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Abstract
Background: With current technology, vast amounts of data can be cheaply and efficiently
produced in association studies, and to prevent data analysis to become the bottleneck of studies,
fast and efficient analysis methods that scale to such data set sizes must be developed.

Results: We present a fast method for accurate localisation of disease causing variants in high
density case-control association mapping experiments with large numbers of cases and controls.
The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic
tree defined by the largest region around each marker that is compatible with a single phylogenetic
tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and
scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near
a disease affecting mutation should provide more information about the affected/unaffected
classification than random trees. If regions of compatibility contain few markers, due to e.g. large
marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge
the regions prior to estimating their phylogeny. Haplotype data and phased genotype data can be
analysed. The power and efficiency of the method is investigated on 1) simulated genotype data
under different models of disease determination 2) artificial data sets created from the HapMap
ressource, and 3) data sets used for testing of other methods in order to compare with these. Our
method has the same accuracy as single marker association (SMA) in the simplest case of a single
disease causing mutation and a constant recombination rate. However, when it comes to more
complex scenarios of mutation heterogeneity and more complex haplotype structure such as found
in the HapMap data our method outperforms SMA as well as other fast, data mining approaches
such as HapMiner and Haplotype Pattern Mining (HPM) despite being significantly faster. For
unphased genotype data, an initial step of estimating the phase only slightly decreases the power of
the method. The method was also found to accurately localise the known susceptibility variants in
an empirical data set – the ΔF508 mutation for cystic fibrosis – where the susceptibility variant is
already known – and to find significant signals for association between the CYP2D6 gene and poor
drug metabolism, although for this dataset the highest association score is about 60 kb from the
CYP2D6 gene.

Conclusion: Our method has been implemented in the Blossoc (BLOck aSSOCiation) software.
Using Blossoc, genome wide chip-based surveys of 3 million SNPs in 1000 cases and 1000 controls
can be analysed in less than two CPU hours.
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Background
With the publication of the human HapMap, phase I [1],
and the completion of genotyping for phase II, associa-
tion mapping is entering a new era. Whole genome scans
using 317 K or 500 K SNP chips, currently available [2],
and their higher density descendants, will be performed in
large sets of cases and controls in a search for high-fre-
quency, low penetrance variants that increases susceptibil-
ity to common, complex diseases [3,4]. Recently
published genome scans in very large cohorts have
yielded such variants that show reproducible effects [5-7].
Knowledge about these variants is expected to lead to a
better understanding of disease initiation and progres-
sion, to identify pharmacological targets for prevention of
the disease in high risk individuals as well as individually
based treatment. Case-control association mapping
allows zooming in on relatively smaller regions than link-
age mapping in pedigrees because recombination events
in the (deep) unknown genealogy of the sample have
decoupled all but the closest markers from the
(unknown) susceptibility variants. Furthermore, it is usu-
ally easier to recruit large numbers of unrelated individu-
als for these studies.

With the immense data generation (a single data set read-
ily contains more than 1 billion genotypes), there is an
evident need for efficient methods for localisation of sus-
ceptibility variants which are also very fast and which can
guide the subsequent selection of further markers in two-
or multi-stage designs [8,9]. Many studies resort to a
marker by marker approach, i.e. single marker tests for
independence between cases and controls, typically by a 2
× 2 (allelic) or 2 × 3 (genotypic) Fisher's exact test or χ2-
test. The best set of markers (and markers close to these,
i.e. in strong linkage disequilibrium) will then be selected
for scrutiny in a larger set of individuals or a different pop-
ulation for replication of the association. However, unless
the susceptibility variant is included among the markers
typed, a marker by marker approach does not seem effi-
cient [10] since it disregards the dependency of close
markers caused by their sharing of common genealogical
history, a sharing that decreases with the level of recombi-
nation between the markers. For instance, if a strongly
associated marker is flanked to the right by another asso-
ciated marker (and not to the left), then one would expect
a higher probability for the true location slightly to the
right of the marker than slightly to the left.

A popular alternative to single marker association is to
(approximately) model the whole data generating proc-
ess. In this case this is termed the ancestral recombination
graph (ARG) [11]. This has most often been done by treat-
ing the disease locus as an unknown parameter, whose
posterior distribution is estimated from genotype data
and an underlying model of the process that generated the

data. The posterior is usually numerically evaluated
through Monte Carlo methods such as importance sampling
[12] and Markov Chain Monte Carlo (MCMC) integration
[13,14]. For the mathematical model of the underlying
process, the complexity varies from assuming no relation-
ship among diseased individuals except through the orig-
inal mutation of the disease gene (a star topology of cases)
[15,16], through coalescent theory based methods where
either a tree [13,14] or an ancestral recombinaion graph is
modelled [12]. These models have shown to be accurate
on small data sets [17,18], but so far they are not able to
treat much more than hundreds of cases and controls and
hundreds of markers in a reasonable time.

Furthermore, being based on very specific models, these
methods are also sensitive to a bad fit to the model, which
may well be the case for the human genome where recom-
bination hotspots seem prevalent as do signs of recent
population growth, and where the ascertainment biases
introduced by the choice of markers are generally
unknown and therefore difficult to control for [19].

Thus, there is a need for more sophisticated methods than
single marker associations; methods that include further
aspects of the data generating process or observable pat-
terns in the haplotype structure of the data without being
prohibitively slow. Some data mining methods have been
proposed, e.g. haplotype pattern mining [20] and Hap-
Miner [21], as well as cladistic methods that aim at asso-
ciating the disease chromosomes to some subset of a
reconstructed tree for either the whole or a part of the
region surveyed [22-26]. These methods have been
applied to small real data sets and have shown to perform
well, especially when more than one mutation in the gene
is responsible.

