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Abstract
Background: Studies on the distribution of indel sizes have consistently found that they obey a
power law. This finding has lead several scientists to propose that logarithmic gap costs, G (k) = a
+ c ln k, are more biologically realistic than affine gap costs, G (k) = a + bk, for sequence alignment.
Since quick and efficient affine costs are currently the most popular way to globally align sequences,
the goal of this paper is to determine whether logarithmic gap costs improve alignment accuracy
significantly enough the merit their use over the faster affine gap costs.

Results: A group of simulated sequences pairs were globally aligned using affine, logarithmic, and
log-affine gap costs. Alignment accuracy was calculated by comparing resulting alignments to actual
alignments of the sequence pairs. Gap costs were then compared based on average alignment
accuracy. Log-affine gap costs had the best accuracy, followed closely by affine gap costs, while
logarithmic gap costs performed poorly. Subsequently a model was developed to explain the
results.

Conclusion: In contrast to initial expectations, logarithmic gap costs produce poor alignments and
are actually not implied by the power-law behavior of gap sizes, given typical match and mismatch
costs. Furthermore, affine gap costs not only produce accurate alignments but are also good
approximations to biologically realistic gap costs. This work provides added confidence for the
biological relevance of existing alignment algorithms.

Background
Sequence alignments are essential to the study of molecu-
lar biology and systematics because they purport to reveal
regions in sequences that are homologous. Because
sequences gain and lose residues as they evolve, align-
ments are necessary for revealing such gaps in sequence
data. Therefore, researchers usually need to align
sequences before they can be studied. For example, most
algorithms that construct phylogenetic trees from
sequences require a sequence alignment (e.g. [1]). Since
alignments are an integral part of many research pro-

grams, the quality of the inferences we make from align-
ments depends on the quality of the alignments
themselves (e.g. [2]).

There are two main types of alignment algorithms: local
and global. Local alignment algorithms like FASTA [3]
and BLAST [4] attempt to align only parts of sequences
often avoiding gaps, whereas global alignment algorithms
like CLUSTAL [5,6] and MCALIGN [7,8] attempt to align
entire sequences, explicitly handling gaps. For this study
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we will focus on the quality of global alignment algo-
rithms for pairs of sequences.

Most global alignment algorithms fall into two categories:
finite state automata (FSA) or hidden Markov models
(HMM) [9]. FSA came first and relies on finding an align-
ment that either maximizes a score function or minimizes
a cost function based on specific models of scores or costs
[10-15]. Often these models are heuristically optimized
using a set of "known" alignments. In contrast, pair HMM,
a more recent and more powerful approach, relies on
establishing a specific statistical model of sequence align-
ment, often derived from evolutionary principles [8,16-
21]. The advantage of pair HMM techniques is that
researchers can leverage the full power of probability to
the question of alignments, including both frequentist
and Bayesian approaches. Pair HMM even allows
researchers to sum across all possible alignments to esti-
mate evolutionary parameters and the use of posterior
decoding to characterize alignment ambiguity [9]. The
most common way to implement both FSA and HMM for
pairwise global alignment is through dynamic program-
ming, which allows researchers to both find the single
best alignment as well as sum across all possible align-
ments. Since it is possible to convert between FSA and
HMM approaches [9], we are going to focus on an imple-
mentation of a minimum cost FSA; however, we will even-
tually develop a statistical model to explain our results.

An important observation is that alignment accuracy
depends on the assumptions used in picking parameters.
Costs (the parameters in our approach) that are based on
abiological assumptions are likely to produce bad align-
ments. For example, if the costs of gaps are less than the
cost of a match, then the best alignment for a pair of
sequences will say that all residues align with gaps, i.e. the
sequence pair is unaligned. Only in a limited number of
applications will this be a biologically plausible result. A
more prudent concern is how to pick the nature of gap
costs because using an abiological model of gap costs can
render any heuristic optimization of gap costs worthless.
Gap costs are typically based on the affine model, where
the cost of a gap of length k is G (k) = a + bk [10]. This is a
popular approach because affine costs are easy to imple-
ment, fast, and efficient. Furthermore, since nucleotides
are deleted or inserted in groups, it is biologically plausi-
ble that gaps should cost more to create than they do to
extend, which can be modeled via affine gap costs.

