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Abstract

Background: The availability of genome sequences for many organisms enabled the
reconstruction of several genome-scale metabolic network models. Currently, significant efforts
are put into the automated reconstruction of such models. For this, several computational tools
have been developed that particularly assist in identifying and compiling the organism-specific lists
of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the
definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be
done manually. No computational method exists that allows for an automated and systematic
assignment of reaction directions in genome-scale models.

Results: We present an algorithm that — based on thermodynamics, network topology and
heuristic rules — automatically assigns reaction directions in metabolic models such that the
reaction network is thermodynamically feasible with respect to the production of energy
equivalents. It first exploits all available experimentally derived Gibbs energies of formation to
identify irreversible reactions. As these thermodynamic data are not available for all metabolites,
in a next step, further reaction directions are assigned on the basis of network topology
considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction
subsets from the metabolic network that are able to convert low-energy co-substrates into their
high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such
thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction
directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our
algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction
assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to
about 70% of all irreversible reactions that are required to disable thermodynamically infeasible
energy production.

Conclusion: Although not being fully comprehensive, our algorithm for systematic reaction
direction assignment could define a significant number of irreversible reactions automatically with
low computational effort. We envision that the presented algorithm is a valuable part of a
computational framework that assists the automated reconstruction of genome-scale metabolic
models.
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Background

Nowadays, high-throughput experimental omics tech-
niques are being developed and are generating large-scale
data sets and information bases that can hardly be intui-
tively understood. Models that enable mathematical anal-
ysis and simulation are essential to benefit from the
knowledge that is contained in these data sets. Conse-
quently, the importance of models increases along with
the advances in experimental technologies.

One class of models that has particularily proven to be
useful for the analysis of omics data is the class of stoichi-
ometric metabolic models [1,2]. Several such models -
today typically available on genome-scale — were recon-
structed for various organisms (e.g. [3-5]) and are used as
tools in systems biology [6,7] and metabolic engineering
[8,9]. Genome-scale stoichiometric models are composed
of the metabolic reactions' stoichiometry and assignments
of the reactions' reversibility or irreversibility.

In the model reconstruction process - reviewed in [10] -
typically first a preliminary organism-specific metabolic
network is generated by drawing on information stored in
sequence databases that link coding regions to cellular
functions. In the next step, the sequence-derived network
is completed with knowledge from biochemistry and
physiology such that a stoichiometric network is derived
that reflects the cell's metabolic capabilities. For the recon-
struction of metabolic reaction networks and particularily
for the identification of enzymes that lack genetic evi-
dence, a series of computational tools exist [11-13].

In contrast, reaction directions are often assigned manu-
ally, or are adopted from other existing models or data-
bases on metabolic pathways (e.g. KEGG). Direction
assignment is not only laborious but also error-prone due
to manual execution. Indeed, it was shown that the direc-
tion assignments of published genome-scale models con-
tain inconsistencies i.e. reaction directions that contradict
each other (M. Terzer and J. Stelling, personal communica-
tion). Error diagnostics in these cases is difficult as the
underlying reasons for direction assignments are not pro-
vided in the currently available models.

Reaction directionalities are used frequently: First, they
are required for analysis and simulation of metabolic phe-
nomena by constraint-based modeling [2]. Second, the
reactions' directionality is usually reported in maps on
metabolic pathways within widely-used genomic data-
bases such as KEGG or MetaCyc [14,15]. Third, the infor-
mation on reactions' (ir)reversibility is essential for
metabolic flux analysis [16].

In principle, all biochemical reactions are reversible: A
reaction can proceed in either forward or backward direc-
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tion depending on the actual Gibbs energy of reaction.
The Gibbs energy of reaction is determined by the reac-
tants' standard Gibbs energies of formation and their con-
centrations. A change in reactant concentrations, for
example, can reverse a reaction's direction, if the respec-
tive Gibbs energy of reaction turns from a negative to a
positive value. There are, however, so-called irreversible
reactions that under physiological conditions only pro-
ceed in one direction, which means that the respective
reactants' Gibbs energies of formation and concentrations
are always such that only one direction is possible.

The natural approach to identify the irreversible reactions
in stoichiometric models would draw on Gibbs energies
of formation and physiological concentration ranges.
However, experimentally determined Gibbs energies of
formation are not available for all metabolites. As a work-
around, a group contribution method was developed that
computationally estimates Gibbs energies of formation
for a large set of metabolites [17]. Using the values
obtained with this method and taking into account its
inherent significant uncertainties, a genome-scale ther-
modynamic analysis of E. coli's metabolism showed that
only five reactions (out of 873) could be classified as irre-
versible [18]. This very small number demonstrates that
computationally estimated Gibbs energies of formation
are too uncertain to be used to assign reaction directions.

An alternative approach to assign reaction directions is to
apply the nonlinear constraint that arises from the fact
that there must exist a thermodynamic driving force for
any mass-balanced set of reaction fluxes in a reaction net-
work [19]. For internal reaction cycles that result in no net
conversion of metabolites the overall thermodynamic
driving force is zero, i.e. the cyclic operation of these reac-
tions is infeasible. Given the specification of the direc-
tions of a subset of network fluxes (e.g. by using
information about the environmental conditions to spec-
ify the exchange of metabolites with the environment), it
was shown to be possible to compute the feasible direc-
tion of some of the not preset fluxes based on the nonlin-
ear thermodynamic constraints [20]. This ab initio
calculation of the reaction directions is based on an NP-
complete computation [20]. As a result, a computation-
ally effortless algorithm for the assignment of reaction
directions (thermodynamics-based linear constraints) in
genome-scale networks does not exist today.

Here, we present a computational method that is
intended to close this gap. In a first step, our method
draws on experimentally determined thermodynamic
data, i.e. Gibbs energies of formation, and physiological
intracellular metabolite concentrations to assign as many
reaction directions as possible. Next, in order to assign
further reaction directions, we draw on network topology
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and heuristic rules that exploit the knowledge of bio-
chemical energy equivalents such as ATP or NADH. An
algorithm that is capable to apply this procedure to
genome-scale stoichiometric models was developed and
implemented in Matlab. The respective script is available
from the authors on request.