We propose to follow a similar approach by building per-
fect phylogenies around each marker. We accomplish this
by using as many markers as possible (on either side of a
given marker) that fit on a single phylogenetic tree. We
assume the infinite sites model [27], i.e. each segregating
site has a unique mutation. Thus, the procedure is equiv-
alent to defining a region around each focal marker, such
that all markers in this region are compatible with the
marker in focus as judged by the four gamete test [28]. Fol-
lowing, we use different clustering measures of case chro-
mosomes in the phylogeny thus defined. The idea behind
the clustering measures is that we treat the perfect phylog-
eny as a decision tree and measure how well it explains the
case/control classification: If the tree explains the classifi-
cation well, there is an association between the tree topol-
ogy and the disease, if the tree does not explain the
classification, the tree and disease status are considered
independent.
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Results
We have implemented our new method, named Blossoc
for BLOck aSSOCiation, and evaluated it on a number of
simulated datasets and two real datasets, and compared
the accuracy with a number of existing methods. Our
implementation is efficient enough to handle very large
datasets, analysing simulated sets of 10 MB regions of
1000 case and 1000 controls with 1000 SNPs in ~15 sec-
onds on a 3GHz Intel Xeon. Scaling this to 300 K SNPs
over the entire genome, the running time will be less than
two hours.

In evaluating our algorithm, we calculated scores for each
marker locus in a dataset; an example is shown in Fig. 1.
Our method does not in any way restrict us to calculating
scores for marker loci only, and perhaps the most appro-
priate approach would be to select the points uniformly
placed on the region of interest. However, in our simu-
lated data, the density of markers is high and the marker
positions are uniformly randomly placed, so scoring only
marker loci is not a major limitation, and has the benefit
that we can immediately compare with single marker
association (SMA).

Comparing our scoring to SMA, shows a high correlation
between high clustering scores for our method and small
p-values for SMA. However, our scoring gives a smoother
"curve" since neighbouring markers are included when
scoring a locus and neighbouring scores are therefore
more dependent (compare the topmost and bottommost
plots in Fig. 1).

To test significance of scores in our method we generally
have to rely on time-consuming permutation tests. Rela-
tively time-consuming tests, that is. Although doing thou-
sands of permutation tests slows down our method
significantly, it still completes in around 12 hours for our
simulated data sets. Compared to this, many model-based
Bayesian approaches requires days of CPU time. When
using the BIC score, however, theoretical results in [29],
described in the Methods section, suggest to simply use
the score to judge evidence of significance. The HQC score
is very similar to the BIC score, and hence we would
expect to be able to use the HQC score to evaluate signif-
icance as well. We tested this suggestion by two different
experiments. In the first experiment, we simulated 500
data sets under the null model, i.e. where cases and con-
trols are simulated under the coalescent process, but
where status is assigned randomly. This way we collected
the null distribution of scores, for which the 95%, 99%
and 99.9% percentiles were 0.61, 4.40, and 9.14, respec-
tively.

In the second experiment, we compared scores with p-val-
ues obtained by running permutation tests on a subset of

our simulated data, selecting 50 random sets with one
mutation and 50 random sets with two mutations, each
with 1000 individuals (500 cases and 500 controls) and
1000 permutations. Using scores 2, 6, and 10 to mean
positive, strong, and very strong evidence for association,
as suggested in [29] – and consistent with our null-model
simulations – we examined the p-values corresponding to
loci with those scores higher, see Table 1. These data indi-
cate that, at least as a good approximation, the scores
alone can be used to indicate significant association.

In the following, we measure the accuracy of our algo-
rithm by taking simply the maximal scoring locus as a
point-estimate of the disease locus, and measure the dis-
tance from this inferred locus to the true locus. This, of
course, does not give as much information about the anal-
ysis as does knowledge of the scores over the entire region,
but greatly simplifies summarising results over large
number of data sets.

Performance on simulated data sets
We initially investigated the different scoring criteria (AIC,
BIC, HQC, and Prob scores, see Methods) on simulated
data sets, either haploid or diploid (genotype) data, with
a single or two disease mutations, see Fig. 2 and Table 2.

The best scoring function varies from data set to data set,
and no scoring scheme is consistently superior to the oth-
ers, either on individual data sets (Fig. 2) or on average
(Table 2). It seems, however, the prob. scoring performs
best on smaller datasets while the prob. score and the
Hannan and Quinn criterion are about equally accurate
on larger datasets. Of the two, however, the HQC is much
faster to compute, especially for large datasets, making it
our preferred scoring function. As a result of this, we used
the HQC score in the following experiments whenever
analysing more than 200 individuals and the prob. score
whenever analysing fewer. Another experiment (not
shown) showed that performance is slightly better when a
minimum of 10 markers are forced to be included. It also
showed that it did not affect the accuracy significantly if
more than 10 markers where forced to be included,
because the following pruning (see Methods) removes the
additional edges in the tree if they are insigninficant. In all
reported experiments, we have therefore required at least
10 markers to be included.