However, some researchers have raised questions about
the biological justification for the affine gap model. Stud-
ies on the distribution of indel lengths have revealed that
the size of an indel is linearly related to its frequency on a
log-log scale, and therefore gap-sizes obey a power law
[22-26]. Under a Zipfian power-law distribution, the

probability that an indel has length k is P(k|z) = k-z/ζ(z),

where z > 1 and  is Riemann's Zeta func-

tion. If 1 <z ≤ 2, the mean of this distribution is infinite,

and if 1 <z ≤ 3, the variance is infinite. The observation
that indel lengths obey a power law suggests that
sequences should be aligned using logarithmic gap costs,
i.e. G (k) = a + c ln (k) [24,25]. However, as mentioned
above, the standard method of sequence alignment uses
affine gap costs, i.e. G (k) = a + bk because they can be
modeled efficiently via Gotoh's algorithm [10]. However,
researchers cannot adapt Gotoh's algorithm to logarith-
mic gap costs, and instead researchers must use the more
computationally expensive candidate list method of
Waterman [14] as optimized by Miller and Myers [11].
Although affine gap costs are efficient, this study seeks to
determine whether this efficiency comes with a cost to
accuracy. An alignment is essentially a hypothesis about
the evolutionary history of the sequences, specifying for-
mally which residues are homologous to one another. We
can define a measurement of alignment accuracy by com-
paring the hypothesized alignment to the "true" align-
ment of the sequence pair. An alignment consists of a set
of columns which provide per residue homology state-
ments, e.g. residue 100 of sequence A is homologous to
residue 90 of sequence B or residue 80 of sequence A is
homologous to no residue of sequence B. When compar-
ing two alignment, columns fall into three different cate-
gories: 1) columns only appearing in the first alignment,
2) columns only appearing in the second alignment, and
3) columns appearing in both alignments. By counting
the number of columns belonging to each category, it is
possible to measure how identical two alignments are to
one another:

where Kc is the number of columns in category c. (See Fig-
ure 1 for an example of this measurement.) This align-
ment identity can be used to measure the accuracy of a
hypothesized alignment. It is also possible to describe this
formula in hypothesis testing terminology by using true
positives, false positives, and false negatives to quantify
the accuracy of the hypothesized alignment. In that man-
ner Equation 1 becomes
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when the first alignment is taken as the hypothesized
alignment and the second alignment is taken as the "true"
alignment. Unlike the alignment fidelity of Holmes and
Durbin [16], alignment identity is symmetric and
includes information from gaps.

Not all sequence pairs are equally easy to align, and the
accuracy of a hypothesized alignment is expected to
decrease as sequence pairs become more distantly related
due to substitution saturation and indel accumulation.
Therefore, an appropriate measure of expected alignment
accuracy for a specific gap cost needs to average across
multiple branch lengths and multiple sequence pairs.
Branch lengths are often measured in "substitution time",
where a unit branch length is equal to 1 substitution, on
average, per nucleotide. According to coalescent theory
and neutrality, the number of generations separating any
pair of sequences in the same diploid population depends
on the effective population size, Ne, and has approxi-
mately an exponential distribution with mean 4Ne [27]. If
μ is the instantaneous rate of substitution per generation,
then the substitution time separating any two sequences
has an exponential distribution with mean θ = 4Neμ. As
branch lengths get longer and sequences become more
distant, data is lost from the sequences, and thus no align-
ment algorithm may be able to recover the true alignment.
This limitation can be corrected on a per-sequence-pair
basis by using relative alignment identities: absolute
alignment identities divided by the maximum alignment
identity found for that sequence pair.

Results
For the set of sequence pairs, the minimum branch length
for any pair was 1.83 × 10-05 mean substitutions per nucle-
otide, and the maximum branch length was 1.76. Further-
more, the distribution of observed gap sizes, plotted on a
log-log scale, is shown in Figure 2. This distribution
clearly obeys a power law. Ignoring the issue of censored

data at gap length of 1000, the maximum likelihood esti-
mation of the power-law parameter of this distribution is
z = 1.53. (The simulation had parameter z = 1.5.) Align-
ments were classified via their parameter values into three
different schemes. All parameter sets belonged to the log-
affine scheme. The affine and logarithmic schemes were
subsets of the log-affine scheme and consisted of the
parameter sets where c = 0 and b = 0, respectively. Analysis
of alignment accuracy was divided into two broad and dif-
ferent questions. First, how do the best gap costs for each
scheme compare to one another? And second, how do the
maximum alignment accuracy for each scheme compare
to one another for each sequence pair? The first question
investigates what happens if researchers use a single gap
cost across many alignments, and the second investigates
what happens if researchers optimize gap costs to each
alignment.

