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Abstract

Background: Although protein-protein interaction networks determined with high-throughput
methods are incomplete, they are commonly used to infer the topology of the complete
interactome. These partial networks often show a scale-free behavior with only a few proteins
having many and the majority having only a few connections. Recently, the possibility was suggested
that this scale-free nature may not actually reflect the topology of the complete interactome but
could also be due to the error proneness and incompleteness of large-scale experiments.

Results: In this paper, we investigate the effect of limited sampling on average clustering
coefficients and how this can help to more confidently exclude possible topology models for the
complete interactome. Both analytical and simulation results for different network topologies
indicate that partial sampling alone lowers the clustering coefficient of all networks tremendously.
Furthermore, we extend the original sampling model by also including spurious interactions via a
preferential attachment process. Simulations of this extended model show that the effect of wrong
interactions on clustering coefficients depends strongly on the skewness of the original topology
and on the degree of randomness of clustering coefficients in the corresponding networks.

Conclusion: Our findings suggest that the complete interactome is either highly skewed such as
e.g. in scale-free networks or is at least highly clustered. Although the correct topology of the
interactome may not be inferred beyond any reasonable doubt from the interaction networks
available, a number of topologies can nevertheless be excluded with high confidence.

Background are prone to spurious interactions (false positives) due to

Since protein-protein interactions are of fundamental
importance for all processes taking place in a cell, great
efforts have been devoted to the systematic identification
of protein interactions for a number of organisms. To gen-
erate large-scale protein interaction maps, two methods
are commonly used: (i) yeast two-hybrid (Y2H) [1-7] and
(ii) affinity purification followed by mass spectrometry
(e.g. Co-immuno-precipitation (Co-IP) [8] or tandem
affinity purification (TAP) [9-11]). Both of these methods

self-activators (Y2H), protein contaminants (affinity puri-
fication) or non-specific interactions. Based on expression
data and information about paralogues, the fraction of
correct high-throughput interactions has been estimated
at 30-50% [12]. In addition to false positives, high-
throughput experiments are characterized by a large frac-
tion of false negatives, i.e. correct interactions that are
missed in the experiment. Accordingly, only small over-
laps can be observed between interaction maps for the
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same species but determined in different experiments and
with different methods [13,14].

Despite the amount of false positives and false negatives
associated with protein-protein interaction (PPI) net-
works determined in high-throughput experiments, they
have nevertheless been thoroughly investigated in terms
of network topology, stability and dynamics [15-20]. The
topology of protein-protein interaction networks is in
general described as scale-free, a topology common to
many networks from various domains [21-23], although
this claim has been questioned recently [24,25]. Scale-free
networks are characterized by a power-law degree distri-
bution in which the probability of a node having k inter-
action partners is proportional to k¥ for some constant ¥
Accordingly, the majority of nodes interact only with few
other nodes, whereas a small fraction of nodes (so-called
hubs) have connections to many other nodes in the net-
work. As a consequence, scale-free networks are very toler-
ant to random deletion of nodes but vulnerable to a
targeted attack against hubs. Indeed, lethality of protein
knockouts appears to be correlated to the number of inter-
action partners of the protein [15].

All of these studies implicitly assume that the topology of
the complete interactome can be inferred from observed
PPI networks containing only a fraction of proteins and
interactions. Recently, this assumption has been called
into question [26,27]. Based on mathematical modeling,
Stumpf et al. [26] showed that, unlike for random graph
and exponential topologies, random sampling from scale-
free networks has a distorting effect on the topology of
sub-networks. Conversely, these results imply that the
scale-free topology of the PPI networks is unlikely to result
from random graphs or exponential networks by the ran-
dom sampling approach postulated by Stumpf et al.,
which selects only a fraction of nodes and all edges
between these nodes. Since such a random sampling pro-
cedure does not accurately reflect the impact of large-scale
experimental methods, Han et al. [27] defined a different
limited sampling procedure which emulates the effect of
the Y2H approach. Based on simulations they argue that
such a limited sampling can lead to an apparent scale-free
topology in the sampled networks regardless of the origi-
nal topology. They conclude that, while a scale-free topol-
ogy appears to be more likely than the other models
considered, these other topologies cannot be safely
excluded based on the degree distribution alone given the
currently available interaction data.

We proposed recently [28] that apart from the degree dis-
tribution and the related network statistics discussed by
Han et al., other characteristics of the network might help
to further assess the likelihood of different topology mod-
els and exclude at least some of them. One such character-
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istic is the average clustering coefficient, i.e. the
"cliquishness" of the network. In this paper, we analyze
the effect of the sampling procedure described by Han and
co-workers on the clustering coefficient analytically in
addition to simulations. Both our analytical and simula-
tion results shown here suggest that random sampling
with a limited coverage of proteins and interactions
always leads to lower clustering in the resulting sub-net-
work compared to the original network. As a conse-
quence, in such a setting the clustering coefficients of
protein interaction networks derived by Y2H can be con-
sidered as a lower bound on the clustering coefficients of
the original networks and network topologies with signif-
icantly lower clustering coefficients than observed can be
ruled out.

We furthermore extend the model of Han et al. by addi-
tionally adding spurious interactions to the sampled net-
works and analyze the effects of these false positive
interactions both analytically and with simulations.
Although false positive interactions can be viewed as
another sampling artifact, their impact on the network
might be different from limited sampling effects. Indeed,
we observe that the average clustering coefficient of a net-
work reacts differently to false positive interactions than
to false negative interactions. In our model, interactions
are added using a preferential attachment model [29] and,
accordingly, false positive interactions alone can increase
the skewness of the theoretical networks and, thus, their
similarity to scale-free networks. Our findings show that
although clustering coefficients of networks can be
increased by wrong interactions for some network topol-
ogies, the degree to which they can be increased depends
strongly on the degree of randomness of clustering coeffi-
cients and the degree distribution of the original topol-
ogy. As a consequence, several topologies remain unlikely
and can be excluded with high confidence.