Figure 3 compares our method, with these optimal scor-
ing choices, to single marker association. For data sets
with a single mutation, the two methods seem equally
matched for the large data sets, while the single marker
association seems to have a slight advantage on the
smaller data sets. For two mutations our method is more
accurate than SMA in both cases.
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Example resultFigure 1
Example result. Plot showing the clustering scores from our algorithm for each locus across a region, using the HQC score 
(top). The horizontal lines indicate "positive" significance, "strong" significance, and "very strong" significance, respectively (see 
main text). P-values, obtained by a permutation test (1000 replicates), are shown below, where the bottommost line shows 5% 
significance and the topmost line 1% significance. At the bottom, the corresponding single marker association is shown, where 
the two lines again show 5% and 1% significance.
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The data sets were simulated assuming constant popula-
tion size, but the human population is believed to have
gone through a number of expansions. To test robustness
of our method under population growth we also simu-
lated data under exponential growth; growth parameter β
= 100, see [[30], Chap. 4]. Results are shown in Fig. 4.
Encouragingly, the results are not much affected by
growth. Compared to data sets without growth, the accu-
racy for Blossoc drops – which is to be expected since the

growth drives the genealogy towards more star-shaped
topologies, in which our method will find no signal – but
it still behaves similar to single marker association on the
one-mutation data sets and it is more accurate on the two-
mutations data sets.

To avoid systematic bias due to our simulation setup, we
also generated data in a completely different manner, by
boosting data from the HapMap project (see Methods sec-
tion). Results for this setup are shown in Fig. 5 and resem-
ble the results obtained from our simulated data.

Comparison with other methods
The large number of association mapping methods devel-
oped makes it infeasible to compare all methods, and thus
we are forced to make a choice as to which we should
compare our new method to. Our primary criterion in this
choice was to compare with methods in the same niche as
ours: methods aimed at fast exploration of very large data

Table 1: P-values and HQC scores

Evidence max p-value mean p-value (± s.d.)

Positive (HQC > 2) 0.038 0.0021 (± 0.0048)
Strong (HQC > 6) 0.009 0.0003 (± 0.0008)
Very Strong (HQC > 10) 0.004 4.059 · 10-5 (± 0.0002)

Statistics for p-values for different levels of significance as determined 
by the HQC score.

Comparison of scoring functionsFigure 2
Comparison of scoring functions. The x-axis shows the distance from the true locus, in units of ρ = 40, i.e. approximately 
100 Kbp, while the y-axis shows the accumulated percentage of data sets where the predicted locus falls within a certain dis-
tance from the true locus.

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Prediction error

P
er

ce
n

ta
g

e

1000 Individuals, 1 mutation

AIC score
BIC score
HQC score
Prob score

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Prediction error

P
er

ce
n

ta
g

e

1000 Individuals, 2 mutations

AIC score
BIC score
HQC score
Prob score

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Prediction error

P
er

ce
n

ta
g

e

200 Individuals, 1 mutation

AIC score
BIC score
HQC score
Prob score

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

Prediction error

P
er

ce
n

ta
g

e

200 Individuals, 2 mutations

AIC score
BIC score
HQC score
Prob score
Page 5 of 22
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:454 http://www.biomedcentral.com/1471-2105/7/454
sets (as opposed to highly accurate at the cost of very long
running times). Under this criterion we found the follow-
ing methods: HapMiner [21], Haplotype Pattern Mining
[20], and HapCluster [31]. All three methods are aimed at
finding areas in the data where cases appear more similar
than controls, but define such areas, and scores loci
accordingly, in different ways.

Comparison with HapMiner
An implementation of the HapMiner method is available
from the authors' homepage as a binary executable. We
downloaded this implementation, and ran it on our sim-
ulated data sets with default parameters except for param-
eter number 5 which was set to 0 to prevent permutation
testing. For data sets with a single mutation, whether large

Comparison with single marker associationFigure 3
Comparison with single marker association. The plots show the accuracy of our method compared with SMA for one 
and two mutations (topmost and bottommost, respectively) and with 1000 and 200 individuals (leftmost and rightmost, respec-
tively).
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Table 2: Score comparison

Setup AIC score BIC score HQC score Prob. score

1000 individuals
1 mutation 0.0787 ± 0.118 0.0705 ± 0.111 0.068 ± 0.111 0.068 ± 0.103
2 mutations 0.061 ± 0.09 0.068 ± 0.113 0.059 ± 0.091 0.066 ± 0.103
200 individuals
1 mutation 0.235 ± 0.230 0.214 ± 0.227 0.219 ± 0.227 0.220 ± 0.230
2 mutations 0.148 ± 0.184 0.140 ± 0.179 0.140 ± 0.174 0.126 ± 0.174

Summary of the accuracy of the four scoring functions (mean prediction error ± s.d.) in units of ρ = 40, i.e. 1.0 corresponds to a recombination rate 
of ρ = 40. For each simulation setup, the best performing score (measured by smallest mean prediction error) is highlighted.
Page 6 of 22
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:454 http://www.biomedcentral.com/1471-2105/7/454
or small, the HapMiner method and our method perform
similarly (results not shown), but for two mutations Blos-
soc is slightly more accurate, see Fig. 6.

Compared to our new method, HapMiner is significantly
slower, with an average running time of ~40 minutes per
data set when run on a 3GHz Intel Xeon, compared to a
few seconds for our Blossoc method. The long running

times for HapMiner made it impractical to compare the
two methods on the larger HapMap based data sets.

