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Abstract
Background: Recent years have seen the emergence of genome annotation methods based on
the phylo-grammar, a probabilistic model combining continuous-time Markov chains and stochastic
grammars. Previously, phylo-grammars have required considerable effort to implement, limiting
their adoption by computational biologists.

Results: We have developed an open source software tool, xrate, for working with reversible,
irreversible or parametric substitution models combined with stochastic context-free grammars.
xrate efficiently estimates maximum-likelihood parameters and phylogenetic trees using a novel
"phylo-EM" algorithm that we describe. The grammar is specified in an external configuration file,
allowing users to design new grammars, estimate rate parameters from training data and annotate
multiple sequence alignments without the need to recompile code from source. We have used
xrate to measure codon substitution rates and predict protein and RNA secondary structures.

Conclusion: Our results demonstrate that xrate estimates biologically meaningful rates and makes
predictions whose accuracy is comparable to that of more specialized tools.

Background
Hidden Markov models [HMMs], together with related
probabilistic models such as stochastic context-free gram-
mars [SCFGs], are the basis of many algorithms for the
analysis of biological sequences [11,8,10,16]. An appeal-
ing feature of such models is that once the general struc-
ture of the model is specified, the parameters of the model
can be estimated from representative "training data" with
minimal user intervention (typically using the Expecta-
tion Maximization [EM] algorithm [14]). Combined with
the continuous-time Markov chain theory of likelihood-

based phylogeny, stochastic grammar approaches are
finding similarly broad application in comparative
sequence analysis, in particular the annotation of multi-
ple alignments [83,26,53,46,74,80] (and, in some cases,
simultaneous alignment and annotation [2,58]). This
combined model has been dubbed the phylo-grammar. By
contrast to the single-sequence case (for which there is
much prior art in the field of computational linguistics
[72,51]), the automated parameterization of phylo-gram-
mars from training data is somewhat uncharted territory,
partly because the application of the EM algorithm to phy-
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logenetics is a recent addition to the theoretical toolbox.
The phylo-grammar approaches that have been used to
date have often used approximate and/or inefficient ver-
sions of EM to estimate parameters [59,81], or have been
limited to particular subclasses of model, e.g. reversible or
otherwise constrained models [9,38].

Previously, we showed how to apply the EM algorithm to
estimate substitution rates in a phylogenetic reversible
continuous-time Markov chain model [38]. This EM algo-
rithm is exact and without approximation, using an eigen-
vector decomposition of the rate matrix to estimate
summary statistics for the evolutionary history. We refer
to this version of EM as "phylo-EM".

Here, we report several extensions to the phylo-EM
method. Specifically, we give a version of the phylo-EM
algorithm for the fully general, irreversible substitution
model on a phylogenetic tree (noting that the irreversible
model is a generalisation of the reversible case). We then
present a flexible package for multiple alignment annota-
tion using phylo-HMMs and phylo-SCFGs that imple-
ments these algorithms and is similar, in spirit, to the
Dynamite package for generic dynamic programming
using HMMs [5].

Using this package, it is extremely easy to design, train and
apply a novel phylo-grammar, since new models can be
loaded from an external, user-specified grammar file. Our
hope is that the algorithms and software presented here
will aid in the establishment of phylo-grammars in bioin-
formatics and that such methods will be as widely
adopted for comparative genomics as HMMs and SCFGs
have been.

Overview
In 1981, Felsenstein published dynamic programming
(DP) recursions for computing the likelihood of a phylo-
genetic tree for aligned sequence data, given an underly-
ing substitution model [21]. Together with seminal
papers by Neyman [64] and DayhofF et al.[12,13], this
work heralded the widespread use probabilistic models in
bioinformatics and molecular evolution. Felsenstein's
underlying model is a finite-state continuous-time
Markov chain, as described e.g. by Karlin and Taylor [43].
It is characterised by an instantaneous rate matrix R
describing the instantaneous rates Rij of point substitu-
tions from residue i to j. In the unifying language of con-
temporary "Machine Learning" approaches, Felsenstein's
trees are recognisable as a form of graphical model [66] or
factor graph [50], and the DP recursions an instance of the
sum-product algorithm. (The connection to graphical
models has been made more explicit with recent
approaches that model other stochastic processes on phy-
logenetic trees, such as the evolution of molecular func-

tion [20].) Many parametric versions of this model have
been explored, such as the "HKY85" model [32].

Beginning in the late 1980s, another class of probabilistic
models for biological sequence analysis was developed.
These models included HMMs for DNA [11] and proteins
[8], and SCFGs for RNA [78,18]. Collectively, such models
form a subset of the stochastic grammars. Originally used
to annotate individual sequences, stochastic grammars
were soon also combined with phylogenetic models to
annotate alignments. Thus, trees have been combined
with HMMs and/or SCFGs to predict genes [68] and con-
served regions [23] in DNA sequences, secondary struc-
tures [83,26] and transmembrane topologies [53] in
protein sequences, and basepairing structures in RNA
sequences [46]. We refer to such hybrid models as phylo-
grammars. Associated with these advances were novel
methods to approximate context dependence of substitu-
tion models, such as CpG and other dinucleotide effects
[81,55]. The phylo-grammars can also be viewed as a sub-
class of the "statistical alignment" grammars
[34,37,60,36], which are derived from more rigorous
assumptions about the underlying evolutionary model,
including indels [84].