Results

In the following, the algorithm (cf. overview in Fig. 1) is
described in detail. Each step is illustrated by applying the
procedure to the genome-scale reconstruction of E. coli's
metabolic network [4]. From this model, we only used the
stoichiometric matrix but not the constraints that were
placed on the reaction directions. In other words, we
applied our algorithm to the metabolic network, in which
initially all reactions were considered as reversible.

Thermodynamic facts-based assignment

First, we aimed to assign as many directions as possible on
solid thermodynamic grounds: A reaction can only pro-
ceed in direction of a negative Gibbs energy of reaction,
A,G. The Gibbs energy of reaction depends on the reac-
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tants' i standard Gibbs energies of formation, A, GlO , their
concentrations, ¢; and the respective stoichiometric coef-

ficients, v;

AG=YW (G RTIn([]c!). (1)

If it turned out in our analysis that with any physiologi-
cally reasonable reactant concentrations, the Gibbs energy
of reaction for a given reaction was always negative, the
reaction was defined as irreversible in the respective direc-
tion. For the Gibbs energy of formation, we employed
experimentally derived values, which were available for
157 out of 761 metabolites present in the network (cf.
Methods). Although a computational method can
roughly estimate A/G%values for many more molecules
[17], we prefered to employ this limited set of thermody-
namic data as only a very limited set of irreversible reac-
tions could be assigned with computationally determined
A/GO-values due to their inherent uncertainties (cf. Back-
ground and [18]).

« Calculate the G’ ranges due to given (G” and concentration ranges.

if . G’'min >0, define reaction as irreversible in backward direction;

« Eliminate the co-substrates’ stoichiometric coefficients from the stoichiometric matrix.
« Calculate the null space matrix from the reduced echelon form of the modified stoichiometric matrix.

« Calculate the resulting co-subtrate conversion for each cycle in the null space matrix by again adding the co-substrates’

« Select for the cycles that interconvert high and low energy components of a co-substrate pair.
« If the identified cycles produce low energetic from high energetic co-substrates, scale the cycle by a factor of -1 to

input thermodynamic facts based assignment
concentration enG(-;'I;')bIZS sg?g:é:g:]ry list of - If G'max <0, define reaction as irreversible in forward direction;
ranges of forn?ation network GosulbsiiEies
else note that both direction are possible due to G’ ranges.
pre_ calculation of null space matrix |
processing - )
calculation of null space matrix
l identification of energy producing cycles |
identification of (contained) stoichiometric coefficients.
energy producing cycles
obtain the energy producing cycling direction.
direction analysis of pair cycles
aSSIQnments « Select for energy producing cycles that consist of two reactions.

« Apply the heuristics according to Fig.3 to assign a direction to one of the reactions if possible.

@ thermodynamic facts
based assignment

thermodynamic heuristics
based assignment

analysis of remaining cycles

analysis of |
pair cycles

« Select for those energy producing cycles that are not yet disabled by the assigments made in the thermodynamic facts
based assignment or in the analysis of pair cycles.

= Apply the heuristic rules according to Fig.3 to assign reaction directions. (If there are more than one reactions producing
the same high energy co-substrate, set all there reactions irreversible. Do not restrict reactions for which both direction
are possible due to G’ ranges.)

ana!y&s of
remaining cycles

analysis of bypasses

@ analysis of e
bypasses

« For each assigned reaction direction that disables an energy producing cycle, identify the cycles in the whole null space
matrix in which the reaction participates as well.

« Construct new cycles by respective linear combination of the disabled energy producing cycle and the identified
bypasses in the null space matrix.

« Check whether the new cycle interconvert a co-substrate pair and, if necessary, scale by a factor of -1 to obtain the
energy producing cycling direction.

- For new energy producing cycles, check whether the so far made direction assignments disable their operation.

« For still possible energy producing cycles, apply the heuristics according to Fig.3 to assign a reaction directions. (If
there are more than one reactions producing the same high energy co-substrate, set all there reactions irreversible. Do
not restrict reactions for which both direction are possible due to G’ ranges.)

« Analyze the such assigned reaction directions in the same manner for bypasses until no further assignments are made.

output
systematically
assigned directions
a b
Figure |

lllustration of the algorithm for systematic assignment of reaction directions. Panel a gives an overview over the
direction assignment procedure. Each step (white boxes) is decribed in detail in panel b.
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Furthermore, Maskow and von Stockar have shown that
only with Gibbs energies of formation, that are adjusted
to physiological pH and ionic strength, e.g. a flux through
glycolysis is thermodynamically feasible [21]. Thus, we
considered physiological pH and ionic strength values (cf.
Methods) by using the respectively transformed Gibbs
energies of formation/reaction [22]. For simplicity, 'trans-
formed Gibbs energies' will only be referred to as 'Gibbs
energies' in the following.

Intracellular metabolite concentrations were also required
to determine the actual Gibbs energies of reaction. These
are widely unknown. As, moreover, any stoichiometric
model is usually applied for a variety of growth conditions
and even for mutant strains where different concentration
levels can be conceived, we anyhow wanted to base our
analysis on concentration ranges that cover a wide spec-
trum of conditions. Therefore, we here assumed broad
physiological ranges for intracellular metabolite concen-
trations, which typically are in the order of uM to mM
[23].

Employing a respective concentration range from 0.001 to
10 mM and by using the available set of experimental val-
ues for Gibbs energies of formation, ranges of Gibbs ener-
gies of reaction could be determined for 176 (out of 920)
reactions in the model. In this set of ranges, we checked
for allowed operational reaction directions: A positive
(negative) direction was set if the range of Gibbs energy of
reaction was exclusively negative (positive). With this
approach, 43 reactions were defined as irreversible in the
analyzed E. coli model, while 133 where defined as revers-
ible.

As the assignment depends on the estimated Gibbs ener-
gies of formation, we performed a sensitivity analysis to
assess the assignment's reliablility. We widened the
allowed ranges of Gibbs energies of reaction by 1, 2, 3, 4
kJ/mol and performed assignment runs using these.
Despite the broadened ranges, 40 out of 43 of our direc-
tion assignments based on thermodynamic facts were still
valid. Only up to three reactions (depending on the uncer-
tainty range used) would not had been defined as irrevers-
ible. As our earlier direction assignments are in-line with
the reaction directions in the original model and also in
KEGG, we believe that our irreversibility assignments are
correct.