Comparison with Haplotype Pattern Mining
The Haplotype Pattern Mining (HPM) implementation is
not freely available, but the simulated data sets used to
evaluate the method in [20] can be obtained from the
authors' homepage. We therefore compare the two meth-
ods by running Blossoc on these data sets and compare

Robustness under population growthFigure 4
Robustness under population growth. The graph compares the mapping accuracy when data was simulated assuming con-
stant population size (β = 0) with data simulated assuming exponential growth (β = 100). The single marker association accu-
racy shown is for the exponential growth data sets; for contrast with single marker association without growth, see Fig.3.
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them with the results reported in [20], see Fig. 7. These
data sets are much smaller than our own simulated data
sets – with 100 cases and 100 controls – so following the
guidelines described earlier in this section, we use the
prob. score for Blossoc. The data sets come in four differ-
ent classes, of increasing complexity, based on the
number of cases carrying the disease mutation. As shown
in Fig. 7, Blossoc is more accurate on the two easiest
classes (on the left of the figure) while the two methods
are comparable on the two hardest (on the right in the fig-
ure). Only on the last data set does single marker associa-
tion compare to the other two; in the three easiest cases
both Blossoc and Haplotype Pattern Mining outperforms
single marker association.

Comparison with HapCluster
Though an implementation of the HapCluster method is
available from the authors, this implementation is in the
scripting language R and therefore much too slow to prac-
tically compare Blossoc and HapCluster on our simulated
data. Instead, as for HPM, we rely on results reported by
the authors, and compare Blossoc with HapCluster on the
simulated data described in [31]. The data sets in [31]
come in five different classes, based on the spacing of
markers, the frequency of the causal allele, and the minor
allele frequency (MAF) of the markers: All data sets repre-
sent regions of 750 Kbp, but the number of SNP markers
come in three sizes: 30 (giving an average spacing of 25
Kbp), 75 (a spacing of 10 Kbp) and 150 (a spacing of 5

Kbp); the frequency of the causal allele comes in two
ranges: common (15%–25%) and moderately rare (5%–
10%); and finally, the MAF was either 5% or 10%. This
was combined in five combinations: the 25 Kbp spacing
had MAF 10% and common causal allele; the 10 Kbp
spacing had MAF 10% and moderately rare causal allele;
and the 5 Kbp spacing had two moderately rare causal
allele versions, with MAF 5% and 10%, respectively, and
one common causal allele version with MAF 10%. All data
sets consisted of 200 cases and 200 controls, selected with
genotype relative risk in ratio 1:3:9 for the 25 Kbp and 10
Kbp spacing data sets and in the ratio 1:2:4 for the 5 Kbp
spacing data sets. Each parameter class was used to simu-
late 100 data sets.

For the 5 Kbp data set with common causal variant, we
saw no difference between Blossoc, HapCluster, and sin-
gle marker association; a comparison of the three meth-
ods is shown for the four other parameter combinations
in Fig. 8. For the 25 Kbp spacing data sets, HapCluster
seems slightly better than Blossoc and single marker asso-
ciation, while in the 10 Kbp spacing data sets, Blossoc and
HapCluster seem equally good and both better than single
marker association. For the remaining two data sets, Blos-
soc is slightly better than the other two.

Since the Blossoc method uses a very simple model of the
data to achieve very fast running times – simple tree topol-
ogies based on segregating sites only – we don't expect it

Performance on data sets generated from HapMap dataFigure 5
Performance on data sets generated from HapMap data. The comparison between out Blossoc method and single 
marker association resembles the setup for our simulated sequences based on a single mutation.
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to be as accurate as more time consuming methods with
more detailed data models. Nevertheless, it is interesting
to compare our method with such methods to get an
impression of how great a loss in accuracy we accept by
using the faster method.

Since it is impractical to run CPU intensive methods on
our simulated data sets, we choose again to run Blossoc
on previously published data sets and compare with only

a single, but state of the art, representative of this class of
methods, the LATAG method from [25].

We used our Blossoc method to analyse simulated data
sets from and compared it with reported results from [25].
The data consist of 50 sets 1 cM regions with 45–65 mark-
ers for 30 diploid cases and 30 diploid controls, where the
causal allele frequency is in the range 0.1–0.2 and the dis-
ease status is assigned with probabilities

Comparison with HapMinerFigure 6
Comparison with HapMiner. Topmost plot shows the cumulative error for large data sets while the bottommost plot 
shows the cumulative error for small data sets, in each case for data sets with two mutations.
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P (affected | homozygote mutant) = 0.80

P (affected | heterozygote) = 0.10

P (affected | homozygote wild - type) = 0.05

Compared to the other simulated data sets described pre-
viously, these data sets are very small. Complex methods,
such as LATAG, do not scale to large data sets – even these
very small data sets require hours of CPU time to analyse
– but are often capable of detecting signals in data sets
where faster methods, such as ours, have insufficient
power.

Results are shown in Fig. 9 and Blossoc is again more accu-
rate than SMA. We were not able to get the exact results
from Figure 6 in [25], but a visual comparison of Fig. 9
with Figure 6 in [25] suggest that Blossoc is slightly less

accurate than LATAG, with an accuracy somewhere half-
way between single marker association and the LATAG
method. The improved accuracy of LATAG, however, is at
the expense of running time where a reported ~5 hours
per data set for LATAG needs to be compared with a few
seconds per data set for Blossoc.

Results on real data sets
CF Data Set
We ran our method on the ΔF508 mutation for cystic
fibrosis data from [32]. The data set consists of 94 cases
and 92 controls, genotyped for 23 markers. Because of the
small size of the data set we used the prob. score. The
results from this analysis are shown in Figure 10. The
markers are very un-evenly spaced in the region, and this
is a case where a uniform placement of scoring points
would probably be preferable to scoring only the marker
loci, but to be able to immediately compare it with single

Comparison with Haplotype Pattern MiningFigure 7
Comparison with Haplotype Pattern Mining. The data sets are split into four groups of increasing difficulty, based on the 
number of cases carrying the disease mutation: A = 10%, 7.5%, 5%, and 2.5%.
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marker association (shown at the bottom of the figure) we
still use the marker loci. The wide tail to the right of the
disease locus, however, is probably an artifact of this
choice.