A compelling attraction of stochastic grammars (and
probabilistic models in general) is that parameters can be
systematically "learned" from data by maximum likeli-
hood (ML). One reasonably good, general, albeit greedy
and imperfect, approximation to ML is the EM algorithm
[14]. EM applies to models which generate both "hidden"
and "observed" data; e.g., the transcriptional/translational
structure of a gene (hidden) and the raw genomic
sequence (observed). The applications of EM to training
HMMs (the Baum-Welch algorithm) [4] and SCFGs
(Inside-Outside) [51] are well-established (reviewed in
[16]), but what of phylo-grammars? While a limited ver-
sion of EM for substitution models was published in 1996
[9,31], the full derivation for the general reversible rate
matrix did not appear until 2002 [38]. The phylo-EM
algorithm for rate matrices has since been further devel-
oped [94,35]. (Various alternatives to phylo-EM, such as
eigenvector projections [3] and the "resolvent" [63], have
also been used to estimate rate matrices; some approxi-
mate versions of phylo-EM have also been described
[81,82].)

Conceptually, EM is straightforward: one simply alter-
nates between imputing the hidden data (the "E-step")
and optimizing the parameters (the "M-step"). The E-step
typically results in a set of "expected counts" which are
intuitively easy to interpret. (For example, the E-step for
phylogenetic trees returns the number of times each sub-
stitution is expected to have occurred on each branch.)
The EM algorithm has been intensely scrutinized and has
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been shown to be versatile, adaptable and fast [25,57],
particularly the special case of phylo-EM [94]. We there-
fore argue that there are strong advantages to combining
the form of EM used to train stochastic grammars (i.e. the
Baum-Welch and Inside-Outside algorithms [16]) with
the phylo-EM form used for parameterizing substitution
models on phylogenetic trees [38].

Previous applications of phylo-grammars
The program we have developed can handle a broad class
of phylo-grammars within one framework. The following
is a brief review of prior work that either uses phylo-gram-
mars, or is ideally suited to the phylo-grammar frame-
work.

This section is subclassified according to the complexity of
the grammar, beginning with the simplest. Generally
speaking, a phylo-grammar can be used to annotate a
multiple sequence alignment in any context where a sto-
chastic grammar could be used to annotate an individual
sequence. The applications span DNA, RNA and protein
sequence annotation.

Point substitution models
A subset of the class of phylo-grammars is the class of
homogeneous substitution models, where the mutation
rate is not a function of position but rather is identical for
every site. Such models can be represented as a single-state
phylo-HMM. Examples include

The Jukes-Cantor model [41], Kimura's two-parameter
model [44], the HKY85 model [32], the general reversi-
ble model [92], and the general irreversible model [91].
In the case of the Kimura and HKY85 models, the rate
matrices are formulated para-metrically: that is, each sub-
stitution rate is expressed as a function of a small set of
rate and/or probability parameters (e.g. in Kimura's
model, there are two rate parameters: the transition rate
and the transversion rate).

Variable-rate models, where the evolutionary rate is
allowed to vary from site to site [90]. Yang used a finite
number of discrete, fixed rate categories to approximate a
continuous gamma distribution over site-specific rates. In
essence, this can be viewed as special cases of the phylo-
HMM of Felsenstein and Churchill [23], with the autocor-
relation explicitly set to zero.

Hidden-state models [48,38]. A relative of the variable-
rate model, the hidden-state model allows a variety of dif-
ferent substitution rate matrices to be used, depending on
a hidden state variable that specifies the structural context
of the site [48]. For example, a hydrophobically-inclined
rate matrix might be used for buried amino acids and a
hydrophilic matrix for exposed amino acids. An extension

to the hidden-state model allows the hidden state variable
itself to change over time at some slow rate, modeling rare
changes in structural context [38]. An alternative exten-
sion allows correlations between hidden state variables at
adjacent sites: this is essentially the idea behind the phylo-
HMM, described below.

Models for synonymous/nonsynonymous substitution
ratio measurement; empirical rate matrices for codon
evolution [27,87]. Codon substitution matrices such as
WAG [87] can be used to measure the ratio r of synony-
mous to nonsynonymous substitution rates, which may
be indicative of purifying (r < 1), neutral (r = 1) or diver-
sifying (r > 1) selection. These models are also related to
the exon prediction phylo-HMMs in EVOGENE [68] and
EXONIPHY [80], described below.