Thermodynamic heuristics-based assignment

The limited availability of experimental Gibbs energies of
formation only allowed us to analyze a rather small subset
of reactions. Thus, we expanded the direction assignment
procedure by another approach. As shown in [20] the
reaction network comprises sets of reactions whose simul-
taneous operation would contradict fundamental ther-
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modynamic principles. Thus, also we aimed at identifying
thermodynamically infeasible subnetworks from the met-
abolic network. In contrast to [20], we used a different
kind of subnetwork which will be outlined below. After
having identified these subnetworks, heuristic rules were
employed to pinpoint the reaction(s) in the identified
subnetworks which most likely are irreversible and reac-
tion directions were set accordingly. We employed the co-
substrate converting cycles to identify reactions that most
likely are irreversible under all conceivable environmental
conditions. The direction assignment based on topology
and heurisitics was also implemented in the algorithm (cf.
Fig. 1, steps 2a-2c).

Note that it is conceivable that a direction assignment
based on the topological considerations contradicts an
assignment made with the thermodynamic facts. Here,
this was, however, never the case. For some reactions the
thermodynamics facts were only less restricting as they
allowed both directions while a heuristic rule constrained
the reaction into one direction. To prevent the exclusion
of actually possible reaction directions, we adopted the
restriction only if the heuristics-based assignment was
highly reliable (see below).

Identification of thermodynamically infeasible operation of reaction
sets

First, we had to identify sets of reactions (subnetworks)
whose simultaneous operation is thermodynamically
infeasible. A thermodynamically infeasible operation of a
subnetwork is, for example, given by a cyclic operation of
a reaction set that in total results in no net conversion of
metabolites. The absence of such reaction cycles is a nec-
essary condition for thermodynamically consistent opera-
tion of reaction networks [24]. Hence, cycles in the
metabolic network are a promising target to screen for
thermodynamically infeasible reaction directions. Cycles
can be obtained via the null space of the stoichiometric
matrix.

Consider a network that consists of three reactions with
the pairwise interconversion of the reactants A, B and C
(cf. Fig. 2a). Assume a situation where A is actually con-
verted to B, and B to C. Thus, C must have a lower Gibbs
energy of formation than A. Consequently, the operation
of the reaction 3 from C to A is not possible. This example
shows that, if we preset a consecutive operation of two
reactions, it is possible to exclude one direction of the
third. Thus, here, we only can state if-then relationships
for reaction directions, and consequently, an a priori deter-
mination of reaction directions — without the assumption
of other reaction directions - is not possible.

Next, we extent the thought experiment and assume a

reaction between A and C with a different stoichiometry
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A——B
3 2
a C b C

Figure 2
lllustration of reaction cycles.

that is actually able to re-cycle C to A (cf. Fig. 2b). This
reaction would have to be driven by a "motor" that deliv-
ers the energy necessary to convert the reactant C to the
higher energy state of A. In metabolism, chemical energy
can be delivered by the conversion of a highly energetic
co-substrate (e.g. ATP) to its low energetic counterpart
(e.g. ADP). In this case, a cyclic operation of the reactions
from A to B, B to C and C back to A is thermodynamically
feasible as the system is supplied with energy. On the con-
trary, the reverse operation of this reaction cycle is ther-
modynamically infeasible as the "motor" would then
operate in opposite direction and would become a "gen-
erator": The cycle would produce energy (e.g. in the form
of ATP). In order to exclude such thermodynamically
infeasible energy production, one of the reactions in this
cycle is set irreversible such that the highly energetic co-
substrate cannot be produced. The reaction that produces
the highly energetic co-substrate was here the prefered tar-
get to assign a direction that only allowed energy con-
sumption. In the context of our work, we call a model
"thermodynamically infeasible" if no generation of highly
energetic co-substrates by a cyclic operation of metabolic
reactions is possible.

Several pairs of low/highly energetic co-substrates exist
(cf. Table 1). These are pairs of (i) nucleotide phosphates,
of (ii) nicotinamide adenine dinucleotides, of (iii) nicoti-
namide adenine dinucleotide phosphates and of (iv) fla-
vin adenine dinucleotides, and (v) intra- and extracellular
protons. Due to the proton motive force over the mem-
brane, extracellular protons are high-energy counterparts
to intracellular protons.

To identify cycles that interconvert these co-substrates,
again the null space of the stoichiometric matrix was cal-
culated, however, only after having removed the co-sub-
strates' stoichiometric coefficients from the matrix. The
respectively obtained null space then included two sets of

http://www.biomedcentral.com/1471-2105/7/512

Table I: Co-substrate groups that were eliminated from the
stoichiometric matrix to identify energy producing cycles

selected co-substrate groups

NTP, NDP, NMP
NADH, NAD*
NADPH, NADP*
FADH,, FAD*
H+

extracellular » H*

Besides these co-substrates, also the molecules water, oxygen,
carbon dioxide, ammonium and inorganic phosphate were removed
from the stoichiometric matrix to identify energy producing cycles.
This is necessary to elementally balance the resulting net conversion
of co-substrates. NTP, NDP and NMP denote nucleoside tri-, di- and
monophosphate for adenosine, cytidine, guanosine, inosine and
uridine.

cycles: (i) the cycles, that do not produce or consume any
metabolite, and which were already described by the null
space of the original stoichiometric matrix and (ii) cycles
that - when complemented with the removed co-sub-
strates — interconvert these. In terms of the terminology
introduced in network-based metabolic pathway analysis
[25], these two sets of cycles correspond to the extreme
pathways of Type III and Type II, respectively. Having
complemented the cycles with the co-substrates, we deter-
mined the net conversion of co-substrates for each cycle
and identified the cycles that convert low energetic co-
substrates to their highly energetic counterparts. In the
following steps, we worked with this set of cycles to assign
reaction directions, and here, we will call these energy
producing subnetworks solely 'cycles'.