Blossoc takes its maximal score in the true locus, but this
maximal score stretches over the range 0.87–0.96 with
center at 0.91. This is comparable to other fine-maping
tools (Table 3).

CYP2D6 Data Set
The CYP2D6 gene plays a role in drug metabolism and in
[33] 32 SNPs in a 890 kb region spanning the CYP2D6
locus were genotyped in 1,018 individuals, of which 41
were classified as having the "poor drug metaboliser"
(PM) phenotype. We ran Blossoc on this dataset and
tested for association with the PM phenotype; the results
are shown in Fig. 11. The entire region around the
CYP2D6 scores very strongly (> 100) with a HQC-score of

156 at the actual gene, but with a higher score, 181, about
60 kb upstream of the gene (but in high LD with the
gene).

In [31], Waldron et al. finds two modes in the CYP2D6
dataset when analysed with HapCluster. The smaller of
the two corresponds to our maximal peak, while the high-
est mode of HapCluster is located at the CYP2D6 gene.

Discussion
Our Blossoc method is based on the very simple idea of
compatibility in a region around a marker combined with
perfect phylogenies based on binary traits assuming the
infinite sites model. This idea has not previously been
explicitly exploited for association mapping. A single
marker often belongs to different intervals of compatible
sets of markers but here we choose the most symmetric
interval around the marker in focus (see Methods). An
interval with only compatible markers may well have

Comparison with HapClusterFigure 8
Comparison with HapCluster. The plots show the accuracy over 100 data sets for each setup. The data sets are split into 
four group, depending on the spacing of markers, the allele frequency for the disease allele and the minor allele frequency of 
the SNP markers.
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experienced recombination events in the history of a large
sample, but these recombination events have left rela-
tively little imprint on the data. Thus, the method uses
parts of the observable haplotype structure without mak-
ing any reference to the underlying evolutionary process
that created this haplotype structure – aside from the infi-
nite sites model that is typically considered reasonable for
SNP data. Apart from what compatibility tells us about
recombination away from a focal marker, the method can
be classified as a data mining approach. This can be con-
sidered a strength in cases where little is known about the
process that generated the data, e.g. the demographic
process, the recombination process and the ascertainment
biases in choice of markers used.

The Blossoc method is mainly designed to handle a very
dense set of markers with high linkage disequilibrium
since, in this case, blocks of compatibility are expected to
include several markers. To extend the use of the method

to cases of more distantly spaced markers we have investi-
gated the effect of forcing a preset minimum number of
markers to be included. While this has little effect on
densely spaced markers where the number of compatible
markers usually exceeds this minimum, it was found to
increase the mapping accuracy for less densely spaced
markers and to be relatively insensitive to minimum val-
ues, as long as they exceed 5, due to the subsequent prun-
ing of the tree.

The method is evidently heuristic and its efficiency can
therefore only be evaluated through the application of the
method to well defined data sets where the result is
already known and comparing its accuracy to other meth-
ods. Due to the almost absence of publicly available case-
control data sets where susceptibility mutations are
known, we have mainly evaluated the performance of the
method on artificial data sets either simulated under sim-

Performance on datasets from [25]Figure 9
Performance on datasets from [25].
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Analysis of the CF data setFigure 10
Analysis of the CF data set. The topmost plot shows the clustering scores assigned to the loci using our Blossoc method 
while the bottommost plot shows single marker association.
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ple demographic models or based on augmentation of
data from the public HapMap project.

We initially used these test data sets to evaluate which
scoring function to use for establishing significant cluster-
ing, and were able to conclude that the HQC scoring is
generally superior except for small data sets (fewer than
100 cases and 100 controls) in which case the prob. score
is superior. We thus recommend choice of HCQ if more
than 200 sequences are available and otherwise the prob.
score. Our experiments also prompt us to recommend
that a minimum of 10 markers are always included.

Using our recommended choice of scoring function, the
results encouragingly show that the simple method gener-
ally outperforms marker by marker association as well as
competing fast methods where we could get access to the
software and/or previous analyses which we could directly
compare our results against. If only a single mutation
affects the disease status, then most of the competing
methods are indistinguishable from just choosing the
most strongly associated single marker. However, when
disease heterogeneity or non-additive genotypic effects are
modelled, single marker association is inferior to the
other methods. Among these, our Blossoc method gener-
ally outperforms HapMiner, HPM and HapCluster, even
on the data sets used in the original publications of these
alternative methods. Blossoc is also very competitive in
regards to running time. For our simulated data sets, Blos-
soc completes the analysis within a few seconds on a
3GHz Xeon processor, compared to less than a second for
SMA and ~40 minutes for HapMiner. We do not compare
running time with HPM, since we do not have access to
the tool, or to HapCluster, since this method has only
been implemented as an R prototype, and a runtime com-
parison with this will not be a fair comparison. Blossoc is
thus only slightly slower than the simple single marker
association and much faster than HapMiner.

Surprisingly, Blossoc also performs reasonable compared
with more involved methods such as the method by Zöll-

ner and Pritchard. However, we expect that model based
approaches always will be superior to our method as long
as the model is a reasonable approximation to the data
generating process, and our experiments also show that
Zöllner's and Pritchard's LATAG outperforms Blossoc.
Model based approaches, however, are many orders of
magnitude slower than our new method, and more
importantly will not scale to the size of our own simulated
data sets. Blossoc can analyse 3 million SNPs in 1000
cases and 1000 controls in a few days, while the method
of Zöllner and Pritchard will not be able to handle such
data sets. We expect that boosting the power in a study, by
increasing the number of samples and being able to ana-
lyse the larger data sets, will more than compensate for the
cruder model.

