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Abstract
Background: Many statistical algorithms combine microarray expression data and genome
sequence data to identify transcription factor binding motifs in the low eukaryotic genomes. Finding
cis-regulatory elements in higher eukaryote genomes, however, remains a challenge, as searching
in the promoter regions of genes with similar expression patterns often fails. The difficulty is
partially attributable to the poor performance of the similarity measures for comparing expression
profiles. The widely accepted measures are inadequate for distinguishing genes transcribed from
distinct regulatory mechanisms in the complicated genomes of higher eukaryotes.

Results: By defining the regulatory similarity between a gene pair as the number of common
known transcription factor binding motifs in the promoter regions, we compared the performance
of several expression distance measures on seven mouse expression data sets. We propose a new
distance measure that accounts for both the linear trends and fold-changes of expression across
the samples.

Conclusion: The study reveals that the proposed distance measure for comparing expression
profiles enables us to identify genes with large number of common regulatory elements because it
reflects the inherent regulatory information better than widely accepted distance measures such as
the Pearson's correlation or cosine correlation with or without log transformation.

Background
Many statistical algorithms combine microarray expres-
sion data and genome sequence data to find transcription
factor binding motifs (TFBMs) in the low eukaryotic
genomes. An early work searches for the regulatory motifs
that are associated with significant mean expression
changes when they are in the promoter regions of genes;
the motifs are then clustered according to their contribu-
tions across the arrays [1]. Several approaches fit expres-
sion data to motif occurrences by multivariate linear

regression model; thereafter, the motifs are selected by
classical covariate selection procedures [2-4]. These works
were validated in Saccharomyces cerevisiae genome. Find-
ing cis-regulatory elements in higher eukaryotes, however,
remains a challenge. In higher eukaryotes, the gene
expression clusters often do not lead to successful identi-
fication of the transcription factor binding sites. The diffi-
culty arises from two aspects.
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First, the complex regulatory mechanisms of higher
eukaryotes impede the search of the genomes. Transcrip-
tion factor binding sites, usually short (6–12 bases), may
appear in far upstream, e.g., 20,000 bases upstream from
the transcription starting site, in the introns and even in
the downstream regions. Furthermore, the transcription
factors work in combinations [5-8]. Several approaches
are proposed to overcome the difficulty. For example,
studies showed that cross-species genome alignment
could guide the search for functional regulatory elements
[9-12]. Only about 5% of the mammalian genome is
under purifying selection [13], and we can study a small
subset of genome that is more likely to have important
functions by focusing on common non-coding regions
across the species.

Second, the widely accepted distance measures for com-
paring expression profiles are inadequate for distinguish-
ing genes from distinct regulatory mechanisms in higher
eukaryotes. The quality of the distance measure is funda-
mental for high-level analysis methods such as clustering
algorithms to identify co-expressed gene groups. From our
experience in microarray data analysis, often genes with
similar expression patterns share little common TFBMs in
their promoter regions. We will propose a distance meas-
ure for expression profiles that correlates better with the
regulatory distance than the widely used distance meas-
ures such as one minus correlation and one minus cosine
correlation. Several studies have improved the quality of
distance measures by accounting for the technical noise
during the hybridization of mRNA on gene chips [14];
they, however, do not account for the regulatory informa-
tion [14].

Results
Data description
The performances of different distance measures were
compared on seven experiments that consist overall 288
mouse oligonucleotide microarrays. The regulatory path-
ways involved in the experiments shall vary across the
data sets. Su et al. [15] generated expression data, 90
arrays, from dissected mouse samples across 45 tissue
types: the data represent a substantial description of the
normal murine transcriptome because the samples
mainly come from the normal physiological state. Storch
et al. [16] generated circadian gene expressions, 24 arrays,
from mouse liver and heart: mice were synchronized to a
12-h light/dark cycle for 2 weeks and to the dim light for
42-h before the tissues were collected at 4-h intervals over
two circadian cycles. Wang et al. [17] generated gene
expressions, 35 arrays, during the preimplantation devel-
opment over 12 time points from germinal vesicle stage
oocyte to expanded blastocyst. Zhao et al. [18] generated
muscle regeneration genes expressions, 54 arrays, across
27 time points up to 40 days after injecting a toxin into

the mouse gastrocnemius muscle. We have neocortex
developmental gene expressions, 17 arrays, across the
developmental time courses from embryonic 8.5 days to
10 days postnatal. In addition, we used 2 mouse expres-
sion profile data sets from the Public Expression Profiling
Resource [19]: 1) Forty samples from a BALB/CJ murine
model of human asthma that used the ragweed pollen to
sensitize and challenge the mice, 2) thirty brain hippoc-
ampus samples from neurofibromin-1 heterozygous and
control mice, 15 samples each, collected from 10 to 32
days postnatal. The mRNA samples from Su et al. [15]
were hybridized on Affymetrix MG_U74A chips. The sam-
ples from all other data sets were hybridized on either
MOE430A or MG_U74av2 chips.