Every possible energy producing cycle is a combination of
the linearly independent basis vectors of the null space of
the reduced stoichiometric matrix. As the running time for
the computation of all linear combinations increases
exponentially with system size [24,26], an exhaustive
analysis of all possible cycles is currently not feasible (M.
Terzer and J. Stelling, personal communication). For this rea-
son, we based our assignment procedure on the cycles that
are described by the basis vectors of the calculated null
space matrix. As we will see below this approach was not
fully comprehensive but allowed excluding thermody-
namically infeasible cycling to a large extent while still
being computationally reasonable.

Faced with the fact that we only obtained one possible set
of linear independent basis vectors, the choice of the null
space matrix calculation, however, was important for the
assignment procedure. In preliminary tests, when we
applied a null space matrix that included larger cycles, our
algorithm assigned less reaction directions. Thus, one
should apply a null space matrix with cycles that consist
of the smallest possible number of reactions. Here, the
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null space matrix was calculated from the reduced echelon
form of the stoichiometric matrix by the Matlab function
null. The null space of the co-substrate reduced stoichio-
metric matrix was described by 227 linear independent
reaction cycles with an average number of reactions of
8.85 and a median number of reactions of 4. Of all cycles
within the null space matrix, 145 were energy producing
cycles.

This set of cycles was now employed to assign reaction
directions by thermodynamics-based heuristic rules: In
three steps that are described in the following paragraphs
different kinds of cycles were analyzed and reaction direc-
tions were assigned by the heuristic rules in Fig. 3. These
rules selected for and disabled reaction steps that produce
high-energy from low-energy co-substrates. Such, we
could assign directions for reactions beyond the ones, for
which the Gibbs energies of reaction were available.

Analysis of pair cycles

Cycles that consist of only two reactions occur frequently
in metabolic networks. Here, the null space matrix con-
tained 45 energy producing pair cycles. For such cycles,
the direction assignment to eliminate thermodynamically
infeasible energy production is straightforward due to the
limited possibilities for assignment of reaction directions:
There are only two reactions which can be set irreversible,
and the most natural approach is to block the reaction
step that produces the highly energetic co-substrate. This
was the only heuristics-based assignment step that was
allowed to be more restricting than the thermodynamic
facts assignment step. Technically, this procedure was
realized by applying heuristic rules as explained in Fig. 3.

Applying these heuristics to the identified energy produc-
ing pair cycles, 42 reactions were restricted to one direc-
tion. As none of these reactions was already previously
defined as irreversible in the thermodynamic facts-based
assignment, in summary 85 direction assignments were
made until here.

Analysis of remaining energy producing cycles

The following assignment step (2b in Fig. 1) aimed at
defining reaction directions in the remaining energy pro-
ducing cycles. As these consist of more than two reactions,
several conceivable options to disable energy producing
cycling typically exist. Hence, it is important to note that
this step of the heuristics-based assignment is less reliable.

Applying heuristic rules as depicted in Fig. 3 to the
remaining 45 energy producing cycles in the null space
matrix, 26 reactions were suggested to be irreversible. Five
of these, however, were identified to be reversible in the
thermodynamic facts-based assignment. In these cases, we
prefered to follow the thermodynamic facts-based assign-
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assignment
step (cf. Fig.1)

analysis of ...

remaining cycles g
®

pair cycles
bypasses

Figure 3

lllustration of the procedure to assign reaction direc-
tions by heuristic rules. For the assignment steps 2a—2c
(cf. Fig. 1), the applied heuristic rules are displayed. Gener-
ally, the rules defined a reaction as irreversible in the direc-
tion of consumption of a high-energy co-substrate. The rules,
however, were not applied if the respective reaction simulta-
neously produced CO,. The vertical arrows indicate the con-
secutive application of the rules: if no assignment was
possible with a particular heuristic rule, the next rule along
the arrow was employed. The consumption of a co-substrate
with a higher energetic content was prefered over the con-
sumption of a co-substrate with a lower energetic content. In
case the cycle contains more than one reaction producing
the same highly energetic co-substrate, all these reaction
steps are defined as irreversible. In pair cycles (2a), the reac-
tion that produces the only generated co-substrate was
defined as irreversible as long as it did not consume CO,. In
case of CO, consumption, however, it follows that the other
reaction also produces CO, and we define this reaction
direction as irreversible. As only one co-substrate pair is
converted in each pair cycle, the assignment was achieved by
applying the heuristic rules consecutively while omitting the
first rule as indicated in the figure. In the analysis of the
remaining energy producing cycles (2b), the cycles can con-
tain reaction steps that produce different kinds of co-sub-
strates. Here, in the first place we restricted CO,
consumption, which is in general indicating a thermodynami-
cally infeasible reaction step. If no CO, consuming reaction
was preset, the production of highly energetic co-substrates
were disabled with the indicated priorities. Note that
NADPH and NADH producing reactions, here, were
assigned with the same priority (not illustrated in the figure).
In the bypass analysis (2c), reaction directions were assigned
for CO, consuming or nucleotide triphosphates producing
reactions. Preliminary studies showed that only these heuris-
tic rules were fully reliable in this assignment step, and thus,
we only applied these two rules.
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ment for the following reasons: First, the Gibbs energy of
reaction is the hard physical ground for a reaction's direc-
tionality. Second, by setting a reaction reversible we do
not exclude directions that indeed are possible under
some physiological conditions. Therefore, only the 21
directions that do not further constrain the thermody-
namic facts-based assignments were adopted, and as a
result, at this point 106 reaction directions were defined
in total.

Analysis of bypasses

So far, only the energy producing cycles of the initially cal-
culated null space matrix were analyzed and blocked by
the outlined procedure in case the heuristic rules were
applicable. As the calculation of all possible cycles is cur-
rently not feasible, in the next step (2c in Fig. 1), we at
least investigated pairwise combinations of the complete
set of available cycles - including also the non-energy pro-
ducing cycles: In case a second cycle could act as a bypass
for an already identified infeasible reaction step of a first
cycle, we aimed to exclude the operation of the bypass.