Results

Modeling yeast-two hybrid experiments

A protein-protein interaction network can be described as
an undirected graph G = (V, E) with a set of nodes V and
a set of edges E. The nodes in G then correspond to inter-
acting proteins and two nodes u and v are connected by an
edge (u, v) if and only if they interact. Interactions may
either be direct such as the physical interactions deter-
mined with Y2H or indirect via other proteins in the same
complex as detected by affinity purification. Since these
differences make it difficult to define a comprehensive
model for both experimental methods, the sampling pro-
cedure described by Han et al. simulates only the Y2H
approach to address direct interactions.

Although many topological properties can be analyzed,
we concentrate on two of them, the degree distribution
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and the average clustering coefficient. The degree k, of a
node v is the number of its interactions and the average

degree of all nodes in the graph is denoted by k .Thus, the
degree distribution describes the probability of a node v
having degree k:

P(k):|{U€V|kv—k}| (1)

V]
As we will see later, an important characteristic of the
degree distribution is its asymmetry, i.e. its skewness.
Although there exist several alternative definitions of
skewness, the one most commonly used is

Dy e k)

skewness = 3
(IVI-1s

(2)

where s is the sample standard deviation of the degree dis-
tribution. For symmetric distributions the skewness is
close to zero whereas for left-tailed distributions it is neg-
ative and for right-tailed distribution, such as e.g. power-
law distributions, it is positive.

The clustering coefficient quantifies the probability that
two vertices which are connected to the same node are
also connected. Accordingly, the clustering coefficient C,
of a node v in a network is defined as [30]

C, =P((u,w)e E|(u,v)e EAn(v,w)e E)
_ P((u,w)e EA(u,v)e EA(v,w)€ E)
- P((u,v)e EA(v,w)e E)
_P(VeE)
B P(ve E)

(3)

Since the clustering coefficient is only defined for nodes
with at least two neighbors, the clustering coefficient C of
the complete network is defined as the average clustering
coefficient of all nodes with degree at least 2.

Average clustering coefficients of networks are often com-
pared against the clustering coefficients of random graphs
[31] containing the same number of nodes and edges. The
expected clustering coefficient of such a random graph is
2|E|
IVIavi-1
bution different from random graphs, it is also useful to
compare these networks against random networks with
the same degree distribution. Such networks can be easily
obtained by randomly rewiring edges many times such
that the degree distribution is preserved [32]. Here, rewir-

. Since most networks show a degree distri-
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ing consists in randomly deleting two edges (u, v) and (w,
x) and replacing them by two edges (u, x) and (w, v). We
say that a network is clustered randomly if after rewiring
approximately the same clustering coefficients are
observed. Consequently, a network can be clustered ran-
domly, less than randomly or more than randomly. We
will see examples for all three cases later on. Figure 1A
shows the average clustering coefficients for a number of
high-throughput Y2H data sets. Here, only high-confi-
dence interactions were considered for the data sets of Ito
et al. [2], Li et al. [3] and Giot et al. [4]. For comparison
purposes, the same characteristics are given for the yeast
protein-protein interaction network from DIP [33] which
contains high-throughput data as well as interactions
determined with other experimental methods. Although
the clustering coefficients of some of the partial networks
appear to be rather small, they are in most cases at least
one order of magnitude higher than clustering coefficients
of random graphs with the same number of nodes and
edges (see Figure 1B).

DIP Ito Uetz Li
yeast worm  fly

Giot LaCount Rual Stelzl
P. falc. human

DIP Ito Uetz Li
yeast worm

Giot LaCount Rual Stelzl
fly P.falc. human

Figure |

Clustering coefficients in large-scale Y2H interaction
networks. Clustering coefficients (A) and the ratio to clus-
tering coefficients of random graphs [31] having the same
size (B) are shown for the following interaction networks:
yeast interactions from DIP [33] and the Y2H studies by Ito
etal. [2] and Uetz et al. [1]; C. elegans interactions by Li et al.
[3]; drosophila interactions by Giot et al. [4]; P. falciparum
interactions by LaCount et al. [5]; and human interactions
from the studies of Rual et al. [6] and Stelzl et al. [7]. Only
high confidence interactions were considered for the Ito, Li
and Giot data set and self-edges were ignored for the calcula-
tion of clustering coefficients.
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Missing interactions

The sampling procedure described by Han et al. [27] emu-
lates the effect of the Y2H method under the assumption
that interactions may be missed in the process but no
wrong interactions are obtained. It is determined
uniquely by two parameters: bait coverage (denoted by /)
and edge coverage (denoted by &). Bait coverage specifies
the selective effect of choosing only a fraction of the pro-
teome as baits in a large-scale yeast two-hybrid experi-
ment, whereas edge coverage determines the fraction of
true interactions which can actually be resolved for a bait.
Accordingly, a network is sampled from the original net-
work as follows. A fraction £ of nodes is selected as baits
and then for each bait a fraction € of its interactions. Edges
connecting two baits are selected with higher probability
2e- &€= g2 - €). The sampled network then contains the
bait nodes as well as non-bait nodes which are connected
to a bait via a sampled edge. In the following, the latter
ones are referred to as preys. The resulting network is
referred to as G! = (V!, E') and the set of baits is called B.
The resulting degree of a node v and its clustering coeffi-

cient are consequently referred to as kil, and C,% . The aver-
age degree of the network and the average clustering

coefficient are denoted by k 1and CI.