We then mapped 147 known mouse TFBM matrices to the
regions from 5000 base upstream to 1000 base down-
stream relative to transcription starting site of all genes in
two mouse gene chips. Only top 10% regions most well
aligned across the genomes of three species were used in
the motif mapping. The known binding motifs and the
information on their corresponding binding proteins
were obtained from the online database TRANSFAC [20].
These known TFBMs represent a small portion of all tran-
scription factors in mouse.

Linking co-expression and co-regulation, in mouse
For each of seven data sets, we first selected 1,000 probe
sets with the most variable expression patterns. Then for
each pair of genes, we identified the common TFBMs in
the promoter regions of both genes. The redundancy of
some probe sets with a common target gene or of some
genes with overlapping promoter regions was taken into
account (See Methods). We defined the measure of the
regulatory similarity between a gene pair as the number of
the common TFBMs in their promoter regions (See Meth-
ods). A significantly large number of TFBMs in the pro-
moter region of a gene may indicate the validity of their
regulatory role on the gene [21]. Here, we extended the
idea to define the regulatory similarity between two genes.
Then, we defined the expression distance between a gene
pair as 1 minus correlation between two profiles. Figure
1a shows the observed median expression distance of
gene pairs as a function of the regulatory similarity
between the two genes. The figure demonstrates that
genes that share large number of common TFBMs are
more likely to have highly correlated expression patterns:
sometimes, the effect is present only when they share
enough common TFBMs. For each data set, the correlation
was computed between the median expression distance
and regulatory similarity. To calculate the significance of
such correlation, we permuted the mapping between
genes and their promoter regions 500 times. Note that
some p-values are not statistically significant in the figure.
In the next section, we propose a simple distance measure
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between the expression profiles that correlates stronger
with the regulatory similarity.

A new distance measure for comparing expression profiles
When the medians of two expression profiles over n sam-
ples (x1, ..., xn), (y1, ..., yn) are m(x) and m(y), we define the
distance between two profiles as following:

The distance measure is equivalent as the Euclidian dis-

tance between two standardized profiles ( ),

( ) where  = log2 (xi/m(x)),  = log2 (yi/m(y)).

The distance is zero when two expression profiles have
identical fold-changes between all samples. When two
profiles are close by this new distance measure, they also
have high Pearson's correlation: when two profiles have
zero distance by the new measure, the Pearson's correla-
tion is one. When two profiles have high correlation, how-
ever, they are not necessarily close by the new distance
measure. This property enables us to further select co-

expressed genes among highly correlated genes. Figure 1
compares how two different expression distance measures
correlate with the regulatory similarity in 7 data sets. The
p-values and correlations are computed the way previ-
ously described for each data set and for each distance
measure. Table 1 summarizes the result with seven differ-
ent distance measures. All seven distance measures corre-
late with the regulatory distances. In contrast, when we
use the Euclidian distance without any standardization,
such correlations shown in Figure 1 disappear and the
plots become noisy (not shown). This is because the
probes in oligonucleotide arrays have different affinities;
the signals from different probes are incomparable with-
out a proper standardization. The figure and the table
show that, while all other six distance measures perform
similar, the new distance measure correlates best with the
regulatory similarity. Only the new distance measure cor-
relates significantly with the regulatory similarity in all
seven data sets. Such improvement is expected since it is
likely that many genes in the close regulatory distance at
the molecular level should not only share their linear pat-
terns but also have similar fold-changes across the sam-
ples. Interestingly, such link is extremely strong regardless