The bypasses were identified as follows. Each reaction,
which was defined as irreversible and disabled an energy
producing cycle, was analyzed. Among all cycles in null
space matrix (also including non-energy producing
cycles), we selected for those in which the analyzed reac-
tion occurs. This subset of cycles is capable to bridge the
particular reaction of the first cycle, i.e. to form bypasses
that start at the reaction's educts and ends at its products.
In consequence, the initial cycle, whose thermodynami-
cally infeasible operation was already disabled, and the
bypass build a new - potentially energy producing - cycle.
For each identified bypass, we first checked whether it was
an actually functional bypass given the previously made
direction assignments. If the bypass was already blocked,
there was no need for any action. Otherwise, we checked
whether the co-substrate conversion of the resulting new
cycle was thermodynamically infeasible by calculating the
cycle's Gibbs energy of reaction. If it was infeasible, a reac-
tion direction within the bypass was assigned by applying
the heuristic rules illustrated in Fig. 3.
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Analyzing the bypasses that bridge the 106 previously
assigned reactions, in a first iteration step 24 additional
irreversible reaction directions were defined by the heuris-
tic rules. In a second iteration step, in which we analyzed
bypasses for the reactions that were defined as irreversible
in the first iteration step, no further directions could be
assigned: The bypasses were either already inibited or no
further reaction directions could be identified with the
employed heuristics.

Discussion

Achieved direction assignment

Table 2 summarizes all assignments that were made by
our systematic procedure. While the thermodynamic
facts-based assignment yielded 43 irreversible reactions,
87 further reaction directions were assigned based on net-
work topology and thermodynamic heuristics. Altogether,
130 reactions were restricted to one direction, which disa-
bled the operation of 129 of the 145 energy producing
cycles present in the employed null space matrix.

Our algorithm did not completely disable thermodynam-
ically infeasible energy production: The heuristics failed in
blocking all energy producing cycles and the bypass anal-
ysis was not able to identify all possible energy producing
cycles. In order to assess the completeness achieved with
our approach, we estimated how many additional direc-
tion assignments had to be made to completely prohibit
infeasible co-substrate conversion. For this, an iterative
procedure was applied: A possible energy producing cycle
was identified using flux balance analysis, and then, reac-
tion directions were assigned manually to block this cycle
(cf. Methods section). When no further energy producing
cycles were found, the reactions' directionalities were
assumed to reflect thermodynamic feasibility with respect
to energy generation. At this point, the direction assign-
ment was considered to be complete.

With this procedure, 59 additional assignments of reac-
tion directions were required until infeasible energy pro-
duction was excluded. Simulating aerobic growth on
glucose by flux balance analysis, ATP was then produced

Table 2: Overview over the number of direction assignments made in each step

assignment step analysis of ... number of assigned directions
in the respective step in total
thermodynamic facts 43 43
thermodynamic heuristics pair cycles 42 85
remaining energy producing cycles 21 106
bypasses 24 130
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via the respiratory chain. Importantly, the production of
energy equivalents such as ATP by metabolic reactions
was not generally rendered impossible by our linear con-
straints as our algorithm only selectively disables the gen-
eration of highly energetic co-substrates. In summary, the
189 irreversible reactions (of which 130 were assigned by
our algorithm) were sufficient to yield a thermodynami-
cally reasonable model with respect to the production of
energy equivalents.

At this point, we checked whether the application of gen-
eral biochemical rules such as defining all kinase reactions
as irreversible would have been a much simpler and also
valid alternative to our approach. A close inspection of the
74 kinase reactions in the model revealed that this would
not had resulted in a correct model: For instance, the
phosphoglycerate kinase reaction is known to operate in
both directions and it is correctly defined as reversible in
our assignment. This demonstrates that employing heu-
ristic rules in combination with analyzing co-substrate
converting cycles is superior to simple general biochemi-
cal rules.

With the model analyzed here, the calculation time
required for the assignment procedure was roughly two
minutes on a Pentium 3 GHz PC, if the calculation of the
null space matrix and generation of a Excel file for output
documentation is included. The assignment algorithm
itself required about 30 to 40 s. Such, the computational
effort is small and the algorithm can be efficiently exe-
cuted on a usual PC.

Comparison to original model

The introduced systematic direction assignment yielded
130 reactions that were restricted in one direction.
Together with the 59 manual assignments that eventually
eliminated any thermodynamically infeasible cycling, we
obtained 189 reactions that are irreversible in our model.
In comparison to the 676 irreversible reactions in the orig-
inal model from Palsson and co-workers [4], this is a
rather small number and indicates a much less con-
strained model.

From a constraint-based modeling viewpoint, a direct
comparison of the number of irreversible reactions, how-
ever, is misleading as one assigned reaction direction can
practically render impossible the reversible operation for
a set of other reactions. For example, one irreversible reac-
tion that is part of an unbranched linear pathway restricts
the operation of the whole pathway to one direction.
Hence, in effect it is no difference if the direction of only
one or all reactions of the pathway are defined as irrevers-
ible.

http://www.biomedcentral.com/1471-2105/7/512

To allow for assessment of model flexibility due to differ-
ent direction assignments, we had to identify correlated
sets of reactions (cf. Methods). Using the identified corre-
lated sets, the number of de facto irreversible reactions was
assessed. We found that the stoichiometric network of E.
coli comprises 175 sets of correlated reactions. If one reac-
tion in such a set is defined as irreversible, mass balance
constraints rule out one particular direction for each of the
other reactions in the set. In the original model, 749 reac-
tions are practically irreversible. In comparison, our direc-
tion assignment eventually resulted in 292 reactions that
practically can operate only in one direction.

We found that only in one case — namely the UTP-glucose-
1-phosphate uridylyltransferase reaction - our algorithm
defines a reaction as irreversible which is reversible in the
original model. Remarkably, our assignment is in agree-
ment with the EcoCyc database [27] which also states that
this reaction is irreversible.

As the predicted maximal biomass yield on glucose is
increased by about 20% using our reaction directions in
comparison to the original, the model with our reaction
directions is much less constrained and there are more
possibilities to distribute the mass flux through the reac-
tion network. Therefore, it is envisioned that it covers a
larger range of metabolic scenarios, e.g. knockout mutants
or different environmental conditions. As an example, a
frdA deletion mutant (in vivo viable when grown anaero-
bically on glucose [28]) is in silico nonviable with the orig-
inal reaction directions while it is viable with our reaction
directions.

