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Abstract

Background: Modelling the interaction between potentially antigenic peptides and Major
Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes.
For Class Il MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional
alignment between the groove and peptide, as well as creating uncertainty as to what parts of the
peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making
naive modelling methods difficult to apply. This paper introduces a kernel method that can handle
variable length peptides effectively by quantifying similarities between peptide sequences and
integrating these into the kernel.

Results: The kernel approach presented here shows increased prediction accuracy with a
significantly higher number of true positives and negatives on multiple MHC class Il alleles, when
testing data sets from MHCPEP [I], MCHBN [2], and MHCBench [3]. Evaluation by cross
validation, when segregating binders and non-binders, produced an average of 0.824 Ay for the
MHCBench data sets (up from 0.756), and an average of 0.96 Az for multiple alleles of the
MHCPEP database.

Conclusion: The method improves performance over existing state-of-the-art methods of MHC
class Il peptide binding predictions by using a custom, knowledge-based representation of peptides.
Similarity scores, in contrast to a fixed-length, pocket-specific representation of amino acids,
provide a flexible and powerful way of modelling MHC binding, and can easily be applied to other
dynamic sequence problems.

Background

Major Histocompatibility Complexes (MHC) bind short
peptides derived from antigens and present them on the
cell surface for inspection by T-cells. The binding mecha-
nism appears to be the most selective step in the recogni-
tion of T-cell epitopes. The molecular mechanisms
underlying this selectivity are still debated [4], but a cru-
cial factor is the complementarity between amino acids in
the antigen peptide and the MHC binding pocket [5]. Suc-

cessfully modelling the behaviour exhibited by MHCs can
be used to pre-select candidate peptides, which, in turn,
can limit the practical work involved and facilitate the
search for new vaccines.

MHC alleles are grouped according to their structure. For
class I MHC alleles, the binding groove is closed at both
ends, making it possible to predict exactly which residues
are positioned in the binding groove. For Class II MHC
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molecules, the binding groove is open at both ends and
peptides which bind class II alleles are generally longer
than those which bind class I MHCs, typically 9 to 25 res-
idues. Moreover, the grooves of MHC Class II alleles will
only accommodate 9 to 11 residues of the target peptide
[6]. Thus class II peptides have the potential to bind to the
MHC groove in one of several registers (potential align-
ments between groove and antigenic peptide).

Interaction, within the groove, between MHC and peptide
side chains is generally considered the principal determi-
nant of binding affinity [7]. However, for MHC Class II
type alleles, a recent study speculates that binding may
not be completely deterministic, and that the same pep-
tide can have multiple possible binding cores [8]. Moreo-
ver, several studies have shown that the binding core is,
indeed, not the only factor; residues outside the binding
groove (flanking residues) can also interact with the MHC
molecule and influence binding [9-14]. Hence, this cre-
ates additional complexity in determining which residues
are involved in the interaction, and suggests that a suitable
method must include a full-length representation of the
peptide.

Numerous methods have been applied to the problem of
predicting MHC binding. Prediction of MHC class I bind-
ing has been very successful, reporting prediction accura-
cies of up to 95% (e.g. [15]). Attempts at predicting class
II MHC binding show significantly lower accuracies,
although many efforts using both traditional and novel
approaches have been applied, some demonstrating
inspirational progress.

In recent years, efficient pattern recognition methods have
been applied to the class II problem, such as Artificial
Neural Networks [7,16,17] and Support Vector Machines
[18,19]. However, these methods are based on inductive
learning and require fixed-size representations to perform
attribute-by-attribute comparisons of input variables. A
typical approach for such methods is to first estimate (or
input) a binding core, and subsequently predict the bind-
ing affinity of an unknown peptide based on the esti-
mated core (typically a nonamer). This 2-step process is
convenient from a mathematical modelling perspective,
because it restricts the prediction task to a fixed-length for-
mulation (9-mers) and thus avoids the problem of han-
dling variable length peptides. The subsequent conversion
of the 9-mer amino acid representation into a numerical
representation is achieved by using either a binary posi-
tional system with 20 inputs per amino acid [17,18,20-
22], or by using amino acid properties [23,24]. The results
are fixed-length, high-dimensional, input vectors used for
training the model (up to 180 dimensions in the case of
the binary positional system).

http://www.biomedcentral.com/1471-2105/7/501

Approaches for solving the dynamic nature of the predic-
tion problem, and which can handle the variability in
peptide lengths, have shown promising prediction quali-
ties. Methods include an iterative "meta-search" algo-
rithm [20], an iterative Partial Least Squares method [22],
Hidden Markov Models [16,25], an Ant Colony search
[26], and a Gibbs sampling algorithm [27]. Some of these
novel approaches have produced remarkable results, sig-
nificantly outperforming conventional approaches.