log ( ( )) log ( ( ))2 2
2

1

x m x y m yi i
i

n
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Correlation of median expression distance with the regulatory similarity in seven data setsFigure 1
Correlation of median expression distance with the regulatory similarity in seven data sets. Each point is the 
observed median expression distance of gene pairs as a function of the number of common TFBMs in the pairs. Two expres-
sion distance measures are used: (a) 1 minus correlation, and (b) the new expression distance measure. For each data set, the 
correlation between median expression distance and regulatory similarity is computed. To calculate the significance of such 
correlations, the mapping between genes and their promoter regions were permuted 500 times. When fewer than 5 gene pairs 
have certain regulatory similarity, the median expression distance is computed after combining nearest regulatory similarities 
to make each point in the plots represent at least 5 gene pairs. The genes that share large number of common TFBMs are 
more likely to have correlated expression patterns: sometimes, the effect is present only when they share enough common 
TFBMs. Table 1 summarizes the results with 7 different distance measures. The figure and the Table 1 show that, while all 
other distance measures perform similar, the new distance measure correlates best with the regulatory similarity. Only the 
new distance measure correlates significantly with all seven data sets.
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of the choice of distance measure in the neurofibromato-
sis data, the only tumor data in our analysis. We attribute
this to the inclusion of the transcription factors that are
playing major role in this illness in the 147 available
TFBMs in the binding analysis. Two main transcription
factor complexes, NF-1 and NF-2, relating to the illness
are included in the binding analysis.

Discussion
We established that a simple expression distance measure
that considers both the linear trends and expression fold-
changes across the samples performs better than widely
accepted distance measures do. Before clustering the gene
expression profiles generated from oligonucleotide arrays,
a proper standardization is essential because of the differ-
ent affinities of the probes. We proposed a simple stand-
ardization that leads to the clustering of co-regulated
genes more successfully than other widely used methods
do. In addition, we demonstrated the correlation between
the expression distance and the regulatory distance, in
mouse. In yeast genome, the hypothesis that genes with
similar expression patterns are likely to be regulated via
the same mechanisms has been quantitatively tested with
large-scale data [22]. Our study of such relationship
between co-expression and co-regulation in a mammalian
genome provide a groundwork for current efforts to
develop the combined analysis methods for expression
and cis-regulatory data. We note that, however, the statis-
tically significant correlations are between regulatory sim-
ilarity and median expression distance. The direct

correlation between regulatory similarity and expression
distance is not significant. This is expected because of our
simplistic definition of regulatory similarity and the lim-
ited number (147) of known TFBMs from the murine
genome. Here, we used the strength of such link to com-
pare different expression distance measures but not to
emphasize the correlation between the expression dis-
tance measure and the regulatory similarity. Following the
work on yeast [22], we attempted to introduce the 2nd

order of regulatory distances by accounting indirect regu-
latory relationship between genes but the results were
similar.

Conceptual comparison of the new distance measure with 
others
One minus correlation is widely accepted as the distance
measure between expression profiles; it captures the linear
relationship between expression patterns. It fails, how-
ever, to account the fold-changes in expression between
samples. When one minus correlation is the distance
measure to cluster co-expressed gene groups, each cluster
consist genes with similar linear expression patterns but
with varying fold-changes between samples. As an illustra-
tion, Figure 2 shows a typical gene cluster in a heatmap
diagram. It is the tightest gene cluster on the mice cortex
developmental data generated by a sophisticated cluster-
ing algorithm [23]. The genes in the diagram have tight
linear expression pattern but their fold-changes between
samples are highly variable. Such variability is a general
phenomenon when one minus correlation is the distance

Table 1: Correlations between median expression distance and regulatory similarity. The performance of different distance measures 
were compared in each of seven mouse experiments: Su et al. (Su), Storch et al. (Circadian), the neocortex development (Cortex), 
the murine model of human asthma (Lung), the hippocampus samples from neurofibromin-1 heterozygous study (NF), Zhao et al. 
(Muscle), and Wang et al.(PI). The number of microarrays used in each data set are shown in the first row. The p-values in the 
parentheses are obtained by permuting the mapping between genes and their promoter regions 500 times.