Spurious interactions

Since false positive interactions may affect both the degree
distribution and the clustering coefficient, we extended
the simple sampling model to include also wrong interac-
tions. For this purpose, the sampling procedure is modi-
fied in the following way. In the sampling step all nodes
of the original network are retained but only interactions
which involve at least one bait. False positive interactions
are then added in a second step. For each bait v we add an
interaction to any other node u with a specific probability
(v, u) and the resulting network is denoted as G2 = (V2,
E?2).

The probability @(v, u) can be defined in different ways.
In the first case, the probability of adding an edge between
v and u depends neither on the degree of v or 1, i.e. is con-
stant for all pairs of nodes. In a similar way, Erdds and
Rényi random graphs [31] are created and thus this proc-
ess is denoted as random attachment. In the second case
(v, u) does only depend on the degree of the bait v but is
constant for all its possible neighbors u. We denote this
behavior as semi-preferential attachment, since new edges
will be attached preferentially to baits with high degree.
The last possible scenario involves preferential attach-
ment for both v and u.
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Since preferential attachment is most likely to change the
degree distribution towards a power-law distribution
[29], our model is based on such a scenario. For this pur-
pose, we use an adaption of the method described by
Chung and Lu [34] for creating random graphs with a
given degree distribution. Accordingly, (v, u) is defined
as

(ky, +1)(ky, +1)
D) (4)

Note that k, denotes the degree of node v in the original
network. Thus, the number of wrong interactions a pro-
tein obtains depends on the number of true interactions it
forms. This is based on the assumption that highly inter-
active proteins are more prone to spurious interactions
than proteins which form only a few but very specific
interactions. The parameter & controls the false positive
rate, whereas 1 is used as a pseudo-count to guarantee that
singular nodes, i.e. nodes with degree zero, can also
obtain wrong interactions. We have that 0 < 7 < e and the
larger 7 the smaller is the influence of the actual degree val-
ues of v and u on the probability @(v, u). For our purposes,
twas set to 1.

o(v,u)=0

Analytical results

In the following, theoretical derivations are given which
describe the influence of the complete model on the clus-
tering coefficient of networks. For simplification, we
address the effect of limited sampling, i.e. missing interac-
tions, and false positives, i.e. spurious interactions, sepa-
rately from each other.

Missing interactions

In this section, we analyze the effect of limited sampling
on the clustering coefficient of a node and the complete
network. We show that both limited bait coverage and
limited edge coverage leads to a reduction in clustering
coefficients and therefore that limited sampling as a
whole lowers the clustering coefficient. Again, the cluster-
ing coefficient of a node v after sampling can be formu-
lated as a conditional probability:

_P(VeE') P(VeE|VeE)P(VeE)
- P(ve EY - P(ve E'|veE) P(ve E)
_P(VeE'|Ve E)

P(ve E' |veE) .

G,

(5)

Thus, the clustering coefficient of node v depends on its
original clustering coefficient and the probabilities P(V €
E!'|V € E) and P(v € El|v € E).

To examine the full impact of sampling on the clustering
coefficient of a node v, we have to differentiate between

Page 4 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:519

baits and preys. First, let v be a prey. In this case, both
edges (u, v) and (v, w) can only be conserved if both u and
w are chosen as baits. If at least on of them is not a bait,
the corresponding edge to v is always missed. However, if
both nodes are baits, the two edges connecting them to v
are each selected with probability € (see Figure 2A), since
they connect a bait to a prey. Furthermore, these probabil-
ities are then independent of each other and the joint
probability that both edges are kept can be expressed by
the product of the individual probabilities. As a conse-
quence, we have that

P(ve Ellve E)= . (6)

If u and w are connected in G, the corresponding edge
again can only be selected if both nodes are baits. If this is
true, the probability that this edge is conserved is then &2
- £), since it connects two baits.

Accordingly, we have that
P(Ve El|Ve E)=Pe2-ee  (7)

and

Cl =¢2-9C,<C, (8)

We thus observe that the clustering coefficient of a bait is
only affected by limited edge coverage. If £ = 1, the
expected clustering coefficient after sampling is approxi-
mately the same as before sampling regardless of the value
of bait coverage.

Second, let now v be a bait. In this case, the edges (u, v)
and (v, w) can be conserved no matter if either of the
nodes u and w is a bait or a prey. If both nodes are baits

A B

u w u c(2—¢) w

Figure 2

Effect of sampling on preys. This Figure illustrates the
probabilities for selecting edges in the limited sampling step if
the node v considered is a prey. Here, baits are indicated by
black nodes and preys by white notes. The arrows at the end
of edges indicate the bait and prey relationship for this edge
and edges are directed from bait to prey. Accordingly, edges
between baits show arrows at both ends.

http://www.biomedcentral.com/1471-2105/7/519

(see Figure 3A), each edge is selected with probability &2
- £). If only one of them is a bait (Figure 3B and 3C), one
edge is selected with probability £ and the other one with
probability &2 - ). If both are preys (Figure 3D), both
edges are only selected with probability & Thus, we
observe that

P(ve Ellve E)=(2-&2+ 201 - pe(2-¢€ + (1 -
p£2ex. (9)

On the other hand, a triangle between u, v and w can only
be conserved if at least one of the two nodes u or w is also
a bait. The probabilities for selecting edges (u, v) or (v, w)
are in these cases the same as above. The third edge (u, w)
is then selected with probability &2 - €) if both nodes are
baits and with probability ¢ if only one of the two nodes
is a bait (see also Figure 3). Accordingly, we have that

P(Ve ElflVe E)=R8(2-&)3+2p(1-p&(2-¢). (10)

By inserting equations (9) and (10) into (5) we obtain
that

Cl=¢g2-9ic, (11)

with

1 B*(2-€)* +2B(1- ) .
B*(2-¢€)* +2B(1-B)(2-&)+(1-B)°

It is easy to see that A< 1 since
P(2-92+2501-f)
<P2-2+26(1-PH2-¢
<P2-e2+2B1-PH2-¢+(1-P>

(12)

(13)

As a consequence we have that C,l, < g2 - ¢)C,and in par-

ticular that Cll, <&2 - ¢C, if either f< 1 or € < 1. This

shows that both limited bait coverage as well as limited
edge coverage lower the clustering coefficients of baits.
Since G! contains at least one bait, we can conclude that

Cll, <C, if bait or edge coverage is limited.