Extension of heuristic rules

Next, we evaluated whether we could complement the
employed heuristic assignment rules to increase the
number of reactions that are automatically defined as irre-
versible. Additional or modified heuristic rules should
eliminate the energy producing cycles that were not yet
disabled by our algorithm.

First, we closely inspected the additional manual direction
assigments that were required to eliminate all the remain-
ing energy producing cycles (cf. Additional file 1). In this
reaction set, we found reactions, which potentially could
have been made irreversible by the heuristics already used
in the algorithm, i.e. reactions that produce/consume
high-energy/low-energy co-substrates, but for several rea-
sons (as outlined above), the respective directions were
not assigned. There are, however, groups of reactions (e.g.
quinone pool reducing/oxidizing reactions) whose com-
mon attributes could be exploited by new heuristics that
specifically assign directions to such sets of reactions (cf.
Table 3).
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Table 3: Number of additional direction assignments required to eliminate remaining thermodynamically infeasible energy

production

common attributes

standard procedure

standard procedure with consideration of final electron acceptors

quinone pool reductions 15 -

transporters 9 8
NTP production 14 12
NADH/NADPH production 5 4
O, production 2 |

CO, consumption 4 4
NMP synthesis 7 7
other 3 3
sum 59 39

As an example for such an extension of the heuristic rules,
the quinone pool converting reactions were set as irrevers-
ible such that the electrons are transferred from the
reduced metabolites to the final electron acceptors. Hav-
ing defined the final electron acceptors, it was possible to
assign 43 reaction directions in the E. coli model. When
we incorporated this rule into the assignment algorithm,
in total 26 more reactions were restricted in one direction
(cf. Fig. 4). Fourteen out of the 43 reactions had been
already assigned by the thermodynamic facts, and the
bypass analysis assigned three reactions less. In summary,
156 instead of 130 reactions could then be defined as irre-
versible by our systematic assignment procedure.

The extension of heuristic rules by organism-specific
knowledge obviously is an effective and effortless

approach to increase the number of assigned directions.
Similarily, one could define the directions of the trans-
porters according to their function, which often can be
identified from stoichiometry alone (e.g. sugars are taken
up by PTS systems).

Conclusion

This paper reports on a computational framework that -
based on thermodynamic principles - systematically
assigns reaction directionalities in genome-scale stoichio-
metric metabolic models. We demonstrated its applica-
tion on a metabolic reconstruction of E. coli. After having
exploited all available thermodynamic data to define irre-
versible reactions, we drew on network topology and ther-
modynamic heuristics to assign further reaction
directions: Energy producing cycles were extracted from

oF (2

B:@

0 20 40 60

80 100 120 140

number of assigned directions

Figure 4

Comparison of the assignment where final electron acceptors are considered to the default assignment. The
numbers of made direction assignments of the standard assignment procedure (A) and the assignment procedure, which addi-
tionally drew on the direction of electron transfer within the respiratory chain (B) are compared. The numbers (I — 2c) refer
to the assignment steps depicted in Fig. |, while step O represents the reaction directions that were assigned by the additional
heuristic rule based on final electron acceptors.
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the reaction network and thermodynamically infeasible
reaction steps that produce high-energy from low-energy
co-substrates were disabled.

The proposed direction assignment procedure has several
advantages over other approaches. The group contribu-
tion method to computationally estimate the Gibbs ener-
gies of formation is associated with such large
uncertainties that only five reactions could be identified as
irreversible in a genome-scale model [18]. The method
developed by Beard and co-workers for ab initio prediction
of reaction directions [20] relies on the availability of all
possible cycles in the metabolic network. Currently, these
cannot be calculated with reasonable computational
effort for genome-scale models and the method also does
not completely disable thermodynamically infeasible
cycling. In contrast, using our algorithm, we demon-
strated that a large number of assignments could be made
without laborious calculations: A total of 130 directions
could be assigned automatically, which constitutes a large
fraction of the direction assignments necessary to exclude
thermodynamically infeasible energy production.

Along with the development of mathematical methods
that employ genome-scale metabolic models, these mod-
els became valuable tools in systems biology and meta-
bolic engineering. Here, our systematic assignment
procedure can be used in the reconstruction of new mod-
els or in the revision of existing ones. Currently, large
efforts are put into the automated reconstruction of such
models [10,29] and several computational tools exist that
support the first steps of the reconstruction process
[11,30]. On the contrary, the following steps towards
finalizing the model - which include the definition of
reaction directionalities - are still done manually. We
envision that the here proposed algorithm could be a val-
uable part of a computational framework that assists the
automated reconstruction process for genome-scale meta-
bolic models.

Methods

Employed software package

All calculations were carried out employing Matlab (The
MathWorks Inc., MI, USA) unless specified otherwise.
Necessary input data are standard Gibbs energies of for-
mation and physiological ranges of intracellular metabo-
lite concentrations. As output, the algorithm generates a
vector which specifies the assigned reaction directions,
and in addition, creates a detailed report (in Microsoft
Excel) on the respectively made assignments.

Applied metabolic network model

For the E. coli data set, we employed the genome-scale
model iJR904 [4]. This model is an elementally balanced
stoichiometric network and such enabled the calculation

http://www.biomedcentral.com/1471-2105/7/512

of the reactions' Gibbs energies. The model was slightly
modified by eliminating one reaction of duplicate reac-
tion pairs, i.e. reactions that occur twice in the original
model's list of reactions. Moreover, the artificial reaction
that accounts for the cell's maintenance requirements in
the model was omitted. The model is supplied in Addi-
tional file 1.

Employed Gibbs energies of formation and concentration
ranges

A prerequisite for the thermodynamic facts based direc-
tion assignment is the availability of standard Gibbs ener-
gies of formation for a large number of metabolites. With
these and values for intracellular pH and ionic strength
(see below), standard transformed Gibbs energies of for-
mation specific for intracellular conditions were calcu-
lated using the software Mathematica (Wolfram Research
Inc., IL, USA) and a Mathematica notebook provided on
[31]. Standard transformed Gibbs energies of formation
for the metabolites involved in the pentose phosphate
pathway and the shikimate pathway were added by draw-
ing on data from the NIST database on thermodynamics
of enzyme-catalyzed reactions [32] and from the literature
[33,34]. For the Gibbs energies of formation of the qui-
nones in the model, the values of reduced and oxidized
ubiquinone, which is the only quinone available in the
database, were assumed respectively. Transformed Gibbs
energies of formation were adjusted to E. coli's intracellu-
lar pH of 7.6 [35] and ionic strength of 0.15 M [36] (cf.
Additional file 2).