Expression 
distance 
measure

Su 89 Circadian 24 Cortex 17 Lung 39 NF 30 Muscle 54 PI 35

1 – correlation -0.165 (0.422) -0.261 (0.158) -0.636 (0.008) -0.423 (0.124) -0.826 (0.000) -0.358 (0.170) -0.384 (0.198)
1 – cosine 
correlation

-0.802 (0.000) -0.392 (0.106) -0.679 (0.002) -0.456 (0.066) -0.878 (0.000) -0.047 (0.488) 0.016 (0.666)

Square root 1 – 
correlation

-0.177 (0.416) -0.280 (0.230) -0.636 (0.008) -0.412 (0.162) -0.836 (0.000) -0.401 (0.148) -0.396 (0.200)

Square root 1 – 
cosine 
correlation

-0.783 (0.000) -0.401 (0.166) -0.683 (0.002) -0.464 (0.064) -0.869 (0.000) -0.104 (0.490) -0.007 (0.670)

1 – correlation 
after log2 
transformation

-0.178 (0.310) -0.254 (0.124) -0.459 (0.032) -0.534 (0.030) -0.798 (0.000) -0.136 (0.314) -0.035 (0.428)

1 – cosine 
correlation 
after log2 
transformation

-0.685 (0.006) -0.026 (0.346) -0.833 (0.000) -0.830 (0.000) -0.874 (0.000) -0.540 (0.032) 0.346 (0.812)

The new 
distance 
measure

-0.777 (0.000) -0.789 (0.000) -0.735 (0.002) -0.776 (0.000) -0.859 (0.000) -0.774 (0.000) -0.656 (0.000)
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measure. This was the motivation to define a better dis-
tance measure; we hypothesized that many genes in the
close regulatory distance at molecular level not only share
their linear patterns but also have similar fold-changes in
expression across the samples. In our experience, cluster-
ing analysis with correlation as the distance measure often
results in large gene groups. In practice, it is desirable to
reduce the gene numbers and increase the regulatory rele-
vance since the genes are often the starting points for
costly biological experiments. With the new distance
measure, we identified gene clusters in mice cortex data
with both similar linear pattern and similar fold-changes
across the samples with smaller cluster sizes.

Another popular standardization approach is the Pear-
son's correlation on the log-transformed data. One minus
Pearson's correlation is square root of Euclidian distance
after centering and re-scaling the data. Hence, the regula-
tory information in the scale of log fold-changes is lost. In
addition, no longer the genes with similar linear trends
will cluster together. In contrast, the new distance meas-
ure, after log transformation, involves centering but not
re-scaling. Table 1 suggests that the scale of log fold-
changes contains significant co-regulation information.

The preservation of the inherent regulatory information in
expression profiles depend on both the hybridization
process and the expression index calculation methods.
Here, all samples were hybridized according to the
Affymetrix protocol and the expression indices were com-
puted by the multi-array model based approach [24].

Meta data analysis
We proposed the log transformation with base 2. When
expression data from multiple experiments are combined,
however, often variation from certain experiments domi-
nates the analysis. We suggest using different bases for log-
transformation in each experiment, e.g., 280th percentile of the

interquantile ranges of all genes.

Conclusion
The study reveals that the proposed distance measure for
comparing expression profiles reflects the inherent regula-
tory information better than widely accepted distance
measures such as the Pearson's correlation or cosine cor-
relation, with or without log transformation. The distance
measure enables us to identify genes with large number of
common regulatory elements.

Methods
Microarray data
For each data set, the DNA-Chip Analyzer (dChip) was
used to normalize all CEL files to the baseline array and
compute the PM/MM model-based expression [25]. For
each data set, 1000 probe sets with the largest coefficient

Typical co-expressed gene cluster with high correlationFigure 2
Typical co-expressed gene cluster with high correla-
tion. The tightest gene cluster on the mice cortex develop-
mental data is shown as a heatmap diagram; a sophisticated 
clustering algorithm is used with one minus correlation as 
the distance measure. The cluster consists 65 down regu-
lated genes. The green column on the right side of the dia-
gram shows the fold-change between two cortex samples at 
embryonic 8 days and adult age. The expression level matrix 
is standardized: mean subtracted and standard deviation 
divided; the color scheme ranges from -3 (blue, below the 
mean) to 3 (red, above the mean). The white color repre-
sents mean (0 value). The rows correspond to different 
genes, and the columns represent the experimental samples. 
The genes have tight linear expression pattern but their fold-
changes between samples are highly variable. Such variability 
is a general phenomenon when one minus correlation is the 
distance measure.
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of variation and with presence call percentage larger than
20% underwent the subsequent analyses. These probe sets
were filtered to have non-redundant Affymetrix probe set
ID's and non-redundant NCBI RefSeq ID's.