The method presented here aims to combine the advan-
tages of the two approaches: It utilises an efficient fixed-
length discriminative method, but is still able to handle
variable length peptides. This is achieved by applying a
customised kernel.

Kernel methods have become popular thanks to Support
Vector Machines (SVMs), originally introduced by Vapnik
[28]. They have been applied to multiple bioinformatical
problems, and have shown excellent performance using
real-world data sets (see [29] for examples). In its basic
form, a single SVM is a binary classifier which learns a
decision boundary between two classes (e.g. binders and
non-binders) in some input space (e.g. vectors with some
amino acid representation). To find a decision boundary
between two classes, an SVM attempts to maximise the
margin between the classes, and choose a linear separa-
tion in a feature space. A function called the kernel function
K (x; x) is used to project the data from input space to fea-
ture space, and if this projection is non-linear it allows for
non-linear decision boundaries. The effectiveness of SVMs
is due to two factors: a) the principle of maximising mar-
gins (structural as opposed to empirical risk minimisa-
tion) and b) using the kernel trick to extend linear methods
so that they can address non-linear problems. Details of
the SVM formulation have been described thoroughly in
many books and publications (e.g. [30]).

An advantage of kernel methods, which render them par-
ticularly suited for problems in computational biology, is
the ability to customise the kernel. The kernel can be seen
as a distance measure between two samples, e.g. in the
case of a linear kernel the Euclidean distance between two
samples. A custom kernel can be used to define explicitly
a distance measure between two samples, and thus knowl-
edge-based kernels can be designed to process variable
length data and convert samples into fixed-length repre-
sentations needed for direct comparisons. For sequences
of proteins, it can be used to define similarity measures
between pairs of sequences (proteins, peptide strings, etc).
Methods utilising such direct kernel functions have lead to
significant improvements in performance on classical bio-
informatical problems, such as remote homology detec-
tion [31,32] and protein classification [33].
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In this paper, we present a kernel method based on the
direct kernel function of [32], which we have adapted to
the problem of predicting MHC binding. The Local Align-
ment Kernel is a kernel quantifying the similarity between
a pair of protein sequences by taking into account all pos-
sible optimal alignment scores between all possible sub-
sequences.

Results

Using several sets of data (see Table 1), a method for the
prediction of class II epitopes was developed and subse-
quently optimised. Initially, the effect on accuracy of var-
ying the two parameters of the model was explored; these
include a regulatory parameter 3 and a substitution matrix
S (+), which are both described in detail below. Tests were
then run to compare the performance of this kernel
approach with existing prediction methods.

Optimising the f-parameter

The kernel is based on similarity scores between pairs of
peptides. For each pair, a similarity score is composed of
multiple sub-scores based on alignments between pairs of
sub-sequences. The model parameter 3 regulates the rela-
tive influence that each sub-score will have on the cumu-
lative score. In turn, it enables adjustment of the
importance of sub-optimal alignments.

Experiments were undertaken to evaluate the effect on
performance of varying the B-parameter using a simple
test set. The MHCBench Set 4b was chosen for this pur-
pose; it contains experimentally verified binders and non-
binders of HLA-DRB1*0401. It consists of only natural
peptides and an equal number of binders and non-bind-
ers (292 of each), which makes it well-suited for model
testing.

The BLOSUMG62 substitution matrix was used for S (-).
This matrix is generally considered to be a good matrix for
modelling evolutionary problems [34]. 10-fold CV was
used to evaluate performance, and a rough search for a
good PB-parameter was undertaken. The effect on perform-
ance of varying § can be seen in Figure 1, which shows
that the SKM is capable of distinguishing well between
binders and non-binders. The best accuracy is 74.7% at 3
=0.025. The best performance in terms of Agis 0.827 at
B = 0.035. Generally, the best results for most measures
are found for B-values between 0.02 and 0.04. Higher 3
values of 0.2 to 5.0 were also evaluated, but as 8 becomes
larger performance degrades for all measures.

