors, including Rdilp,
Rgalp, and Gic2p. The last three proteins are not pre-
sented by KEGG (Figure 4a). Fks1p syntase, the actin pro-
tein Actlp, and the proteins Bnilp, Bud6p, and Sphip,
which are associated with Rho-mediated signal transduc-
tion, actin filament organization, cell polarity establish-
ment, and bud growth are also included. KEGG cell wall
integrity pathway misses some of these actors. Membrane
proteins Wsclp, Wsc2p, Wsc3p or Mid2p may fail to inter-
act when forced into the nucleus by the requirements of
the standard two-hybrid technique and none of them was
encountered in our network.

In the result of a query for the filamentation pathway (Fig-
ure 4b3), key components of the Ras GTPase are included,
such as Cdc25p (the Ras guanine nucleotide factor),
Cyrlp (the Ras-associated adenylate cyclase), and Srv2p,
which enables the activation of adenylate cyclase by
Ras2p. Several proteins with roles in actin filament organ-
ization, cell polarity establishment, bud growth, and GT-
Pase mediated signal transduction are shared with the cell
wall integrity pathway, including Bnilp, Spa2p, Bud6p
and Act1p. The model shows interactions between Abp1p
and both Srv2p and Act1p, consistent with the function of
Abpl1 in tethering Srv2p to cytoskeleton. The adenylate
cyclase and associated proteins mentioned above, along
with Hsp82p and Hsc82p, activate the cAMP pathway
[43], a pathway that acts in parallel with the MAPK path-
way to promote filamentation. Hsp82p is a chaperon pro-
tein required for activation of the pheromone signaling
pathway components [44], and for the general response
to amino acid starvation [45]. Most of the facts of the fil-
amentation pathway described above are missing in the
KEGG MAPK filamentation pathway.

The MAPK neighbourhood study shows that in spite of
KEGG's ontology, our data integration produces more
relationships, and thus lends more scientific insight that
are not obtainable otherwise.

Recall that we started the above queries by first creating a
high-confidence network (a view over the integrated
data). If we start with a less stringent network by including
less strongly supported edges, we can use the system as a
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Figure 4

MAPK signaling pathways produced by PathSys in comparison with the canonical KEGG MAPK signaling path-
ways. a). MAPK signaling pathways in Yeast reproduced by KEGG.b). Pathways generated by PathSys for (bl) Pheromone
response, (b2) Cell Wall modeling and (b3) Filamentation of MAPK signaling pathways, with the proteins as red ovals, com-
plexes as blue ovals; processes (binary and multiple) and interaction types as small colored circles, squares, diamonds, etc.;
pathways (Cell Cycle pathway) as yellow triangles, compartments as grey boxes. Network graphs are produced by Biological-
Networks client software.
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Figure 5

A functional module (largest connected component) for
cytoskeletal organization and coordination. Edge line types
represent interaction types and node colors represent GO
annotation.

hypothesis generator. For this, we start with a query to
extract the Genetic HC network (described under net-
work construction) representing pairs of genes/proteins
that have at least one evidence of protein-protein interac-
tion and at least one evidence of either genetic or DNA-
protein interaction has 16 connected components of 5 or
more nodes. The next query filters out the largest con-
nected component (Figure 5), which contains 23 nodes,
representing functionally related genes/proteins related to
cytoskeletal element organization and coordination of
cellular function: from the left hand side, protein folding
pathway components (Pac10, Gim3 and Gim5) interact
cytoskeletal element nucleating proteins (Tub4 and
Spc97) to nucleate and assemble (Yre2) microtubule and
actin filaments, which interface through Spc98 with a
spindle pole body component (Nufl) during mitosis,
which in turn interacts with calcium regulated signaling
pathway through the calmodulin Cmd1, and thus regu-
lates organelle movement (through Myo2) and cytokine-
sis (through Myo1) during cell division. From the right
hand side, the Rho-GTPase activating protein (Rho-GAP)
Bem?2, acting in a multi-protein complex with Sit4,
Sap185, Sap190, and Sap155, transduces a signal from the
cell wall to the cytoskeletal elements through Arp2 and
Rgdl (another rho-GAP), and thus to the specialized
MAPK signaling pathway (through Bckl) involved in
cytoskeletal reorganization. We thus hypothesize that
these interactions trigger cell wall repair and morphogen-
esis through Chs1. The derivation of this set of genes/pro-
teins as a recognizable modular unit for cellular
organization, without making any explicit query related to
cytoskeletal elements, is the first of its kind and depended
critically on the ability to integrate multiple databases.