The sampling procedure described by Han et al. [27] cor-
responds to an experimental setting in which only a small
set of proteins is chosen as baits and then subsequently
screened against a much larger set of preys. This set-up is
often used when due to a large genome size an exhaustive
search for all possible protein pairs is infeasible [35]. An
alternative approach consists in doing such exhaustive
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A B
uc(2—¢) w u 3 w
< 2 <
\ Q% \ 9
e <
v v
Cc D
U € w U w
QO
/
€ o € €
o
v v
Figure 3

Effect of sampling on baits. Here, the probabilities for
selecting edges are shown for the case that v is a bait. The
notation is the same as in Figure 2. For each possible bait-
prey combination of u and w, the probabilities are shown
separately. The edge completing the triangle and the corre-
sponding probabilities for selecting this edge are shown in
red.

pairwise screens only for a subset of the proteome (see e.g.
the human interaction network by Rual et al. [6]). We can
easily reduce this scenario to the one considered here if we
set G as the subgraph of the original network containing
only the bait nodes and all edges between these nodes.
Thus, we only need to consider the additional effect of this
reduction. It can be shown that clustering coefficients of
nodes selected for the screen remain approximately con-
stant and, hence, that the average clustering coefficient of
the subgraph G is approximately the same as in the origi-
nal network. As a consequence, the matrix screen is
reduced to a simple case of our model with f=1 and we
have that C1 = g2 - £)C with C the original clustering coef-
ficient of the complete network.

Spurious interactions

In the first step discussed above, the possibility of addi-
tional spurious interactions is ignored and accordingly the
probability is zero that edges which have not been part of
the original network occur in the sampled network. How-
ever, since exactly this happens in the second step, we
have that

P(C e E2)=P(0 € E2[¢ € E)P(O € E1) + P(C € E2|0 ¢
ENYP(O ¢ EY).  (14)
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with ¢ € {v, V}.

In general, the resulting clustering coefficient is difficult to
determine theoretically since C2 cannot be given relative
to C! as in the previous step. Therefore, we determine an
approximation for the clustering coefficient only for the
simple case that f = 1 and € = 0, i.e. all proteins are
selected as baits and none of the true edges are found.
Thus, we see that

_P(VeE’|VeE)-0+P(Ve E*|VeE)1 P(VeE*|VeE)

CZ
P(ve E*|ve E')-0+P(ve E*|[ve E')-1 PveE*|veE)

(15)

We furthermore assume that the probability that two
nodes are connected is independent of the probability
that any other two nodes are connected. In general, this is
not the case for the preferential attachment model since
the assumption holds only if all possible false positive
edges are equally likely and, thus, if all nodes have
approximately the same degree. Nevertheless, as we will
see later, the resulting assumption is still useful for assess-
ing the impact of false positives on clustering in networks.

Based on this assumption we have that

PveE*[veE) = ¥ 3 [P((wv)e E*|(wv)e E') P(v,w)e E* |(yw)e EY)]
ueVuweV
uEv wEvu (16)

> [P((uv)e B |(uv)e E)-P((v,w)e E* | (v,w)e EV)].

uweV

I

P(V € E?|V ¢ E') can be rewritten similarly. Since all
nodes have been selected as baits we have for each pair u
and v that P((u, v) € E2|(u, v) ¢ E') = a(u, v)(2 - a(u, v))
= 2w(u, v). Hence, equations (15), (16) and (4) result in

D ey 200,)20(v, w)20(u, w)
D ey 2001 v)20(v, w)
20 Zyuey a0’k +0?
Dy U+ X ey G + 0y +0)
0 Dyl + 22Xy 1) (17)
Yoev o+ Xy e +0Y (e +0)
(ZueV(k“ +1)* )2 .
(Zuev(ku+’))3 |

As a consequence, we have that C2= 26&

c2 =~

=20 =20

Note that X, (k, + 7) = 2|E| + ¢|V| is independent of the
degree distribution whereas 2, ,(k, + 7)2 depends strongly
on it. It is minimal if all nodes have the same average
degree and maximal if all edges connect only one node to
itself and the remaining nodes are singular, i.e. without
connections. Accordingly, for networks with approxi-
mately the same number of nodes and edges, ¢ is highly
correlated with the skewness of the degree distribution
(see also Figure 10).
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The skewness of a network also allows us to assess how
strongly the independence assumption is violated. As
mentioned before, this assumption is only valid if the
probability that an edge is added does not depend on the
nodes it connects. In our model edges connecting two
low-degree nodes to a hub are very likely whereas the
probability that these nodes are then also connected is
rather small. Accordingly, this has a negative effect on
clustering and the more skewed a network, the more does
the observed clustering coefficient deviate from the
approximation. Furthermore, the observed clustering
coefficients are on average smaller than the approxima-
tion. This is reasonable since & can become arbitrary large
but the clustering coefficient is bounded from above by 1.
As a consequence the minimum of 1 and 26 restricts the
clustering coefficients observed on average in the simple
case with f=1 and €= 0.