Bootstrapping using case resampling [35] was performed
to analyse the variance in results. 100 repetitions were
undertaken, with data set sizes of 584. At a B-value of
0.025, which produced the best accuracy in the tests
referred to above, the average bootstrapping accuracy was
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73.1% with a standard deviation of 2.2%. This degree of
variance was found throughout our experiments.

Interestingly, a low B indicates that the best solution is
found when sub-optimal alignments have a large influ-
ence, as seen by the mathematical formulation below;
when lowering the [B-value, the relative contributions
from scores of various alignments are evened out. This
tendency was observed throughout the remaining experi-
ments, with most "optimal" B-values being below 0.1.
Interestingly, the same observation regarding the positive
influence of sub-optimal alignments was also reported in
Nielsen et al [27] using a very different method.

Selecting the substitution matrix

A substitution matrix was used in the calculation of the
Smith-Waterman score to evaluate similarities between
amino acids (see Eq. 0.3). The BLOSUM62 matrix initially
used is regarded as a good descriptor for evolutionary
problems [34]. However, using an alternative substitution
matrix could prove more effective.

The AAIndex database [23] contains a large collection of
substitution matrices produced during the last three dec-
ades. The matrices are based on numerous different meas-
ures, such as physicochemical properties and structural
differences. An extensive search among the substitution
matrices was conducted. Each substitution matrix was
used instead of the BLOSUMG62 matrix as above. Due to
the scale of the experiment, only a crude search using 5
values of  was evaluated per substitution matrix. From
the 83 matrices, the ten best performing substitution
matrices with regard to Apy scores were retested with a
refined search for the best value of . The 3 best perform-
ing substitution matrices from this experiment are shown
in Table 2.

As can be seen from the table, the three matrices have very
similar Apgc values. The best performance was produced
by a recently developed substitution matrix
SM_THREADER_NORM, which is based on molecular
mechanics force fields. [36] suggest that force fields can
provide more reliable mutation matrices because of the
incorporation of natural weighting of different physical
contributions. Interestingly, the BLOSUM62 matrix is
among the best three matrices out of 83. This suggests that
the evolutionary rationale behind BLOSUMG62 is also
appropriate for MHC peptide similarity or that the chem-
ical similarities underlying protein evolution also under-
lie peptide selectivity by the MHC. Such conjecture is
supported in part by the fact that the
SM_THREADER_NORM is also placed in the same family
of substitution matrices when assessing the magnitude of
distances between matrices [36]. In the following experi-
ments, the SM_THREADER_NORM is used.
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Table I: Overview of data sets

Name Data set Samples Binders Non-binders
MHCBN HLA-DRBI*0101 580 475 105
HLA-DRBI1*0301 369 219 150
MHCBench Set | 1017 694 323
Set2 673 38l 292
Set 3a 590 373 217
Set 3b 495 279 216
Set 4a 646 323 323
Set 4b 584 292 292
Set 5a 117 70 47
Set 5b 85 48 37
MHCPEP 20 sets from MHC alleles 3578 3578 0

Overview of the benchmark data sets. MHCBench Sets 1-5 contain data from the HLA-DRB1*#0401 allele. MHCPEP consists of data from
numerous alleles, with 18 MHC Class Il and a single MHC Class | allele selected.

Performance on HLA-DRBI#0101 and HLA-DRBI1%0301 binders. Duplicates and peptides with 75% or more
Two MHC Class II alleles from the MHCBN database [2] ~ Alanines were removed. 5-fold cross-validation was
were evaluated. The MHCBN database contains 475 bind-  undertaken (5 fold CV used instead of 10-fold CV for
ers and 105 non-binders for HLA-DRB1*0101 and for = comparison with [21]), and a crude optimisation of the 3-
HLA-DRB1*0301 contains 219 binders and 150 non-  parameter was performed as described in the methods sec-

—— Aroc
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—— Sensitivity

082 A
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Figure |

Evaluating performance for varying the -parameter using 10-fold CV. Graphs are plotted for accuracy (proportion of correct
predictions), sensitivity (proportion of false negatives), specificity (proportion of true positives), and Agq¢ (area under receiver
operating characteristic curve).
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Table 2: Results from varying substitution matrices
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AAindex reference Substitution matrix Best B Acc. Aroc  Agrocso MCC

HENS920102 BLOSUMG62. Matrix based on possible pair-wise substitutions from aligned  0.05 0.8049 0.8708 0.532 0.543
segments of polypeptides [34]

BLAJOlIOIOI Matrix built from structural superposition data for identifying potential 0.027 0.8207 0.8752 0.540 0.571
remote homologues [52]

DOSZ010104 SM_THREADER_NORM. Amino acid similarity matrices based on force 0.045 0.8217 0.8753 0.548 0.572

fields (Normalised version) [36]

Evaluating performance for using different scoring matrices using 10-fold CV. The test measurements are same as in previous experiment. Best

values are shown in bold.

tion. Results are shown in Table 3. The table reports com-
parison results from two other methods, a linear
programming model "LP_top2" [21] and TEPITOPE, a
quantitative matrix method [37].