The best gap costs were identified by having the highest
average alignment accuracy, i.e. they produced alignments
that had the highest average identity to the "true" align-
ments. The best costs for aligning sequences under the
log-affine, affine, and logarithmic schemes were identified
respectively as G (k) = 2 + k/4 + (ln k)/2 (average identity
of 0.941), GA (k) = 4 + k/4 (average identity of 0.925), and
GL (k) = 1/8 + 8 ln k (average identity of 0.687). Figure 3
shows the graphs of these gap costs, and Figure 4 shows
the densities of their identities. Log-affine and affine both
peak a little below 100% identity, whereas the logarithmic
density is nearly flat for most of the parameter space
before barely peaking below 100% identity. Tables 1 and
2 present some statistical properties of these gap penalties.
The best log-affine cost produced alignments that were
only slightly better than the ones produced by the best aff-
ine cost. Both log-affine and affine costs produced align-
ments that were considerably better than the ones
produced by the best logarithmic cost. In fact, the best log-

Example alignment pairFigure 1
Example alignment pair. Numbers identify the residues in the sequences. k1 columns – A5B-, A6B-, A7B5, and A8B6 – are 
found in only the left alignment. K2 columns – A7B-, A8B-, A5B5, and A6B6 – are found in only the right alignment. K3 columns 
– A1B1, A2B2, A3B3, and A4B4 – are found in both alignments. Alignment identity is I = (2K3)/(2K3 + K1 + K2) = (2 × 4)/(2 × 4 
+ 4 + 4) = 1/2.
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affine gap cost produced the best alignments for over half
the sequence pairs.

Figure 5 looks at the distribution of identities produced by
each best cost. Figure 5a–c plots the identities with respect
to their branch lengths, transformed to a uniform scale.
Figure 5d–f are box-whisker plots of identities grouped
into 20 classes based on branch length. The best logarith-
mic gap cost produces alignments with much lower iden-
tities than the best log-affine and affine costs. As expected,
identities decrease as branch lengths increase; however,
unexpectedly, the largest branch lengths show increasing
alignment identity.

To compare the best gap costs on a per sequence pair
basis, Figure 6 shows the ratio of affine and logarithmic
alignment identities to log-affine alignment identities,
plotted via branch length for each sequence pair. The
identities produced by the best log-affine gap cost tend to
be higher than or equal to the identities produced by the
best affine and best logarithmic gap costs. However, there
are some sequences for which the best log-affine gap cost
produces an alignment that is worse than the alignment
produced by the best affine or best logarithmic cost. Nev-
ertheless, the best affine cost compares rather well to the
best log-affine cost, especially at lower branch lengths.
However, the best logarithmic cost does a poor job com-

pared to the best log-affine cost and the best affine cost.
Clearly alignments derived from logarithmic costs are of
poor quality, and highly sensitive to the divergence
between sequences.

Instead of trying to find gap costs that have the highest
average accuracy, we can find the gap costs that have the
highest accuracy for each sequence pair. Therefore, an
alternative approach to comparing schemes is to look at
the maximum identity produced by each scheme for each
sequence pair. Similar to Figure 5, Figure 7 shows the
maximum identities of each scheme plotted by trans-
formed branch length, and box-whisker plots of the data.
As we saw in the best cost analysis, the maximum affine
identities are similar to maximum log-affine identities,
and both are distinct from the maximum logarithmic
identities. Identities decrease with increasing branch
lengths, only to increase with the largest branch lengths.
Furthermore, logarithmic densities are once again very
sensitive to increasing branch lengths. Similar to Figure 6,
Figure 8 shows the ratio of maximum identities of affine
and logarithmic to the log-affine schemes. Once again, the
affine scheme has identities similar to the log-affine
scheme and the logarithmic scheme does not.

Discussion
The first issue that we will consider is whether the param-
eter space was properly sampled. For log-affine and affine
schemes, the best values were found inside the sampled
parameter space, representing local maxima and perhaps
global maxima. However, for logarithmic gap penalties,
the best penalty was found on the edge of the parameter
space. Subsequent expansion of the parameter space con-
firmed that GL (k) = 1/8 + 8 ln k represents a local maxi-
mum for logarithmic gap costs.