To reflect typical cytosolic concentrations, which lie in the
u#M to mM range [23], the intracellular concentrations'
upper and lower bounds were by default set to 0.001 mM
and 10 mM, respectively. Exceptions were made for oxy-
gen, for which the upper limit was set to 0.1 mM to
account for its low solubility, and carbon dioxide and
inorganic phosphate, for which ranges from 1 to 50 mM
were assumed.

Manual elimination of energy producing cycles

The iterative and manual direction assignment to elimi-
nate all remaining energy producing cycles was carried out
as follows: To detect a thermodynamically infeasible
cycling, a flux distribution was generated by means of flux
balance analysis using maximal growth rate as optimiza-
tion objective (cf. [37]). Shortly, such calculated flux dis-
tributions comprise the rate of each reaction such that (i)
the conversion of each metabolite is balanced, and (ii)
glucose (as the employed carbon source) is converted to
as much biomass as possible. As the production of bio-
mass requires energy, a part of the glucose has to be
metabolized to CO, to yield the necessary chemical
energy. Energy producing cycles render the investment of
glucose into energy dispensable, and essentially all glu-
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cose is converted to biomass. In this case, the calculated
flux distribution comprises at least one thermodynami-
cally infeasible energy producing cycle, and can be used to
identify the reactions that make up this cycle.

Having identified these cycles, we manually defined direc-
tions for one or more reaction in the set of reactions such
that the identified infeasible cycling is disabled. The
employed rationales for the assignment were similar to
the heuristics used in the presented algorithm. Essentially,
reactions that consume low-energy or produce high-
energy co-subtrates were selected. In some cases, this was
not possible as also low-energy metabolites were pro-
duced or high-energy metabolites were consumed con-
comitantly. Then, we determined reaction directions
according to the metabolic function of the respective
enzyme.

Calculation of sets of correlated reactions

Two reactions are correlated if the ratio of their reaction
rates is identical under any conceivable condition. To
identify sets of correlated reactions, in a first step, the sto-
ichiometric matrix was extended by exchange reactions
and a reaction describing biomass formation to determine
mass balancing sets of reaction rates, i.e. flux distribu-
tions. Here, exchange reactions were coupled to all extra-
cellular metabolites and enabled their interchange with
the environment. Next, we calculated the null space
matrix for this extended stoichiometric matrix. Rows of
this null space matrix that are linearly dependent indicate
that the corresponding reactions are correlated. Sets of
correlated reactions were determined by an all-against-all
comparison of the rows.
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Additional material

Additional file 1

Lists of assigned reaction directions. This Excel file contains three sheets
with (i) the list of reactions that were assigned by the standard assignment
procedure, (ii) the list of reactions in case the final electron acceptors are
additionally considered, and (iii) the lists of reactions that were assigned
manually to obtain a thermodynamically reasonable model. In the first
two sheets, we also report in which assignment step a direction was defined
by our algorithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-512-S1 xls]
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Additional file 2

List of applied Gibbs energies of formation. This Excel file contains the list
of the model's metabolites and — if available — the respective transformed
Gibbs energy of formation at a pH of 7.6 and an ionic strength of 0.15 M.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-7-512-S2 xls]

Acknowledgements

Authors are grateful to Daniel Beard, Lars Kiipfer, Uwe Sauer and Wolf-
gang Wiechert for fruitful discussions and helpful comments on the manu-
script and to Jorg Stelling and Marco Terzer for also providing the Matlab
routine to determine reaction correlations. All authors were funded from
the ETH Zurich.

References

Reed JL, Palsson BO: Thirteen years of building constraint-
based in silico models of Escherichia coli. | Bacteriol 2003,
185(9):2692-2699.

Price ND, Reed JL, Palsson BO: Genome-scale models of micro-
bial cells: evaluating the consequences of constraints. Nat Rev
Microbiol 2004, 2(11):886-897.

Forster ), Famili I, Fu P, Palsson BO, Nielsen |: Genome-Scale
reconstruction of the Saccharomyces cerevisiae metabolic
network. Genome Res 2003, 13(2):244-253.

Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-
scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biol 2003, 4(9):R54.

Heinemann M, Kimmel A, Ruinatscha R, Panke S: In silico genome-
scale reconstruction and validation of the Staphylococcus
aureus metabolic network. Biotechnol ~ Bioeng 2005,
92(7):850-864.

Patil KR, Nielsen J: Uncovering transcriptional regulation of
metabolism by using metabolic network topology. Proc Natl
Acad Sci USA 2005:2685-2689.

Kimmel A, Panke S, Heinemann M: Putative regulatory sites
unraveled by network-embedded thermodynamic analysis of
metabolome data. Mol Syst Biol 2006, 2:2006.0034. doi:10.1038/
msb4100074

Pharkya P, Burgard AP, Maranas CD: OptStrain: a computational
framework for redesign of microbial production systems.
Genome Res 2004, 14(11):2367-2376.

Patil KR, Rocha I, Forster ], Nielsen J: Evolutionary programming
as a platform for in silico metabolic engineering. BMC Bioinfor-
matics 2006, 6:308.

Covert MW, Schilling CH, Famili I, Edwards S, Goryanin Il, Selkov E,
Palsson BO: Metabolic modeling of microbial strains in silico.
Trends Biochem Sci 2001, 26(3):179-186.

Karp PD, Paley S, Romero P: The Pathway Tools software. Bioin-
formatics 2002, 18(Suppl 1):5225-32.

Green ML, Karp PD: A Bayesian method for identifying missing
enzymes in predicted metabolic pathway databases. BMC Bio-
informatics 2004, 5:76.

Kharchenko P, Chen L, Freund Y, Vitkup D, Church GM: Identifying
metabolic enzymes with multiple types of association evi-
dence. BMC Bioinformatics 2006, 7:177.

Kaneshisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG
resource for deciphering the genome. Nucleic Acids Res 2004,
32:D277-280.

Caspi R, Foerster H, Fulcher C, Hopkinson R, Ingraham JL, Kaipa P,
Krummenacker M, Paley S, Pick ], Rhee S, Tissier C, Zhang P, Karp P:
MetaCyc: a multiorganism database of metabolic pathways
and enzymes. Nucleic Acids Res 2006, 34:D511-516.

Wiechert W: 13C metabolic flux analysis. Metab Eng 2001,
3(3):195-206.

Mavrovouniotis ML: Estimation of standard Gibbs energy
changes of biotransformations. J Biol Chem 1991,
266(22):14440-14445.

Page 11 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-7-512-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-7-512-S2.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12700248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16155945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16788595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11246024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15189570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15189570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11461141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1860851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1860851

BMC Bioinformatics 2006, 7:512

20.

21.

22.
23.
24.

25.

26.

27.
28.

29.

30.

31
32.
33.

34.

35.

36.

37.

Henry CS, Jankowski MD, Broadbelt L], Hatzimanikatis V: Genome-
scale thermodynamic analysis of Escherichia coli metabolism.
Biophys | 2006, 90(4):1453-1461.

Beard DA, Liang SC, Qian H: Energy balance for analysis of com-
plex metabolic networks. Biophys | 2002, 83:79-86.

Yang F, Qian H, Beard DA: Ab initio prediction of thermodynam-
ically feasible reaction directions from biochemical network
stoichiometry. Metab Eng 2005, 7(4):251-259.

Maskow T, von Stockar U: How reliable are thermodynamic
feasibility statements of biochemical pathways? Biotechnol Bio-
eng 2005, 92(2):223-30.

Alberty RA: Thermodynamics of biochemical reactions Hoboken, New
Jersey: John Wiley & Sons Inc; 2003.

Fraenkel DG: Genetics and intermediary metabolism. Annu Rev
Genetics 1992, 26:159-177.

Beard DA, Babson E, Curtis E, Qian H: Thermodynamic con-
straints for biochemical networks. | Theor Biol 2004,
228(3):327-333.

Palsson BO, Price ND, Papin JA: Development of network-based
pathway definitions: the need to analyze real metabolic net-
works. Trends Biotechnol 2003, 21(5):195-198.

Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO: Com-
parison of network-based pathway analysis methods. Trends
Biotechnol 2004, 22(8):400-405.

EcoCyc: Encyclopedia of Escherichia coli K-12 Genes and
Metabolism [http://ecocyc.org/]

Creaghan IT, Guest JR: Succinate dehydrogenase-dependent
nutritional-requirement for succinate in mutants of
Escherichia coli K12. Journal of General Microbiology 1978, 107:1-13.
Segre D, Zucker |, Katz J, Lin X, D'Haeseleer P, Rindone W, Kharch-
enko P, Nguyen D, Wright M, Church GM: From annotated
genomes to metabolic flux models and kinetic parameter fit-
ting. OMICS 2003, 7(3):301-316.

Notebaart RA, van Enckevort FHJ, Francke C, Siezen R}, Teusink B:
Accelerating the reconstruction of genome-scale metabolic
networks. BMC Bioinformatics 2006, 7:296.

Wolfram Information Center [http://library.wolfram.com/info
center/MathSource/5704/]

NIST Database on Thermodynamics of Enzyme-Catalyzed
Reactions [http://xpdb.nist.gov/enzyme thermodynamics]

Tewari YB, Kishore N, Bauerle R, LaCourse WR, Goldberg RN:
Thermochemistry of the reaction phosphoenolpyruvate(aq)
+ D-erythrose 4-phosphate(aq) + H20(l) = 2-dehydro-3-
deoxy-D-arabino-heptonate 7-phosphate(aq) + phos-
phate(aq). | Chem Thermodyn 2001, 33(12):1791-1805.

Tewari YB, Hawkins AR, Lamb HK, Goldberg RN: A thermody-
namic study of the reactions: 2-dehydro-3-deoxy-D-arabino-
heptanoate 7-phosphate(aq) = 3-dehydroquinate(aq) + phos-
phate(aq) and 3-dehydroquinate(aq) = 3-dehydroshiki-
mate(aq) + H2O(l). J/ Chem Thermodyn 2002, 34(10):1671-1691.
Shimamoto T, Inaba K, Thelen P, Ishikawa T, Goldberg EB, Tsuda M,
Tsuchiya T: The NhaB Na*/H* antiporter is essential for intra-
cellular pH regulation under alkaline conditions in
Escherichia coli. | Biochem 1994, 116(2):285-290.

Voets T, Droogmans G, Raskin G, Eggermont |, Nilius B: Reduced
intracellular ionic strength as the initial trigger for activation
of endothelial volume-regulated anion channels. Proc Natl
Acad Sci USA 1999, 96(9):5298-303.

Edwards JS, Covert M, Palsson B: Metabolic modelling of
microbes: the flux-balance approach. Environ Microbiol 2002,
4:133-140.

http://www.biomedcentral.com/1471-2105/7/512

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16299075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12080101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12080101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16140239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15962336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15962336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15135031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15135031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283984
http://ecocyc.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=366070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772023
http://library.wolfram.com/infocenter/MathSource/5704/
http://library.wolfram.com/infocenter/MathSource/5704/
http://xpdb.nist.gov/enzyme_thermodynamics
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7822245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10220460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10220460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10220460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000313
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Thermodynamic facts-based assignment
	Thermodynamic heuristics-based assignment
	Identification of thermodynamically infeasible operation of reaction sets
	Analysis of pair cycles
	Analysis of remaining energy producing cycles
	Analysis of bypasses


	Discussion
	Achieved direction assignment
	Comparison to original model
	Extension of heuristic rules

	Conclusion
	Methods
	Employed software package
	Applied metabolic network model
	Employed Gibbs energies of formation and concentration ranges
	Manual elimination of energy producing cycles
	Calculation of sets of correlated reactions

	Authors' contributions
	Additional material
	Acknowledgements
	References