Of course, this simple scenario is insofar unrealistic as no
experimental network should contain only wrong interac-
tions and if it did it would be useless. However, as we will
see later, the effect of false positive interactions on the
clustering coefficient depends strongly on £ also for f< 1
and ¢ > 0. In addition, the degree of randomness in clus-
tering is also an important factor.

Simulation results

To illustrate the effect of our model, corresponding simu-
lations were performed for six different types of starting
networks: (Poisson) random graphs (ER) [31], exponen-
tial networks with random (EX) and high (EH) clustering
coefficients, power-law networks with random clustering
coefficients (PL) and networks generated by a growth
model [36] which aims at representing the evolution of
protein interaction networks. In the last case, networks
were generated with low (GL) and high (GH) clustering
coefficients (see Additional File 1: Supplementary Figure
1 and Additional File 2: Supplementary Methods). To
simulate the effect of the yeast two-hybrid methodology
on the yeast interaction network, we generated networks
for the described topologies, each containing 6,000 nodes
(the approximate number of protein-encoding genes in
yeast [37]) and average degree values of 5, 10 and 20. For
each combination of network topology and average
degree, 50 networks were generated and simulation
results were averaged over these 50 networks.

Analysis of simulated clustering coefficients

The observed clustering coefficients for the generated net-
works (Figure 4) vary greatly between network topologies
and average degree values. With the exception of the EH
and GH networks which have been created specifically to
show high clustering, two dependencies can be observed.
The clustering coefficients are highly correlated with the
average degree of the networks but also with the asymme-
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try of the degree distribution. Since random ER graphs fol-
low a Poisson distribution and thus are little skewed, they
exhibit the lowest degree of clustering of any of the topol-
ogies. Compared to that, exponential networks have an
increased tendency for high and low degree nodes. As a
consequence, they tend to be higher clustered than the ER
networks. Despite the fact, that the GL networks have
lower clustering coefficients than expected randomly for
the degree distribution, they still show higher clustering
coefficients than the exponential networks due to their
high degree of skewness. Even if the clustering coefficients
of the GL networks are randomized by edge rewiring, they
are still lower than the clustering coefficients of the highly
skewed power-law networks (PL).

When comparing the clustering coefficients of the large-
scale Y2H networks against the simulated topologies, we
observe that all of the PPI networks show higher cluster-
ing than the random ER graphs. In general, the experi-
mental networks have higher clustering coefficients than
the exponential networks and even the GL networks. Only
the human interaction network by Stelzl et al. is lower
clustered than all GL networks and exponential networks
with high average degree values. Accordingly, only the EH
and GH networks and the PL networks with high average
degrees exhibit clustering coefficients which exceed those
of all experimental Y2H protein-protein interaction net-
works.

These results as such do not exclude any of the topologies.
However, when considering the effect of the different
types of measurement errors on clustering coefficients,
one should always keep in mind the original clustering
coefficients we are starting from. In the following, the dif-
ferent effects of false negative and false positive interac-
tions are again considered separately from each other.

Missing interactions

Our theoretical results predict that both limited bait cov-
erage and limited edge coverage lower clustering coeffi-
cients significantly regardless of network topology and
average degree. We have shown previously [28] in simula-
tions that this prediction indeed holds for the ER, EX, GL
and GH networks. Our extended simulations show that
the EH and PL networks are affected similarly by false neg-
ative interactions (see Figure 5 and Additional file 1: Sup-
plementary Figure 2). Here, to illustrate the dramatic
decrease in clustering due to false negatives, clustering
coefficients of the sampled networks were normalized by
dividing by the original clustering coefficients.

We thus can confirm the observation from [28] that for all
topology models the clustering coefficients of the sam-
pled network are significantly lower than the clustering
coefficients of the original networks for any value of bait
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Clustering coefficients of simulated networks. For all six network topologies and average degree values, 50 networks
were generated and clustering coefficients averaged over those 50 networks. In this figure the clustering coefficients of the ER,
EX and GL (A, from left to right) and the EH, GH and PL (B) networks are compared against the minimum (red dashed line),
average (blue) and maximum (green) clustering coefficient observed in experimental Y2H networks. For the EH and GH net-
works parameters were set such that both networks have approximately the same clustering coefficients.

or edge coverage. Furthermore, since we now considered  ited bait coverage affects clustering in the ER, EX, PL and
more than one highly clustered network, we can draw  GL networks only to a minor degree, the effect on the
conclusions about similarities between the randomly or  highly clustered EH and PH networks is substantial. The
less than randomly clustered ER, EX, PL and GL networks  differences between the two groups can be seen in Figure
on the one hand and the more than randomly clustered 5 for the PL and EH networks. Even at € = 1, clustering
EH and GH networks on the other hand. For all network  coefficients in the EH networks are significantly smaller
topologies the effect of limited bait coverage is less severe ~ for small values of Fthan in the PL networks. For instance,
than the effect of limited edge coverage. Yet, whereas lim-  at = 0.2 they are only about half as high.

B

1 1}

1 0.8 0.6 e 0.4 0.2

Figure 5

Effect of sampling for limited coverage rates. This figure demonstrates the impact of limited sampling on the average
clustering coefficient for coverage rates below one. To illustrate differences between randomly and highly clustered networks,
normalized clustering coefficients are depicted for the PL (A) and the EH (B) networks with average degree of 10. The highly
clustered EH networks are affected to a much greater degree by low bait coverage rates than the randomly clustered PL net-
works. Clustering coefficients were normalized by dividing by the original clustering coefficients.
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This observation is surprising since in our analytical deri-
vations no such difference was observed. Nevertheless, it
can be easily explained. In our derivations clustering coef-
ficients were treated as continuous variables, whereas
effectively they behave in a discrete manner since an edge
can either exist or not. If we only consider nodes for which
clustering coefficients before and after the simulation are
greater than 0, no differences between highly and ran-
domly clustered networks are observed. The differences

observed are due to nodes for which C,> 0 and Cll, =0and

nodes for which C,= 0 and C} = 0. In the first case, clus-

tering coefficients decrease dramatically and stronger than
expected, in the second case they do not decrease at all. In
highly clustered networks the first type of nodes is much
more common than in randomly clustered networks,
whereas the second type of nodes is rarer. Accordingly,
while for randomly clustered networks the effects on the
two types of nodes cancel each other to a large degree,
there is an excess of the first type of nodes in highly clus-
tered networks. This leads to the stronger reduction in
clustering coefficients observed.