The results in Table 3 show that the SKM method per-
forms significantly better than LP_top2 and TEPITOPE.
The relative improvements in Ay scores are 8% and
41%, and the improvements in Agypr.rocare 37% to 60%.
Other methods have also been evaluated on the data sets.
In [25], results on two methods using Hidden Markov
models combined with successive state splitting are
reported. The best 10-fold CV results were 0.85 (S-
HMM1) and 0.89 (S-HMM?2), which are close to but still
lower than the 0.91 Agy of SKM using 5-fold CV; using
10-fold CV the SKM performance increases to 0.93 Agc-

Performance on allele HLA-DRB1%0401

MHCBench [3] contains 8 data sets of binders and non-
binders for HLA-DRB1*0401. Again, the SKM was evalu-
ated using 10-fold cross validation, and a crude search for
optimal values of B was performed for each set. Ay, per-
formance from all 8 sets are reported in Table 4, which
also includes results of PERUN, a method based on
TEPITOPE [38], Neural Networks [7], Gibbs Sampler, a
method based on Metropolis sampling [27], and LP_top2,
a linear programming method [21].

The results on Table 4 show that the SKM is significantly
better on 6 out of 8 benchmark sets (Set 1 to Set 4b). On
sets 5a and 5b, another method, LP_top2, scored the best
results (0.815 Agpcand 0.859 Agqc, respectively). The rel-
ative lower accuracies of the SKM method on these two
data sets may be due to the small training set sizes (117
and 85); in training, the SKM method selected nearly all
training samples as Support Vectors, indicating there may
not be sufficient samples to properly describe the model
space.

Alleles from MHCPEP
All MHC Class II alleles from the MHCPEP database were
evaluated. This database contains only binders, with bind-

ing strengths graded from low to high. An extensive
number of alleles were tested, making it hard to obtain
known non-binders for the sets. One approach is to use
binders from other alleles as non-binders for the allele of
interest. However, more than 10% of peptides were found
to bind two or more alleles, which would generate a large
amount of noise and uncertainty in predictions if used as
non-binders. Instead, the non-binders were generated
randomly in order to have the same length-distribution as
the set of binders. Yewdell et al estimated that only one in
100 to 200 peptides will bind to an average allele [5],
which makes this approach a reasonable approximation.
Moreover, generating an equal amount of binders and
non-binders creates a balanced data set well suited for
computational experiments.

For each allele, the data set was extracted from MHCPEP
and evaluated using 10-fold CV. As in previous experi-
ments, a crude search for the best value of  was con-
ducted. The results can be seen in Table 5. The SKM is able
to model multiple MHC Class II alleles well, with an aver-
age Apoc of well over 0.9 in all cases except for HLA-DR10,
which is a data set containing only 6 binders. Overall, the
average performance (0.967 Ay ) is competitive (as good
as or better) compared with literature results.

In [17], internal test sets of *0101 and *0301 extracted
from MHCPEP were predicted with 0.91 Apy. and 0.88
Apoe, Tespectively. In comparison, the corresponding
results for the SKM are 0.966 and 0.990. In [20], an itera-
tive stepwise discriminant analysis was run on 400 HLA-
DR1 high and moderate binders from MHCPEP and 743
non-binders. Classification accuracy using Jack-knife
cross-validation was 91.4%. Here, the overall classifica-
tion accuracy is slightly better at 92.2%.