In the simulations, branch lengths were randomly drawn
based on θ = 4Neμ = 0.2. If the per-nucleotide mutation
rate is μ = 10-9, then the effective population size would
be 50 million. This is high for most populations, but it
does produce many branch lengths that can represent spe-
cies-species divergence times. When calculating the best
gap costs, it is possible to use importance sampling to
weight the identities in a way that reflects another distri-
bution of branch lengths. Similar results (not shown)
were obtained when weighting to produce a θ = 0.002 dis-
tribution.

An interesting feature of the data is that alignment identity
improves at the longest branch lengths. According to Fig-
ure 5, this occurs after the ninety-fifth percentile, which
roughly includes all identities associated with branch
lengths greater than 0.6, which is three times the mean
branch length. More than likely, branch lengths much
larger than 0.6 are responsible for this observation, but

Gap Sizes Obey a PowerlawFigure 2
Gap Sizes Obey a Powerlaw. Log-Log plot of the distri-
bution of gap sizes measured from the 5000 true alignments. 
The line is the maximum likelihood fit of a power-law distri-
bution: ln f (k) = 0.915 – 1.53 ln k
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Figure 5 does not have the resolution to detect a more pre-
cise threshold. The observation that alignment identity
improves at the longest branch lengths can be attributed
to the fact that sequences at long branch lengths, although
related, are saturated with indels and thus have very few
nucleotides homologous to one another anymore. There-
fore, parameters that tend to produce hypothesized align-
ments dominated by gaps, which cause low identities
elsewhere, show high identity to the true alignment at
long branch lengths.

Clearly from the results, logarithmic gap costs are a poor
choice for aligning sequences even though biological
results would seem to suggest them. Logarithmic gap costs
perform poorly because they increase slowly (Figure 3).
This causes logarithmic costs to "cheat" during pairwise
alignments because two huge gaps, covering the entirety
of the sequences may be less costly than three or more
moderate gaps. In fact, many logarithmic costs have
bimodal distributions; they either work or cheat. How-
ever, this may not be a problem because it is easy to tell
when logarithmic costs cheat, which can be reflected by
posterior decoding [9,18]. Log-affine gap costs are notice-
ably better than simple affine gap costs, even though the
difference may not be enough to justify wide spread usage
given the slower speed of the candidate list method.
According to the above results, affine gap costs only

The curves of the best gap costsFigure 3
The curves of the best gap costs. A) The entire range of the curves and B) a magnification of the beginning of the curves. 
The best gap costs were decided for each scheme based on highest average alignment identity.  Log-Affine: G (k) = 2 + k/4 + (ln 
k)/2 (solid) , affine GA (x) = 4 + k/4 (dashed), and logarithmic GL (k) = 1/8 + 8 ln k (dotted).

Accuracy distribution of best gap costsFigure 4
Accuracy distribution of best gap costs. Best log-affine 
(solid), best affine (dashed), and best logarithmic (dotted). 
Accuracy is measured via alignment identity. See Figure 3 for 
details on the exact gap costs.
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diverge from log-affine gap penalties at large branch
lengths.

It is definitely surprising that logarithmic gap costs do so
poorly compared to affine and log-affine gap costs, given
that initially there seems to be little biological justification
for having a linear component in the gap cost. However,
as we show in Appendices A and B, converting a maxi-
mum likelihood search into a minimum cost search
through shifting and scaling introduces a linear compo-
nent into the gap cost which can dominate the logarith-
mic component. In other words, the power law does not
imply that gap costs should be logarithmic, instead it
implies that gap costs should be log-affine.

In Appendix A we use techniques from the field of statis-
tical alignment to develop a probability model for our
alignments. The model is similar to the model of Knudsen
and Miyamoto [17]. However, it differs in part by not
explicitly treating overlapping indels and using a more
realistic Zipf power-law distribution for indel lengths. In
contrast to the recent practice of employing a mixed-geo-
metric model [19,28], a power-law model is simpler – one
parameter versus three – and has a fatter tail. Also as dis-
cussed above, it is more relevant to the observed distribu-
tion of indels [22-26]. Our probability model is used to

develop a maximum likelihood search for the best align-
ment and then convert that maximum likelihood search
into a minimum cost FSA. Maximum likelihood may not
be as powerful as posterior decoding [9,18], but it is easy
to convert into a minimum cost FSA.