Spurious interactions

We have seen previously, that for f= 1 and €= 0 the aver-
age clustering coefficient is expected to increase linearly
with @which is also confirmed in part by our simulations
(Figure 6). However, for high values of #a deviation from
the linear behavior can be observed which leads to a
slower increase. As mentioned before, this is due to the
violation of the independence assumption. This violation
leads to an ever stronger deviation with increasing skew-
ness in the network. In Figure 6, topology models are
sorted according to skewness. Accordingly, we observe
that the more skewed a topology is, the smaller are the val-
ues of @at which the observed clustering coefficients start
to deviate from the linear behavior. This effect is most pro-
nounced for the power-law networks, for which & predicts
the highest increase in clustering due to false positive
interactions. The effective increase turns out to be signifi-
cantly less than predicted but is still much higher than for
the other topologies, in particular for small values of 6.

So far, edge coverage was restricted to 0. Figure 7 (see also
Additional file 1: Supplementary Figure 3) illustrates the
effect of different values of & (but constant # = 1) and
increasing 6 on the clustering coefficient. For £ > 0, the
effect on the clustering coefficient depends strongly not
on the topology but on the degree of randomness in clus-
tering. For two of the randomly clustered networks (ER
and EX), the clustering coefficients increase linearly with
6 for any & Indeed, if C is the original clustering coeffi-
cient, the resulting clustering coefficient C2 can be approx-
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Comparison between approximation and simulation
of false positive interactions. The minium (red), average
(blue) and maximum (green) clustering coefficients obtained
in 50 simulations of false positive interactions with §= | and
£= 0 are compared against the clustering coefficients pre-
dicted by the approximation 26¢ for networks of average
degree 10. Topology models are sorted according to increas-
ing skewness from top left to bottom right to illustrate the
increasing deviation from the approximation with network
skewness.

imated by 2£60 + &2 - €)C. As before, the PL networks
deviate from this behavior and clustering coefficients for
higher values of ¢ increase more slowly than predicted.
Furthermore, the higher ¢, the lower is the rate of increase.
As a consequence, the curves for £ = 0 and £ = 1 move
towards each other for increasing 6.

For networks clustered less than randomly (GL), the aver-
age clustering coefficients for higher values of ¢ increase
stronger than linearly at the beginning, until random clus-
tering is reached in the network. From this point on a sim-
ilar behavior is observed as for the randomly clustered
networks. The contrary effect is found for highly clustered
networks (EH and GH). In this case the clustering coeffi-
cients are reduced significantly by preferential attachment
of false positives. Only when random clustering is reached
in the network, clustering coefficients increase again
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Influence of spurious interactions on clustering. Spurious interactions can influence average clustering coefficients in two
ways depending on the degree of clustering in the network. In randomly (e.g. EX in A) or less than randomly clustered net-

works clustering coefficients can be increased by attaching false positive interactions. In highly clustered networks (e.g. GH in
B), clustering coefficients are — at least for reasonable error rates — decreased. Here, average degree values were fixed at 10

and bait coverage at |.

depending on the value of £ and thus on the asymmetry
in the network. Nevertheless, the decrease in clustering
due to missing interactions in these highly clustered net-
works can only be compensated for by very high error
rates.

For f< 1, the effect of erroneous interactions on the aver-
age clustering coefficient is similar to the case in which all
proteins are selected as baits (see Figure 8). Clustering

Figure 8

coefficients can be increased as well for randomly clus-
tered networks, but the increase turns out to be slightly
less than before. A possible explanation for this observa-
tion might be that wrong interactions are only ever added
between baits and preys (or other baits) but never
between preys. Thus, for small values of 5 baits are often
connected to two preys which by definition of the model
can never be connected. This results in smaller clustering
in the network.

0.4 0.8 0 1.2

Effect of spurious interactions at different values of bait coverage. This figure illustrates the differences which are
observed for values of bait coverage smaller than | and for edge coverage rates of | and 0. Again the EX (A) and GH (B) net-
works of average degree 10 were chosen. We observe that clustering coefficients for smaller values of fare, in general, slightly

smaller then for §= 1, but the differences are minor.
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To illustrate the combined effect of different parameter
values for the model, simulations were performed in
which for each value of fand & @was chosen such that the
same fixed false positive rate of 50% was obtained (see
Figure 9 and Additional file 1: Supplementary Figure 4).
In these simulations several observations could be made.
First, of course, clustering coefficients tend to be highest
for high values of edge coverage and decrease with edge
coverage. Second, for the ER, EX and GL networks the clus-
tering coefficients obtained are higher than the clustering
coefficients in the original simulated networks even for
small edge coverage rates, whereas for the PL networks
this requires higher edge coverage. On the contrary, in the
EH and GH networks the resulting clustering coefficients
are always significantly smaller than the original cluster-
ing coefficients for the given false positive rate. Here, only
extremely high values of @ and thus the false positive rate
could increase clustering coefficients beyond the original
value. In both cases, this is due to the different effects of
false positive interactions on randomly and highly clus-
tered networks. Furthermore, clustering coefficients tend
to be similar for different values of £. The ER and EX net-
works show only minor differences, whereas stronger dif-
ferences can be observed for the other network types. In
this case, the differences are most pronounced for the
highly clustered EH networks.