In [16], a fuzzy neural network, combined with 3 amino
acid property descriptors, was used to separate high, mod-
erate and low binders from non-binders of HLA-
DRB1*0401. Of the 321 binders and 312 non-binders
collected for the allele, the highest performance was on
strong (high affinity) binders vs. non-binders with an
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Table 3: Results on HLA-DRB1*0101 and HLA-DRB1#0301
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Allele Method Acc. Agroc Arocso MCC AoveR-ROC

HLA-DRBI*0101 SKM (B = 0.04) 0.886 0.912 0.804 0.643 0.088
SKM (B = 0.085) 0.901 0.904 0.778 0.690 0.096
LP_top2 0.779 0.221
TEPITOPE 0.842 0.158

HLA-DRBI1*0301 SKM (B = 0.06) 0.763 0.823 0.580 0.531 0.177
SKM (B = 0.08) 0.757 0.827 0.575 0.525 0.173
LP_top2 0.721 0.279
TEPITOPE 0.585 0.415

Results of 5-fold cross-validation with best results shown in bold. Results from LP_top2 and TEPITOPE are taken from [21]. Measurements are
same as previously reported, except for AOVER-ROC, which is the area over the ROC curve. AROC = 1.00 is perfect classification, so AOVER-

ROC, |- AROC, can be seen as an error measure.

accuracy of 0.94 Agyc. However, for moderate and low
affinity binders, their results were 0.93 and 0.88, respec-
tively. For the SKM, the average Ay value for all binders
vs. non-binders is 0.952.

In [39], an ensemble classifier based on Support Vector
Machines with a representation using QSAR descriptors
achieved 0.917 Apo on a data set consisting of 9-mers of
HLA-DRA4. As in this study, non-binders were generated
randomly. The performance of the SKM (0.972 Agyc) on
HLA-DR4 is significantly higher.

Discussion

The proposed kernel method is shown to provide excel-
lent discrimination between binders and non-binders for
multiple alleles. It is able to model the dynamic MHC
class I problem, and produce results that compare favour-
ably with previously published results. The reason for the
good performance may be due to several factors, and it is
important to identify which of these are the most signifi-
cant. The main focus of modelling was to consider the full
length of peptides, as studies have shown that peptides
outside the binding core can influence binding affinity

[9]. Avoiding estimation of binding cores eliminates the
potential for using faulty alignments, which can lead to
increased model noise and, in turn, lower accuracy.

The use of similarity scores is a significant conceptual
change in peptide evaluation, quantifying the overall sim-
ilarity between peptides and interrelations between resi-
dues. This concept contrasts to the fixed-length
representation (using binary positional system or amino
acid properties) which enforces a direct pocket-to-pocket
comparison of residues. Most static pattern recognition
methods consider each input property to be a separate
and independent entity, which is clearly not the case for a
peptide string. Instead, higher order interactions within
the peptide may also make a significant contribution to
the modulation of affinity. Hattotuwagama et al. showed
that the motif-dependence of Class II peptides is even
weaker than that of class I epitopes [40]. Modelling such
subtle effects, also seen in X-ray structures, are beyond the
scope of much existing prediction technology. This
change in concept could be a significant reason for the
improved performance. Incorporating sub-optimal align-
ments into similarity scores have certainly contributed to

Table 4: Comparison of Agoc values on HLA-DRB %0401 data sets from MHCBench

Method Setl Set2 Set3a Set3b Set4a Set4b Set5a Set5b Avg.

TEPITOPE 0.776 0.740 0.740 0.754 0.763 0.750 0.651 0.661 0.729

PERUN 0.771 0.685 0.693 0.713 0.724 0.672 0.695 0.714 0.708

Gibbs 0.803 0.775 0.75 0.762 0.793 0.787 0.621! 0.661! 0.744

Sampler?

LP_top22 0.725 0.721 0.728 0.753 0.719 0.728 0.815! 0.859! 0.756

SKM 0.870 0.832 0.823 0.821 0.862 0.827 0.787 0.770 0.824

Comparing performance of SKM with results reported for the Gibbs Sampling method [27], "LP_top2" [21], and PERUN [7]. Best results shown in

bold.
I: Best reported results, where Cysteines are treated as Alanines [27].
2: Best reported results of [21].