From Appendix A, the log-likelihood of a pairwise, global
alignment given observed sequences A and B and param-
eters λ, θ, and z is

where λ is the mean number of indels per substitution, θ
is the average branch length between sequences, and z is
the power-law parameter. The alignment is summarized
by the number of matches (M), number of mismatches
(R), and the length of each gap (k1 . . . kN). Furthermore,
in Appendix B we convert this log-likelihood into mini-
mum cost search, producing the following gap cost
derived from Equation 2:

Since in the simulations θ = 0.2, λ = 0.15, and z = 1.5,
Equation 2 reduces to
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Table 1: Absolute accuracy properties of the best gap costs

Absolute Identities
Log- Affine Affine Logarithmic

Minimum 0.383 0.324 0.183
1st Quartile 0.926 0.904 0.512
Mean 0.941 0.925 0.687
Median 0.976 0.970 0.717
3rd Quartile 0.994 0.992 0.874
Maximum 1.0 1.0 1.0

Accuracy is measured via alignment identity. Log-Affine: G (k) = 2 + k/4 + (ln k)/2 (solid) , affine GA (x) = 4 + k/4 (dashed), and logarithmic GL (k) = 1/
8 + 8 ln k (dotted).

Table 2: Relative accuracy properties of the best gap costs

Relative Identities
Log-Affine Affine Logarithmic

Minimum 0.710 0.501 0.193
1st Quartile 0.993 0.971 0.549

Mean 0.992 0.973 0.717
Median 1.0 0.993 0.745

3rd Quartile 1.0 1.0 0.892
Maximum 1.0 1.0 1.0

Relative accuracy was calculated as the alignment identity produced by a gap cost for each sequence pair divided by the largest alignment identity 
produced by any gap cost for the same sequence pair. See notes of Table 1.
Page 6 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:527 http://www.biomedcentral.com/1471-2105/7/527
and Equation 3 reduces to

G (k) = 1.69 + 0.23k + 0.56 ln k  (5)

This gap cost is very close to the top gap cost found in the
simulations: G (k) = 2 + 0.25k + 0.51n k.

Furthermore, based on unweighted least squares, the fol-
lowing affine cost bests fits Equation 5: G (k) = 4.17 +
0.23k (unweighted mean squared error of 0.0722). This
cost is very close to the best affine cost found in the simu-

lations,  = 4 + 0.25k.

Furthermore, because the linear component of Equation 5
dominates the logarithmic component, logarithmic gap
costs will clearly provide worse fits than affine gap costs.
Therefore, one can surmise that the linear component to
the gap cost function derives from the conversion of a

ln ( | , ) . . [ . . ln ]L A A B M R kg
g

G
ln = − − + ( )

=
∑1 19 1 45 4 45 1 5 4

1

′wk

Accuracies of best costs plotted by divergenceFigure 5
Accuracies of best costs plotted by divergence. I, IA, and IL are the alignment identities produced by the best log-affine, 
affine, and logarithmic gap penalties, respectively. See Figure 3 for more information. a-c) Alignment identities plotted by the 
branch length of the alignments. Divergence time is plotted on a uniform scale, u = 1 - exp (-t/ ). d-f) Box-whisker plots of 
identities grouped into 20 bins of 250 values. Solid bars are medians. Notches are significant range of medians. Bars are the 
mid-range. Whiskers are the range. Circles are outliers.

t
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maximum likelihood search into a minimum cost search
via shifting and scaling to fit specific substitution costs.
Furthermore, this linear component dominates the gap
cost allowing the log component to be removed and the
gap opening cost re-waited. These results also open the
possibility that the gap extension cost can be moved into
the substitution matrix and eliminated from the gap cost
entirely, potentially speeding up alignment algorithms.

The linear component of the affine approximation is
derived solely from the shifting and scaling introduced by
fixing the substitution costs. Because the extension cost is
not influenced by the distribution of gap lengths, the Zipf
power-law distribution of gap sizes appears to be approx-
imated by a discrete uniform distribution. Although this
result is rather unexpected, it makes sense in two ways.
First, Zipf distributions have fat tails, and sections of the
tail can be well approximated by a uniform distribution.
And second, the numbers of matches, mismatches, and
gapped positions are not independent of one another
(Appendix B); therefore, matches and mismatches carry
information about gap lengths. The uniform approxima-
tion for a Zipf distribution may prove to be more useful

than geometric [17,21] or mixed-geometric models
[19,28].