http://www.biomedcentral.com/1471-2105/7/55

Statistical properties of integrated networks

Another important area of current research is beginning to
address how molecular networks having different func-
tional significance but comprised of the same elements
evolve.

Addressing such questions is possible only when data sets
with very different types of data are integrated. To be most
useful integrated networks should be constructed by que-
ries, and statistical tests conducted by queries through
algorithms established over the database. As an example,
we studied three high-confidence sub-networks (protein-
protein [36], DNA-protein MIT_HC, genetic MIPS_HC) in
yeast in a pair-wise manner. In these networks, a node is a
gene or a protein, and the conditions specified are
expressed as queries over the integrated network. In que-
ries for each functional network above, we issued aggre-
gate queries to compute the degree, the clustering
coefficient and the betweenness centrality of the nodes
respectively. We examined for each common node
whether a particular topological property shows statistical
inter-dependence between any two networks. For each
comparison, we used two statistical tests for inter-depend-
ence: a correlation test and a y2 test to determine whether
there are systematic rules of association in the three net-
works that govern the allowed interaction topologies of
individual network members across the different func-
tional networks. Results of this study will appear else-
where (Raval et al. in preparation). Note that it is possible
to perform analysis like this automatically mainly due to
the graph-based integration of molecular interaction from
different sources, even though the individual data sources
had very detailed data content.

Conclusion

The approach we have presented facilitates graph infor-
mation integration from multiple sources and allows one
to query and retrieve biologically interesting relations
between genes and proteins, and obtain topological prop-
erties on integrated graphs for biological hypothesis test-
ing. The system, implemented on top of Oracle DBMS,
uses a novel graph query language and evaluation engine
to process complex queries some of which are illustrated
here. It is now possible to interrogate simultaneously and
at several levels of detail complex interactomes to return
networks of interactions with multiple semantic features.

We showed that our integration approach is able to pro-
vide biologically interesting information not possible
with existing databases. For example although the phe-
romone response pathway is commonly depicted as a lin-
ear transmission of the mating signal from the membrane
receptor to the nuclear effectors via a MAPK cascade, the
real picture of cellular processes and interactions is not
that simple; the topology of interactions is considerably
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more complicated than a series of pairwise interactions.
This is captured well through our MAPK example query.
For biological hypothesis generation, we have shown an
example of how to retrieve networks of lower confidence
but higher biological discovery potential. Finally, multi-
ple integrated networks can be mined simultaneously for
graph-properties that encode systems-level information
on biological entities, such as molecular-complex integra-
tion networks. Thus, data integration and query analysis
systems such as PathSys, should become integral tools for
future efforts to build a model of a cell as a whole.

Availability and requirements

Project name: PathSys. The PathSys's client software,
named BiologicalNetworks, is available as a Java Web
Start application at http://brak.sdsc.edu/pub/Biological
Networks (for description see Additional file 2). Down-
load version is also available.

Project home page:

http://brak.sdsc.edu/pub/BiologicalNetworks/PathSys
and

http://brak.sdsc.edu/pub/BiologicalNetworks/

Operating system(s): Windows 2000 and XP, Linux.
Programming language: Java.
License: Free for academic purposes.

Other requirements: Java 1.4 or higher, not yet available
for MacOS.

Any restrictions to use by non-academics: contact the
authors.
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