In order to compare the effects on clustering at 50% false
positive rate between topologies models, we computed
for each topology the maximum over the averages for dif-
ferent values of f (see Figure 9B). Clustering coefficients
from real Y2H experiments are also indicated. As can be

A
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Figure 9
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seen, even by introducing false positive interactions clus-
tering coefficients in ER and EX networks cannot be
increased sufficiently to explain at least most of the
observed Y2H networks by such a topology. The only
topologies for which realistic clustering coefficients are
observed are thus highly clustered exponential networks,
the growth models and the power-law networks. Note
that although EH networks were created with approxi-
mately the same clustering coefficients as the GH net-
works, the final clustering coefficients observed for these
networks are nevertheless smaller than for the GH net-
work. This can be explained by the fact that the increase in
clustering for high @as well as the lowest level up to which
clustering coefficients decrease for smaller 6 depend
strongly on the skewness of the network topology which
is higher for the GH networks than the EH networks.

Although we considered several possible topology mod-
els, there is an infinite number of possible topologies for
which we did not perform simulations of our model. Nev-
ertheless, the results presented above can be transfered to
other topologies by taking into account the skewness of
these models. If networks are clustered randomly, the
clustering coefficients observed depend on the skewness
of the corresponding degree distribution. Thus, highly
skewed networks have high random clustering coeffi-
cients whereas slightly skewed or symmetric distributions
exhibit very small clustering coefficients which are, in par-
ticular, smaller than clustering coefficients observed in
real Y2H interaction networks. We have shown that miss-
ing interactions decrease these clustering coefficients even
further. Only false positive interactions can increase clus-

B

ER
—v—EX

0.15

Clustering coefficients at a fixed false positive rate. The combined effect of the different error mechanisms were ana-
lyzed by setting the false positive rate at a fixed value of 50%. For each combination of fand & 6was then chosen accordingly.
A shows the resulting clustering coefficients at different bait coverage rates for the GL networks and B for each topology the
maximum over the averages obtained for the different values of f considered. Minimum, average and maximum clustering coef-
ficients observed in the real Y2H experiments are indicated by red, blue and green dashed lines.
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tering again in randomly clustered networks depending
on the network topology. In networks clustered higher
than randomly, clustering coefficients are decreased even
by false positive interactions. Our simulation suggest that
¢ although not a perfect approximation at least restricts
from above the clustering coefficients observed in ran-
domly clustered networks under the influence of false
positive interactions. The higher & the higher the increase
in clustering due to false positive interactions in randomly
clustered networks, although returns diminish with
increasing & Accordingly, we computed the values of £ for
a range of additional topologies and plotted them against
the skewness of the corresponding networks (see Figure
10). For each topology model we generated 50 networks
and averaged over the corresponding £ and skewness val-
ues. As can be seen, £is highly correlated to the skewness
of network models. Accordingly, false positive interac-
tions can only increase the clustering coefficients of net-
works sufficiently which follow a highly skewed degree
distribution.

Discussion

In a recent report, Han et al. [27] raised the possibility that
the apparent scale-free topology of experimental Y2H
interaction networks is due to distorting effects of limited
sampling in large-scale experiments and that by examin-
ing the degree distribution alone, the topology of the
experimental interaction networks cannot be safely
extrapolated to the complete interactome. In this context,
our results indicate that based on additional topological
characteristics such as the clustering coefficient, the range
of possible topologies can be narrowed. Thus, although
current large-scale PPI networks represent only a fraction
of the interactomes, they can nevertheless be used to draw
some inferences to the topological characteristics of the
complete interactomes.

We have shown both analytically and in simulations that
sampling with limited bait and edge coverage lowers the
clustering coefficient tremendously for any of the exam-
ined network topologies. This result has several implica-
tions concerning the topology of the complete
interactomes. In this setting, the clustering coefficients
observed in protein-protein interaction maps derived
with high-throughput methods provide a lower bound on
the clustering coefficients observed in complete interac-
tomes. This furthermore suggests that the interactomes are
highly clustered, much more than the simple random
graph (ER), exponential (EX) or growth networks (GL).
Accordingly, such topologies can be ruled out if the effect
of spurious interactions is ignored. These findings do not
eliminate the possibility that the original networks show
a highly clustered topology different from a power-law
topology.

http://www.biomedcentral.com/1471-2105/7/519

Notwithstanding these considerations, we can use the
relationship between clustering coefficients and bait and
edge coverage to estimate the amount of error involved if
we know both the original and resulting clustering coeffi-
cient and vice versa assess the original clustering coeffi-
cient based on the error rate and the observed clustering
coefficient. In our simulations we found that in order to
increase skewness in a network by limited sampling and
thus to change the original distribution towards a power-
law topology, bait coverage rates have to be lowered con-
siderably. The degree to which they have to be lowered
depends on the difference of the original topology to a
power-law topology. Lowering edge coverage rates, on the
other hand, does not have a sufficiently distorting effect.
However, we have seen above that limited bait coverage
leads to a significant reduction in clustering coefficients in
highly clustered networks such as EH and GH. Thus, high
original clustering coefficients would have to be assumed
for the interactome, if the observed interaction networks
were sampled from a highly clustered distribution which
is significantly different from a power-law distribution
(e.g. an exponential distribution). If such a high degree of
clustering a appears unreasonable, the obvious conclu-
sion is that the original interactome does in fact exhibit a
power-law or a similar highly skewed topology.