Conclusion
We have presented a fast method, Blossoc, for accurate
localisation of disease causing variants in high density
case-control association mapping experiments. Blossoc
has the same accuracy as single marker association in the
simplest case of a single disease causing mutation and a
constant recombination rate. However, when it comes to
more complex scenarios of mutation heterogeneity and
more complex haplotype structure such as found in the
HapMap data our method outperforms SMA as well as
other fast, data mining approaches such as HapMiner and
Haplotype Pattern Mining (HPM) while being signifi-
cantly faster.

Several extensions to the method are currently under
investigation, e.g. the ability to handle unphased geno-
type data directly without the pre-phasing step (which at
present is more CPU intensive than the actual mapping
step), an ability to alleviate gene conversion events by
skipping single incompatible markers in the centre of a
block of compatible markers, and the ability to handle
quantitative traits. Multi-allelic markers such as micro-sat-
ellites can already be handled if they are assumed to
evolve under the infinite alleles model, but the efficiency
of the algorithm has not been investigated in this case.
Furthermore, the method is sufficiently fast that investiga-
tion of interactions between regions should also be feasi-
ble to score by a similar principle [34].

Methods
The mapping algorithm
The basic algorithm for construcing perfect phylogenies
At a given point in the genome, a sample of cases and con-
trols will be related by a true genealogy that can usually
only be partly inferred from a set of markers. Mutations
that directly affect the probability of belonging to the case
category (disease mutations) induce non-uniform distri-
butions of individuals in sub-parts of the tree: descend-
ants of a given disease mutation will have higher risk of

Table 3: Comparison of location estimates

Method Estimate 95%-interval

Liu et al. [15] 0.87 0.82–0.93
Morris et al. [14] 0.85 0.65–1.00
Zöllner and Pritchard [25] 0.87 0.81–0.92
Mailund et al. [42] 0.82 0.73–1.03
Blossoc 0.91 NA

Comparison of location estimates of the ΔF508 mutation for cystic 
fibrosis data [32] by Blossoc and other coalescent-based fine mapping 
tools. The mutation is located at 0.88. Blossoc only gives a point 
estimate of the true locus and no credibility interval, but the maximal 
score stretches over the interval 0.87–0.96.
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Analysis of the CYP2D6 data setFigure 11
Analysis of the CYP2D6 data set. The topmost plot shows the clustering scores assigned to the loci using our Blossoc 
method while the bottommost plot shows single marker association.
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the disease, and all such descendants will be found in
some sub-tree rooted in the original mutant. Testing the
presence of such a mutant locus therefor reduces to testing
for a significant clustering of affected individuals, as has
been exploited in several methods [23-25]. The method
presented in this paper differs from the methods in [23]
and [24] in that we do not restrict ourselves to regions
with no or very little recombination, and from [25] in
how we infer genealogies.

Assuming an infinite sites model, each polymorphic site
splits a present day sample of individual haplotypes into
a set of descendants of the original mutant and a set of
non-descendants; if a haplotype has a mutant allele, it
must be a descendant of the original mutant of which
there is only one, and if it is a descendant of a mutant it
must also carry the mutant allele at the site. Under this
model, assuming no recombinations, the true (un-
rooted) genealogy can be inferred, assuming enough seg-
regating sites, and efficient algorithms exist [35]. If there
are insufficient segregating sites, the fully resolved tree
cannot be reconstructed as some sequences will be indis-
tinguishable and therefore their relationship cannot be
inferred. In this case, all resolved edges are still part of the
true phylogeny, and the identical sequences will only
resolve in high-degree nodes, leading to a multi-furcating
tree.

If recombinations have occurred, a single tree may not
explain the genealogy of the sample; if the recombination
results in trees with different topology on each side of the
recombination point – and for large sample sizes, this will
be the case in almost all recombinations [30] – then dif-
ferent trees are needed to explain the genealogy for the
first part and for the last part of the sample sequences. This
can be exploited for locating disease genes. If we can split
the sequences into regions where no recombination has
occurred, we can infer the trees of these regions and test
for significant clustering of affected individuals. The
regions containing the significant clusterings are our can-
didates for containing the disease affecting locus.

Unfortunately, there is no efficient way to recognize the
regions without recombinations. Hence we are forced to
use heuristics to select the non-recombining regions we
build trees over. A sufficient, but not necessary, condition
for a recombination to have occurred – assuming the infi-
nite sites model – is the four-gamete test: if all four haplo-
types 00, 01, 10, and 11 are observed for two loci, a
recombination must have occurred between the two [28].
In the following, we will treat any contiguous set of loci,
where no pair of loci has all four haplotypes, as if devoid
of recombination events.

We attempt to infer the local tree for different loci across
the region; for each locus, we consider the region around
the locus including as many markers as possible without
violating the four-gamete rule, and build the perfect phy-
logeny for this region, see Figs. 12 and 13. When deciding
which markers to include in the perfect phylogeny, we add
markers in a "closest to the current marker" ordering, until
no new marker can be added without incompatibilities, in
one of the directions (left or right), after which we add
markers in the other direction until we cannot add mark-
ers in that direction either. Selecting regions in this way
allow us to use as many neighbouring markers as possible
when building the tree of a locus – at the risk of including
too many, of course – while attempting to keep the cur-
rent locus as near center of the region as possible.