Binding data
We collected 147 position weight matrices (PWM) for
mouse transcription factor binding sites from TRANSFAC.
The PWMs were mapped to the promoter regions (from 5
kb upstream to 1 kb downstream relative to the transcrip-
tional start site) of all genes (12079 non redundant Ref-
Seq IDs) in the two mouse Affymetrix mRNA chips,
MG_U74av2 and MOE430a. For each PWM and each
gene, a sliding window was used to scan the promoter
sequence and a likelihood ratio R between the motif
model and the background model was computed for each
window. The motif was modelled by a Product Dirichlet
distribution whose parameters were defined by PWM. The
background was modelled by a third order Markov chain,
and the transition probability matrix was estimated from
all genes' sequences. For each window, a motif score S was
computed as S = -∑i log(θix)I{bi = x}, where bi is the ith base
of the window, x � {A,C,G,T} and θix represents the prob-
ability of observing x in the ith position of the motif and
was derived from PWM. A window was called as a binding
site if its likelihood ratio R>100 and the observed motif

score, Sobs, satisfies Pr(S<Sobs | PWM) >0.05. The selected
binding sites were then filtered by the cross-species align-
ment score derived from human-mouse-rat whole
genomes: only binding sites in the regions with the top
10% scores in the genome were preserved. R of all the pre-
served binding sites were then added up, and the sum was
adjusted by a factor 6000/Lc, where Lc is the number of all
bases, in the -5 kb~+1 kb promoter region, that have
cross-species alignment score greater than top 10 % of the
genome. This adjusted sum MR was transformed as log(MR
+1) and used as the motif mapping score for that specific
gene and PWM.

To compute the cross-species alignment score, MULTIZ
alignment of human, mouse and rat was downloaded
from UCSC. A 50 base pair sliding window was used to
scan the alignment. A z-score defined by

 was computed for each win-

dow. pobs is the percent identity of human-mouse align-

ment in the window; n is the number of columns in
human-mouse alignment that are not gap vs. gap (i.e. the
denominator used to derive pobs); p is the percent identity

of human-mouse alignments in the surrounding 1 Mb
window, and it controls for the regional variation of dis-

z p p p p nhm obs= − −( ) ( )1

Overview of the binding dataFigure 3
Overview of the binding data. (a) The histogram of the number of the known TFBMs in the promoter region of 12,079 
non-redundant genes. (b) The distribution of the number of common known TFBSs in the promoter regions of all 72,945,081 
gene pairs in 2 mouse chips.
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similarity. A similar z-score, zhr, was computed for human-

rat alignment, and the mean of zhm and zhr was used as the

final score for the window. The cross-species alignment
score for each base was then defined as the maximum
score of all the windows that covers the base.

Then for each PWM, we treat it to be present in the pro-
moter of a gene when the mapping score MR is in the top
10% of same PWM's scores. Figure 3a shows the histo-
gram of the number of the known TFBMs in the promoter
region of each of 12,079 non-redundant genes. Figure 3b
is the relative frequency of the number of common
known TFBMs in the promoter regions of all 72,945,081
gene pairs in 2 mouse chips.

Regulatory similarity
We define regulatory similarity between two genes as the
number of common known TFBMs on their promoter
regions. Although the binding of transcription factor is
not always equivalent to the regulation by the transcrip-
tion factor, the shared transcription factor binding is a
good approximation for co-regulation [22].

Metrics for comparing expression profiles
Seven distance measures for comparing expression pro-
files were considered: 1 minus correlation, 1 minus cosine
correlation, square root of 1 minus correlation, square
root of 1 minus cosine correlation, 1 minus correlation

after log2 transformation, 1 minus cosine correlation after
log2 transformation, and our proposed distance measure
(See table 2).

Significance of the correlation for comparing expression 
distance and regulatory similarity
The correlation between the median expression distance
and the regulatory similarity is computed from all possi-
ble gene pairs. To calculate the significance of such corre-
lation, for each data set, we permuted the mapping
between genes and their promoter regions 500 times and
computed correlation between the median expression dis-
tance and the regulatory similarity. The p-value is the
number of correlations equal or below the observed cor-
relation. Note that, as the regulatory similarity increases,
the standard deviation of median expression distance
becomes large because the number of gene pairs decrease.
When fewer than 5 gene pairs have certain regulatory sim-
ilarity, the median expression distance is computed after
combining the nearest regulatory similarities to make
each point in the plots represent at least 5 gene pairs.
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