We extended the sampling procedure described by Han et
al. to cover the influence of false positive interactions on
the topology of sampled networks. This leads to a more
realistic model of Y2H experiments since spurious interac-
tions are observed regularly in large-scale experiments.
Without considering false positives the effect of sampling
on the topology and the clustering coefficient might be
underestimated or misinterpreted. In our model, interac-
tions are introduced by a preferential attachment scenario
in which the probability of obtaining wrong interactions
depends on the degree of the nodes participating in an
interaction. Furthermore, baits are more likely to acquire
interactions than preys. This introduces a possible source
of degree asymmetry in the model which is a consequence
of the experimental set-up and not the topology of the
network.

Based on the extended model, the conclusions drawn
from the simple sampling model can be generalized. Pref-
erential attachment of false positive interactions increases
the clustering coefficients of networks which are clustered
randomly (ER, EX and PL) or less than randomly (GL),
but decreases the clustering coefficient for networks which
are clustered higher than randomly (EH and GH) except
for extremely high error rates. As a consequence, random
graph and randomly clustered exponential networks still
can be excluded confidently since unreasonably high error
rates would have to be assumed to explain the clustering
coefficients observed. Contrary to that, clustering coeffi-
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Correlation between £ and skewness. Values of £ were computed for a several topology models additional to the ones for
which full simulations of our model were performed and plotted against the skewness of the corresponding networks. Topol-
ogy models considered include power-law, log-normal, negative binomial, Weibull, }2and T distributions with varying parame-
ters. Parameters were tuned such that average degree values of 10 were obtained and results were averaged over 50 networks
generated for each topology. The topology models for which complete simulations were performed are indicated in red.

cients of GL and even more so of PL networks can be
increased sufficiently by introducing wrong interactions
to explain at least most of the observed clustering coeffi-
cients. Indeed at 50% false positive rate, similar clustering
coefficients can be obtained for the GL networks as for the
highly clustered exponential (EH) and growth networks
(GH) whose clustering coefficients are decreased by
wrong interactions.

Accordingly, our simulation results suggest that the inter-
actome either follows a power-law or similarly skewed
degree distribution or is highly clustered. Nevertheless, we
can make the same argument as before, that changing e.g.
an exponential towards a power-law topology requires
small bait coverage rates and consequently high clustering
coefficients in the original network.

For random and semi-preferential attachment, estimates
for the expected increase in clustering for f= 1 and €= 0
can be derived in the same way as for preferential attach-
ment. However, the rate of increase is smaller for both
random and semi-preferential attachment than for prefer-
ential attachment. Accordingly, at £ > 0, clustering coeffi-

cients can decrease even for randomly clustered networks.
In the semi-preferential model, this is only the case for
highly skewed networks such as the PL networks. In the
random attachment scenario, this happens even for the
slightly skewed exponential networks.

Simulations of false negative and positive interactions
were only performed for networks with average degree
values of 5, 10 and 20. Higher average degree values in the
original networks lead to higher random clustering coeffi-
cients in the original networks and thus in the sampled
networks. Hence, one might argue that the above conclu-
sions are invalid if original average degrees only have to
be increased sufficiently. Effectively, such considerations
are limited by what is actually observed in experimental
networks. This can be illustrated by the following exam-
ple. Suppose, a matrix Y2H screen (= 1) results in a net-

work with average degree k ' of 5 and the false positive
rate is estimated to be 50%. Then, edge coverage and orig-

inal average degree k are related by the formula
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Thus, if k =2.5, eis approximately 1. For k =5itis0.29,

for k =10itis 0.13, and so on. Accordingly, high average
degree values can only be assumed if coverage rates are
small. This on the other hand implies that although orig-
inal clustering coefficients might be higher, the clustering
coefficients resulting from the experiment are very small
due to the low coverage rates.

The error mechanisms we proposed for our model are
fairly simple and require few assumptions. Of course,
many other error mechanisms are also possible (see e.g.
[38]) and we can never be sure that the way interactions
are added describes the processes occurring in large-scale
experiments accurately. As a consequence, the preferential
attachment scenario was chosen to simulate the worst case
in which false positive interactions also promote a scale-
free topology in experimental networks regardless of the
original topology. We showed that, even when assuming
this worst case, conclusions can still be drawn to the
topology of the interactome. Nevertheless, our results do
not only apply to our model but can be generalized to a
wider range of error mechanisms. Randomly removing
edges from a network in general reduces clustering coeffi-
cients in this network. On the other hand, adding edges to
a network increases clustering only if the probability that
triangles are created is at least as high as the probability
that triangles exist in the original network. Random error
processes, however, create most likely also random clus-
tering coefficients. Accordingly, if the original networks
are clustered higher than randomly, clustering coefficients
are expected to decrease.

Conclusion

We conclude that measurement errors in large-scale exper-
iments affect several aspects of the network topology apart
from the degree distribution. The impact of the experi-
mental set-up on these other characteristics may be used
to infer the topology of the complete interactome. In this
article, we focused on the average clustering coefficient to
evaluate the likelihood of different topological models for
the interactome. Our analytical and simulation results
indicate that some of the suggested topologies are highly
unlikely and can be excluded with high confidence.
Although only a selection of possible topology models
was discussed in this article, we have shown how the
results can be transfered to other topologies as well. With
the help of additional topological characteristics and con-
straints, such as e.g. attack tolerance, our results might be
extended to further resolve the topology of the interac-
tome. Of course, the most effective and most conclusive

http://www.biomedcentral.com/1471-2105/7/519

way to achieve this aim, is to increase the coverage of the
interactome by both many more experiments and by
improving the false positive and false negative rates of
large-scale methods. However, until this is realized, useful
conclusions can still be drawn from modeling sampling
effects.
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