Conclusion
From these results I propose that, if a researcher knows or
is willing to assume θ, λ, and z for a group of sequences
that he wants to align using a match cost of 0 and a mis-
match cost of 1, he can estimate a log-affine gap cost via
Equation 3. However, if he wanted to use other costs for
matches and mismatches, he can re-derive them using the
methodology shown here. Furthermore, an affine gap cost
can be estimated by fitting G (k) = a + bk to Equation 3 via
the method of least squares. However, researchers will
find more utility if the procedure outlined in this paper
was extended to the models of sequence evolution
beyond Jukes-Cantor. In subsequent research, I hope to
apply this procedure to more complex models as well as
to unrooted trees.

This research has demonstrated that logarithmic gap costs,
although suggested by biological data on the surface, are
not a good solution for aligning pairs of sequences
through a finite state automata. In fact, despite previous
suggestions, e.g. [25], the power law does not imply that

Accuracies of best costs compared per sequenceFigure 6
Accuracies of best costs compared per sequence. Ratio of identities produced by a) best affine gap cost and b) best log-
arithmic gap cost to the identities produced by the log-affine gap cost plotted for each sequence pair by divergence time. See 
Figure 5 for more information.
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gap costs should be logarithmic, instead it implies that
gap costs should be log-affine. Furthermore, the results
find that affine gap costs can serve as a good approxima-
tion to log-affine gap costs to account for the shifting and
scaling often introduced by match and mismatch scores.
Because affine gap costs are quick, efficient, and currently
nearly ubiquitous, this research strengthens the rational
for existing practices in molecular biology.

Methods
Five thousand sequence pairs were generated on unrooted
trees using the sequence simulation program, Dawg [29].
Dawg is a sequence simulation program that combines
the general time reversible substitution model with a con-

tinuous time indel formation model. It is probably the
only sequence simulation program capable of natively
using the power-law model for indel lengths. Each simu-
lation performed by Dawg started with a random
sequence of 1000 nucleotides. For each ancestral
sequence, a single descendant sequence was evolved by
Dawg based on the branch length separating the ancestor
from the descendant. The branch lengths were drawn
from an exponential distribution with a mean of θ = 0.2.
Because sequences were to be aligned using equal costs for
each mismatch type, the sequences were evolved under
the Jukes-Cantor substitution model [30]. Indels were cre-
ated at a rate of 15 per 100 substitutions [29], and their
lengths were distributed via a truncated power-law with

Maximum accuracies plotted by divergenceFigure 7
Maximum accuracies plotted by divergence. S, SA, and SL are the maximum alignment identity produced for each 
sequence pair by log-affine, affine, and logarithmic gap costs respectively. The subfigures are the same as in Figure 5.
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parameter of 1.5 [26] and a cut-off of 1000 nucleotides.
The observed distribution of gaps was checked to see if it
obeyed a power-law, and the power-law parameter was
estimated using maximum likelihood [31]. Dawg
recorded the actual alignment of each sequence pair mak-
ing it possible to measure the accuracy of alignments gen-
erated through dynamic programming.

Pairwise, global alignments were done with Ngila [32], an
implementation of the candidate-list dynamic program-
ming algorithm of Miller and Myers [11] for logarithmic
and affine gap costs. Because gap costs are usually opti-
mized for specific substitution costs [9], the cost of a
match was chosen to be 0 and the cost of a mismatch to
be 1. Each sequence pair was aligned using 512 different
parameter sets, which specified the coefficients of the gap
cost function, G (k) = a + bk + c ln k. Each coefficient was
one of eight values: 0, 1/8, 1/4, 1/2, 1, 2, 4, or 8. The align-
ment identity (Equation 1) of each of these 2.56 million
hypothesized alignments was calculated with respect to
the appropriate true alignment produced by Dawg.
Expansion of the parameter space to verify the local max-
imum for logarithmic gap costs used a = 16.

The statistical software, R [33], was used to analyze the
alignment identities and produce most figures. Fitting aff-
ine gap costs to the optimal gap costs was done via the
method of least squares for gap sizes 1 to 1000. The
squared error was minimized separately using the optimi-
zation procedures in PopTools 2.7.1 [34] and Mathemat-
ica 5.1 [35].