Results of the LP_top2 and Gibbs Sampler are from evaluation on the MHCBench sets. However, as is described in [21], training was performed on
a training set consisting of selected samples from MHCPEP [1] and SYFPEITHI [53]. However, MHCBench mainly consists of samples from
MHCPEP, and a large overlap exist between training and test sets (e.g. 502 of 646 samples of Set 4a).
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Table 5: Results of SKM on multiple MHC Class Il alleles from MHCPEP

MHC Allele Species #Samp B Acc. Spec. Sens. Aroc Arocso MCC AoverroC
HLA-DRI! Human 1346 0.04 09123 0.9153 0.9094 09712 0.8460 0.8247 0.0288
-*0101 474 0.06 0.8987 09114 0.8861 0.9673 0.8864 0.7977 0.0327
- %0102 12 0.005 0.8333 0.6667 | 0.9444 0.9444 0.7071 0.0556
HLA-DR2! Human 648 0.15 0.9059 0.9692 0.8426 0.9608 0.8701 0.8183 0.0392
- %0201 44 0.8 0.8864 0.9091 0.8636 0.9360 0.9360 0.7735 0.0640
HLA-DR3! Human 378 0.15 0.9101 0.9577 0.8624 0.9750 09216 0.8239 0.0250
- %0301 242 0.02 0.9339 0.9008 0.9669 0.9847 0.9676 0.8697 0.0153
HLA-DR4! Human 1742 0.125 0.9248 0.9460 0.9036 0.9749 0.8677 0.8504 0.0251
- %0401 910 0.125 0.8890 09187 0.8593 0.9521 0.7989 0.7794 0.0479
- %0402 240 0.07 0.9 0.925 0.875 09717 0.9365 0.8010 0.0282
HLA-DR5 Human 398 0.125 09171 0.9799 0.8542 09717 09166 0.8408 0.0283
HLA-DR6 Human 46 0.25 0.9348 | 0.8696 0.9981 0.9981 0.8771 0.0019
HLA-DR7 Human 528 0.1 0.9034 0.9659 0.8409 0.9696 0.8965 0.8132 0.0304
HLA-DR8 Human 160 0.06 0.8938 0.8625 0.925 0.9683 0.9505 0.7890 0.0317
HLA-DR9 Human 192 0.2 0.9375 0.9896 0.8854 0.9779 0.9575 0.8798 0.0221
HLA-DRI10 Human 12 5 0.5833 0.6667 0.5 0.6389 0.6389 0.1690 0.3611
HLA-DRI | Human 590 0.03 0.9169 0.9390 0.8949 0.9615 0.8847 0.8347 0.0385
HLA-DR14 Human 126 | 0.9762 | 0.9524 0.9934 0.9917 0.9535 0.0066
HLA-DRI17 Human 308 0.03 0.9448 0.9545 0.9351 0.9802 0.9579 0.8898 0.0198
HLA-DR53 Human 72 0.2 0.8889 | 0.7778 0.9931 0.9931 0.7977 0.0069
HLA-DP9 Human 90 0.2 0.9889 0.9778 | | | 0.9780 0
HLA-DPw4 Human 38 0.01 0.7895 0.8421 0.7368 0.9058 0.9058 0.5822 0.0942
HLA-DQI Human 78 0.02 0.8974 0.9231 0.8718 0.9579 0.9579 0.7959 0.0420
HLA-DQ2 Human 210 0.08 0.8952 09714 0.8190 0.9664 0.936 0.7998 0.0336
HLA-DQ4 Human 194 0.2 0.8866 0.8969 0.8763 0.9557 0.9188 0.7734 0.0443
Weighted 363.12 0.120 0.9120 0.9390 0.8850 0.9687 0.8852 0.8263 0.0313
average

Evaluating performance on multiple alleles using 10-fold CV. Average scores shown underneath, weighted by number of samples.

IAll binders belonging to a group of alleles.

an observed improvement, where low values of B pro-
duced the best performance.

Kernel methods, such as Support Vector Machines, have
previously been shown to work well on biological prob-
lems, particularly when custom engineered kernels are
used [31,33]. The SVM itself and the training principle of
structural risk minimisation may have contributed to
enhanced performance. However, simply applying SVMs
to the MHC problem using aligned and truncated pep-
tides (9-mers), in combination with a binary representa-
tion of amino acids similar to [18], did not produce
promising results in initial experiments; custom kernels
must be used to take full advantage of the kernel
machines' excellent capacity for generalisation. Another
advantage of using kernel methods is the ability to choose
a kernel method independent of the choice of kernel
itself. Thus, a kernel can readily be combined with a range
of different kernel methods. This is useful when certain
properties of the predictor are desired; e.g. some kernel
methods can handle large-scale data sets while others
allow for probabilistic interpretation of outputs.