In cases where too few markers are included due to many
incompatibilities (further described below), incompatible
mutations are used to resolve more than one node in the
tree; each node that contains sequences with both variants
are split into two sub-trees, resulting in a uniquely defined
phylogeny.

Scoring functions
Once a tree has been built for a locus, we consider the tree
a hierarchical clustering of the individuals in the sample,
and we perform a test for significant clustering of affected
individuals. We define clusters by either inner nodes only
containing leaf-subtrees (in which case the cluster consist
of all the leaves connected to the node) or single leaves,
for leaves not connected to such inner nodes.

If the markers used to build the tree are independent of
the affected/unaffected status, we would expect that the
affected individuals are distributed identically in all the
clusters of the tree; if, on the other hand, the tree is similar
to the true genealogy of the disease locus, the affected
individuals are expected to be overrepresented in one or
more subtrees. The level of significant clustering gives us a
score for the tree, and this score is assigned to the locus for
which the tree was built.

To score trees, we look at the clustering implied by a tree
as a model for the generation of the data, i.e. we consider
the perfect phylogeny as a decision tree for the case/con-
trol classification, and we assume that the probability of
being affected are the same for all individuals that are in
the same cluster of the tree, but can vary between clusters.
The model selection criteria (MSC) that we used were of
the form:

MSC = -2 ln Pr(data|model) + K · D(M) (1)

Where K is the number of free parameters in the model,
which is equivalent to the number of clusters in the tree,
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Compatible regionsFigure 12
Compatible regions. Illustration of the definition of regions around each SNP that are included in building the genealogy. 
The top-most six solid lines represent chromosomes, where circles represent the presence of a mutant allele and the absence 
of a circle the presence of the corresponding wild-type allele. The dashed lines show maximal regions around each segregating 
site, not violating the four-gamete test.

Local treeFigure 13
Local tree. Local tree for the region of the fourth segregating site. The region covers the third, fourth, and fifth segregating 
sites. Each site splits the chromosomes into two sets, corresponding to edges in the local tree for site four, shown at the bot-
tom



BMC Bioinformatics 2006, 7:454 http://www.biomedcentral.com/1471-2105/7/454
and D(M) is a function of the number of samples, M, used
to penalize over-fitting. The first term is the maximum
likelihood estimate and scores how good the model, i.e.
the tree, fits the data. The maximum likelihood estimate
Pr(data|model) is just factored as the product of the like-
lihood of each of the individuals. Each cluster has a prob-
ability of affectedness independent of the other clusters,
and thus the number of free parameters, K, is equal to the
number of clusters in the tree. The contribution of a clus-
ter C, with CA affected individuals, and CU unaffected indi-
viduals, to the total log likelihood is:

The second term, involving D(M), penalizes model com-
plexity. The choice D(M) = 2 gives Akaike's information
criterion (AIC) [36], whereas D(M) = ln(M) gives BIC
[37], and D(M) = 2ln ln(M) gives the criterion of Hannan
and Quinn (HQC) [38].

The penalty in this function is used to avoid over-fitting
the data. If there are few incompatibilities the tree for a
given position might be large and overfit the data, a well
known phenomenon from decision tree literature. A
standard way of combating too large trees when building
decision trees is to prune any branches where removing
the branch improves the score.
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Local trees for the CF datasetFigure 14
Local trees for the CF dataset. Illustration of the decision trees and scores of markers (Prob-score) for the cystic fibrosis 
data set. In each circle diagram, the case leaves are red and the control leaves green. The branching patterns are defined by the 
markers included in the segment around the marker in focus, which is also placing the root in the decision tree. The decision 
trees shown are before pruning is attempted. Pruning collapses som of the branch points. The score is then calculated and can 
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We compute the score in a bottom-up fashion, starting at
the leaves and pruning any branch that would decrease
the trees score.

When building the local tree for a locus we include mark-
ers in the order determined by their physical distance
from the locus in focus (as described above). By consider-
ing the split caused by the first marker the root of the deci-
sion tree, this ensures that edges inferred from markers
closer to the locus are nearer the root of the tree than edges
inferred from markers further away from the locus. This is
important for a subsequent pruning since pruning is done
from the leaves and moving up in the tree, retains splits
caused by SNPs close to the point for which the tree was
built, while removing splits caused by SNPs further away
(when this improves the score). Keeping edges corre-
sponding to nearby sites higher in the tree than edges
caused by sites further away is done solely for technical
reasons; it lets us weight nearby markers higher, when
pruning, than markers further from the current locus. This
should in no way be interpreted as meaning that muta-
tions on nearby markers are more likely to be near the
root of the local tree than mutations at other markers. The
inferred perfect phylogeny is essentially unrooted, and we
have no knowledge of where the "real" root should be
placed; we simply select a root that simplifies the decision
tree pruning. We never prune the split at the root because
this would turn the root into one single cluster with no
information about the distribution of affected and unaf-
fected individuals. Since we never remove the root split, if
there is no significant information in the tree we just get
the single marker score. The smaller the MSC value is, the
better the tree explains the data. When scoring the trees we
look at the difference between the MSC-value of the tree,
T1, and the MSC value of the simplest tree, T0, that consists
of a single cluster.

Where Ma and Mu is the number of affected and unaffected
individuals, respectively, in the entire data set. According
to [29] the ΔMSC value is approximately equal to two
times the logarithm of the Bayes factor if the BIC model
selection criterion is used. This means that it can be used
directly as a measure of significance. Since the HQ model
selection criterion approximates the same value as the
BIC, this correspondence between ΔBIC and significance
should also apply to the HQ criterion. This claim is sup-
ported by empirical tests shown in the results section.