Appendices
A. Alignment log-likelihood
In this appendix we will develop a statistical model for
alignment similar to [17] but simpler. To find the most
likely alignment we need a measurement of the likelihood
of an alignment given the observed pair of sequences, A
and B, and predetermined evolutionary parameters. This
likelihood is proportional to the density of the alignment
given the sequence pair [36] (p9):

To calculate Equation 6 completely for two sequences
related by a common ancestor, one would have to con-
sider all sequences that could be the most recent common
ancestor of A and B and all possible branch lengths

L A A B f A A B
f A A B

f A B
f A A B( | , ) ( | , )

( , , )

( , )
( , , )ln ln

ln
ln∝ = ∝ ( )6

Maximum accuracies compared per sequenceFigure 8
Maximum accuracies compared per sequence. Ratio of maximum identities produced by a) affine gap costs and b) loga-
rithmic gap costs to the maximum identities produced by log-affine gap costs plotted for each sequence pair by divergence 
time. See Figures 5-7 for more information.
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between this ancestor and A and B. However, our simula-
tions assumed that the tree relating A and B was unrooted,
and thus A was considered to be descended from B, elim-
inating the need to consider the set of all possible progen-
itors for both sequences. We calculate Equation 6 based
on the evolutionary distance or branch length t between
sequences A and B:

It is possible to derive Equation 7 from an evolutionary
process. Specifically the probability that B gave rise to A
over evolutionary distance t with indels to produce align-
ment Aln.

f (Aln, A, B, t) = f (B → A, t, Aln) = f (A|Aln, B, t) f (Aln|B,
t) f (t) f (B)  (8)

where f(t) = exp (-t/θ)/θ is the density of branch lengths

between A and B and  is the probability for

ancestral sequence B of length Lb. If La, M, and R are

respectively the length of sequence A, the number of
matches in the alignment, and the number of replace-
ments, then under the Jukes-Cantor model,

The probability that an indel occurs at any position is 1 -
e-λt, and, if we ignore the issue of overlapping indels, there
are N positions at which an indel occurred and Lb - N posi-
tions that did not give rise to indels. Therefore,

where N is the number of indels in the alignment,

 is the probability that an indel has a

length of size kg, and λ is the instantaneous rate of indel

formation per unit branch length. Putting this all
together,

For simplicity we will not integrate Equation 7 to find
f(Aln, A, B). Instead, we will approximate it based on the
mean value of t:

f (Aln, A, B) ≈ f (Aln, A, B|t = ) = f (Aln, A, B, t = )/f (t

= )

Upon removing factors that are constant for sequences A
and B we get the likelihood for the alignment Aln given
sequence pair A and B and parameters λ, θ, and z:

The alignment is quantified by the number of matches
(M), the number of mismatches (R), and the set of gap
lengths, (k1 . . . kN). The likelihood of an alignment
depends on three evolutionary parameters: the rate of
indel formation per unit branch length (λ), the average
branch length between two sequences (θ), and the "slope"
of the power law (z). Furthermore, the log-likelihood is

B. Gap costs
As developed by Smith et al. [13] and extended by Holmes
and Durban [16] and below, a maximum likelihood
search can be converted to a minimum cost search with
shifting and scaling. Based on a statistical model, the
scores of "matches" of type i, αi, and the penalties of gaps
of length k, wk, can be used to calculate the alignment with
maximum log-likelihood:

where ηi is the number of residue matches of type i and Δk
is the number of gaps of length k. A minimum cost analog
of Equation 11 is

To begin constructing the minimum cost analog, let βi = (x
- αi)/y be the cost of a match of type i, therefore

The lengths of the sequences being aligned, n and m, can
be related to the alignment itself via the equation n + m =
2∑ηi + ∑kΔk. Using this relationship, Equation 12 can be
expressed as

f A A B f A A B t dt
t

( , , ) ( , , , )ln ln= ( )∫ 7

f B Lb( ) = −4

f A A t B e eL t M t R
a( | , , ) / /ln = +( ) −( )− − −4 1 3 14 3 4 3

f A B t e e f kt L N t N
g

g

N
b

( | , ) ( )ln = ( ) −( )− − −

=
∏λ λ1

1

f k k zg g
z( ) / ( )= − ζ

f A A B t
e

e e e
tL

L L
t M t R t Nb

a b
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−

+
− − − −λ

λ

4
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e
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From this it can be clearly seen that d = min{∑βiηi + ∑G
(k)Δk} maximizes the likelihood of the alignment, where
G (k) = (xk/2 + wk)/y is the cost of a gap of length k. Apply-
ing this method to Equation 10 such that the cost of a
match is 0 and the cost of a mismatch is 1 produces the
following equation for a gap cost:
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