Naturally, the proposed method is not without it's disad-
vantages. Firstly, the method is purely data-driven, in the
sense that it relies solely on information derived from
peptide data sets and thus does not consider MHC allele-
specific structural information about the binding groove.
While this may be seen as an advantage, since it keeps
assumptions to a minimum, potentially important infor-
mation is not considered, such as a specific pockets' pref-
erence for certain amino acids. Secondly, the method does
not attempt to estimate alignments, which may be of
interest, and finally, computational complexity and run-
time speed could also be an issue for large scale testing.
Calculating the kernel is time-consuming even with an
efficient implementation; it cannot currently handle more
than a few thousand samples before run-time becomes
prohibitive.

Many potential improvements are possible that could
either improve classification accuracy or provide more
informative results. More advanced kernels could be
developed: by increasing the importance of similarity
scores of certain sized windows (e.g. length of 9) and sub-
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sequently weighting each residue in the window accord-
ing to known binding motifs (e.g. [41]). This would have
the advantage of incorporating allele-specific information
into the method. Other improvements include modifying
the kernel method to improve training or classification
speeds, and developing new substitution matrices specific
to the MHC domain similar to that undertaken for trans-
membrane proteins [42,43]. Finally, the binary classifica-
tion could be extended to a multi-class problem (separat-
ing non-binders from low, medium and high affinity
binders), or directly predicting binding affinity by kernel
regression, as Lui et al [44] has done for class I.

Conclusion

The combination of a complex similarity score and an effi-
cient kernel method are shown here to be a powerful tool
for predicting MHC class II peptide binding affinity. The
principle of using kernels to define similarities between
sequences explicitly is a simple, yet flexible and powerful,
way of modelling sequence data, and can readily be
extended to address a variety of immunological and other
biological problems.

Methods

Kernel engineering and string kernels

The mathematical formulation of kernel machines are
described in details in books and publications (e.g. [30]).
The kernel function K (x; x) is the core of any kernel
method, and can be used to incorporate a-priori knowl-
edge of the problem into the model. A kernel function
corresponds to a measurement of similarity or difference
between any pair of samples (e.g. the linear kernel is a
measure of the Euclidean distance between samples).
However, kernel functions do not need to measure pair-
wise similarities through a dot-product of vector represen-
tations. Instead, explicit measures of similarities between
samples can be used; such as similarities between amino
acid strings: string kernels. This enables the full length of
each peptide to be incorporated into the model, including
information known to be hidden in flanking residues [10-
14,45].

Local alignment kernels

The principle of local alignments has been shown to pro-
vide a powerful approach to detecting relationships
between sequences, using the optimal local alignment via
the Smith-Waterman algorithm [46] and it's efficient (PSI-
)BLAST approximations [47]. Therefore, we utilise a com-
plex kernel comprising several sub-kernels based on the
Smith-Waterman algorithm [32]. On a protein homology
detection problem, this approach was found to signifi-
cantly outperform scores based solely on optimal align-
ments [31].

http://www.biomedcentral.com/1471-2105/7/501

Local Alignment Kernels are convolution kernels [48] con-
sisting of a number of simple sub-kernels:

Kl . K2 et Kp(x,y) =
2 Ky(xp,p1) - Kp(p,7p)
X=X Xy Y=V Yy

Eq. 0.1

Where the components K;...K, consists of three different
kernels: (a) A constant kernel K., (b) a kernel for meas-
uring the difference between aligned letters K,;,,,, and (c)
a kernel for penalizing gaps K, ;:

Konst (X, V) =1

0 Jf [xlzlor |yl

K 7 x/ =
uhgn( Y) { oPrS(xy) otherwise

K gap (%,7) = 2 P&(Ix)+8(Iv))

Eq. 0.2

where x and y are the amino acid sequences, S (x, y) the
Smith-Waterman score, g (-) the gap penalty function,
and P a scaling parameter to adjust importance of gaps
and sub-optimal alignments.

The Smith-Waterman score SWg ) is calculated as:
& -1 ) ] ] ]
Ss,507) = 2 S( Xy V(i) ) = 2 (80w (i+1) =71 () + 82 (i+1) 72 (0))]
i=1 i=1

SWs g(m) (X, ¥) = ﬂemni(iﬁy)ss,g(n)

Eq. 0.3

Where 7 is the alignment between two sequences x and y,
S (+) is a substitution matrix and g ( - ) a gap penalty func-
tion.