Alternatively, statistical significance of a given score is
evaluated by a permutation test where the case-control

status of all haplotypes is randomly permuted and the tree
is pruned again and the score is recalculated. The P-value
is then the fraction of permutations where the score is
larger than the score obtained from the original data set.

We have also tried another scoring method for the trees, a
method that is not based on the model selection criterion.
In this method we give scores to trees by looking only at
the subtree that has the most significant over-representa-
tion of affected individuals. When scoring a cluster we cal-
culate the probability that the cluster would get a number
of affected individuals that is greater than or equal to its
present number, if the affected/unaffected status of all the
individuals were reassigned at random. This probability is
small if there is a significant over-representation of
affected individuals in a cluster. The probability that a
subtree consisting of n individuals has got at least m
affected individuals is:

Where p(a) and p(u) is the fraction of affected and unaf-
fected individuals, respectively, in the entire data set the
score of a tree, T, is made from the subtree with the small-
est p-value:

Where depth(s) is the depth of the subtree s in the tree ie.
the number of markers necessary to determine the sub-
tree. In the results section we refer to this scoring function
as the Prob score.

Figure 14 illustrates the definition of decicion trees and
their associated scores for the 23 markers in the cystic
fibrosis data set.

Data with many incompatibilities
With a large sample size, the width of regions where all
markers are compatible tends to be very small. Conse-
quently, the markers that can be used to split sampled
individuals into clusters are few and the resulting trees
will contain only few edges; in the limit, only the single
marker for which the tree is built will be used, reducing
the method to a single marker association test. To alleviate
this problem, we forced a minimum number of markers
or a minimum length of sequence to be included. In this
case the markers in a region can be incompatible, so we
cannot build a perfect phylogeny under the infinite sites
model. Instead, when adding a marker to the tree that is
incompatible with one or more of the markers already
added, we add as many new splits as needed to separate
individuals with the 0 allele at the new marker from indi-
viduals with the 1 allele in the tree.
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This heuristic approach to dealing with many incompati-
bilities is clearly not justified by the infinite sites model
with recombination; under this model, the resulting tree
is clearly a combination of two or more local phylogenies,
since the incompatibility implies that at least one recom-
bination has occurred. The splits in the tree, however, still
provide information about the local genealogy, and the
reasoning behind the heuristic is that this information is
not completely lost when combining two or more local
trees, as long as the (unknown) number of trees is low.
Simulation results (now shown) justifies this, since using
the heuristic outperforms relying on single marker associ-
ation for the regions where no tree can be built using only
compatible markers.

Tests of the algorithm
Simulated data sets
We simulated data sets with a known causative locus with
one or two responsible mutations using the coalescent
based simulator CoaSim [39]. For each data set, we simu-
lated 20,000 (haploid) sequences and paired them up
randomly to obtain (phased) genotype data sets. The
sequences were simulated with scaled recombination rate
ρ = 40-corresponding to 0.1 centi-Morgan assuming an
effective population size of 10,000, or roughly 100 Kbp
assuming 1 cM = 1 Mbp – and with 200 SNP markers
placed uniformly at random over the sequence.

For a fixed simulated ancestral recombination graph,
rejection sampling was used to ensure that all minor allele
frequencies of the SNP markers were above 10%, reflect-
ing a typical SNP selection bias. The causative locus was
placed uniformly at random on the simulated sequence,
and we simulated either one or two mutations on the
locus, rejecting the entire simulation when the mutant
allele frequency was outside the range 18%–22%, for the
single mutation case, or outside the range 9%–11% for
both mutations in the two mutation cases. We assigned
affected status using probabilities:

P (affected | homozygote mutant) = 0.20

P (affected | heterozygote) = 0.08

P (affected | homozygote wild - type) = 0.05

After assigning affected/unaffected status to the simulated
individuals, we randomly selected an equal number of
affected and unaffected as our test data set. From the sim-
ulated genotypes we made data sets of two sizes; large data
sets where we selected 500 affected and 500 unaffected
individuals (or 1000 haploid sequences of each class) and
small data sets where we selected 100 affected and 100
unaffected individuals (or 200 haploid sequences of each
class).

Artificial data sets created from HapMap
A random 1 Mb section (chromosome 3, position
64893548–65893547, containing 1646 SNPs) of the
HapMap data from the Chinese and Japanese populations
(90 independent individuals in total) were downloaded
from the HapMap home page [40]. For each of the 90
unphased genotypes (with missing data) 50 different gen-
otype configurations without missing data were sampled
using fastPHASE [41] resulting in a data set with 4500
genotypes. The sampling utilises that fastPHASE estimates
probabilities of all possible haplotypes consistent with
the sampled genotypes, and additional haplotypes were
sampled using these probabilities. From this data set a
marker with minor allele frequency in the range 20%–
30% was subsequently treated as causing a disease imita-
tion. The genotypes in the sample were given status as case
or control based on the value at the marker with probabil-
ities:

P (affected | homozygote mutant) = 0.30

P (affected | heterozygote) = 0.15

P (affected | homozygote wild - type) = 0.075

Next the data set was created by sampling 500 cases and
500 controls from the sample and 400 of the markers
whereupon analyses were performed using our algorithm
and SMA. After determining disease status for the simu-
lated individuals, the marker at the selected disease locus
was removed. This procedure was repeated to make 500
different data sets.

Tests on real data sets
To test our method on real data, we used the CF data set
described in [32] the CYP2D6 data set described in [33].
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