The component sub-kernels are combined by convolution
to represent a kernel for an alignment of length n. The
Local Alignment score is the sum over all possible align-
ments in the sequence:

-1
K(n)(xr)’) = Koonst - (Kalign 'Kgap)(n ) 'Kalign “Keonst

N
Kpa(xy) =Y, Ki(x,y)
i=0

Eq. 0.4
where N is the number of possible alignments.

The above formulation results in a computational com-
plexity exponential with |x| and |y|, and is thus not a fea-
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sible solution for this problem. Hence, a dynamic
programming algorithm by [32] is used, which is a slight
modification of the Smith-Waterman algorithm [46]. The
kernel computation is done in O (n2-|x| - |y|), where n is
the number of samples, and |x| and |y| are the lengths of
the peptide strings. In the context of MHC-peptide bind-
ing, the gap penalty term must be maximised since gaps
are not possible within bound peptides.

Calculating the sub-kernels requires the following two
parameters: the substitution matrix S (-) in Eq. 0.3, and
the B parameter in Eq. 0.2. S () quantifies a similarity
between pairs of amino acids, and is a well-known term in
bioinformatics with numerous substitution matrices
designed from evolutionary, physicochemical or struc-
tural properties (a list can be found at [23]). The § param-
eter regulates the effect of individual contributions from
alignments, and allows adjustment of the relative impor-
tance between low- and high scoring alignments. When 3
is low, the model will increase the importance of low scor-
ing (sub-optimal) alignments to quantify the similarity
between sequences. Similarly, as f — o the contributions
from sub-optimal values is reduced.

All kernels must be symmetric and positive semi-definite.
Some values of B and substitution matrices S in Eq. 0.2
resulted in invalid kernels, and caused convergence prob-
lems. A trick used in [32] subtracts the smallest negative
Eigenvalue from the diagonal of the kernel to ensure ker-
nels are positive semi-definite. Symmetry of the resulting
kernel, K, 4, is guaranteed as long as substitution matrix S
(+) is symmetric.

Data set

Multiple data sets were used in the experiments. Eight
benchmark data sets with samples of known binders and
non-binders of the HLA-DRB1*0401 allele were taken
from MHCBench [3]. Within the data sets, peptide strings
are assigned binding strengths of level 0 (non-binders) to
4 (strong binders), and are collected from multiple
sources, mainly MHCPEP [1]. The sets are derived from
the same base set of peptides, created with varying levels
of curation. Set 1 includes all peptides whereas Set5b is a
homology reduced set containing only natural peptides.
Data set sizes range from 85 to 1017 samples with peptide
lengths of 9 to 33. As these sets have been used in many
published experiments [21,26,27], we use them in prefer-
ence to alternatives.

In addition to the 8 sets, two data sets from specific alleles
HLA-DRB1*0101 and HLA-DRB1*0301 were taken from
MHCBN [2]. The data sets separate peptides into binders
(low, moderate, and high), and non-binders (peptides
having ICs, values of more than 50,000 nm). Finally,
binders from multiple alleles from the MHCPEP database

http://www.biomedcentral.com/1471-2105/7/501

[1] were used. In the database, peptides are labelled as
having low, moderate or high binding affinity.

Experimental setup

MATLAB [49] was used as the testing environment, with
assistance of the SPIDER toolbox [50]. The SKM was cal-
culated with a C++ Mex implementation based on [32].
Testing machine was an Intel Pentium M 1.4GHz.

In all experiments, samples were randomly permuted and
subsequently evaluated using N-fold cross validation
(CV). Targets y; were divided into binders and non-bind-
ers; y;€ {-1, 1}. For each left-out fold, a model was trained
on the remaining folds to separate samples into binders
and non-binders. The trained model was then evaluated
on the left out fold. In addition, a rough search for good
values of 3 was performed by performing a full CV test for
each value of B (typically evaluating 10-15 different val-
ues of B). CV is well-suited for model assessment of small
data sets. However, some studies report the possibility of
high variance in results using CV (e.g. [51]).

For assessing performance, several measures were used:
Overall prediction accuracy, sensitivity, specificity, Mat-
thew's Correlation Coefficient (MCC), area under receiver
operating characteristic curve (Agpc), and the Agy score
up to the first 50 false positives (Aggcso)- Finally, in cases
where Apq scores were close to 1.0 (perfect classifica-
tion), the error term of area over the ROC curve,
Aover rocy Was used as well.

For experiments, data sets were curated by removing
duplicates as well as unnatural peptides with more than
75% Alanine [21,27]. An overview of the data sets can be
seen in Table 1.
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