Amino acid substitution models [12,28]. Likelihood cal-
culations using these models can, as with the other substi-
tution models discussed above, be viewed as trivial
applications of phylo-grammars.

Context-sensitive substitution models [81]. Siepel and
Haussler introduced several alternate approximations for
calculating the likelihood of alignments assuming a near-
est neighbor substitution model, suitable for capturing
the context-sensitivity of the substitution process that is
observed in real sequence alignments (most notoriously
in genomes wherein CpG methylation is used as a mech-
anism of epigenetic regulation, leading to elevated rates
for the mutations CpG TpG and CpG ApG). Siepel and
Haussler's method ignores longer-range correlations
induced by nearest-neighbor effects, but is effective in
practice. (It may be regarded as an approximation to the
more rigorous analysis of Lunter and Hein [55].)

Many of these models can be expressed using the General
Parametric Substitution Model, which we define as the
substitution model wherein all substitution rates and ini-
tial probabilities can be expressed as simple functions of a
(reduced) set of rate and probability parameters. As an
example, Kimura's two-parameter model [44] is shown
(see figure 1) along with the HKY85 six-parameter model
[32] (see figure 2).

As long as each parameter in a parametric substitution
model can be interpreted either as a rate (such as Kimura's
transition and transversion rates) or a probability (such as
the HKY85 equilibrium distribution over nucleotides),
the phylo-EM algorithm can be adapted to estimate such
parameters via the computation of expected event counts.
A formal description of the sets of allowable rate and
probability functions is given in the Supplementary Mate-
rial [see Additional file 1].
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Although the particular models used above (Kimura and
HKY85) are reversible, matrices of allowable rate func-
tions can in general be irreversible. Our General Paramet-
ric Model may thus be regarded as a generalisation of the
General Irreversible Model.

Phylo-HMMs
Phylo-HMMs form a class of models slightly more com-
plex than point substitution models. In a phylo-HMM,
each column (or group of adjacent columns) is associated
with a hidden state, representing the evolutionary context
of the site. Each hidden state is conditionally dependent
upon the immediately preceding state (the Markov prop-
erty).

Tasks that have been addressed using phylo-HMMs
include:

Measurement of variation of evolutionary rate among
sites in DNA [23]. Felsenstein and Churchill construct an
HMM with three states. Each state generates an alignment
column according to a point substitution process on a tree
[21]. The overall evolutionary rate for the column
depends on the state from which it is emitted: each state

thus corresponds to a "rate category" (the relative rates for
the three states are 0.3, 2.0 and 10.0). The use of an HMM
allows for an autocorrelated model of rate variation.

Modeling site-specific residue usage in proteins[9,31].
While site-specific profiles are familiar tools in bioinfor-
matics, early tools such as Gribskov profiles [29] and hid-
den Markov models [8] ignored phylogenetic correlations
in the dataset, leading to biased sampling. Phylo-gram-
mars incorporate these correlations directly. In these
papers, Bruno et al. introduced an initial EM algorithm for
estimating rate matrices.

Prediction of secondary structure in proteins[83,26]. In
a similar manner to Felsenstein and Churchill, a three-
state HMM is constructed wherein each state emits an
alignment column using a substitution rate matrix. Here,
however, the states correspond to different units of sec-
ondary structure (loop, -helix and -sheet). The substitu-
tion rate matrix for each state reflects the frequency
distribution and substitution patterns for that secondary
structural class. The method performs less well than estab-
lished secondary structure prediction algorithms, but
shows promise, in particular given the simplicity of the
model (three states only). Later work expanded the
number of states in the phylo-HMM to eight (correspond-
ingly increasing the number of parameters). Note that, as
more parameters are introduced into this kind of phylo-
HMM, the problem of "training" those parameters grows
in importance.

Prediction of exons and protein-coding gene structures
in DNA [68,80]. The basis for the gene prediction pro-
grams EVOGENE and EXONIPHY, respectively, these
phylo-HMMs are based on substitution models for codon
triplets with 43 = 64 states. The paper by Siepel and Haus-
sler introduced the term "phylo-HMM" and used an
approximate version of the EM algorithm introduced by
Holmes and Rubin for parameterization [38].

Detection, modeling and annotation of transcription
factor binding sites in DNA [62]. Here, the EM algorithm
and other formulae of Bruno and Halpern [9,31] is used
to model site-specific residue frequencies in alignments of
promoter regions (rather than proteins, as addressed by
Bruno and Halpern).

Detection of conserved regions in multiple alignments
of genomic DNA [79]. Phylo-HMMs to detect conserved
regions can be viewed as extensions of Felsenstein and
Churchill's original model with more rate categories. This
approach has been used to detect highly-conserved
regions in vertebrate, insect, nematode and yeast
genomes. Approaches measuring the substitution rate per

Kimura's two-parameter modelFigure 1
Kimura's two-parameter model. The state order is {A, C, G, 
T}. Each entry is a function of the reduced parameter set ( , 
) where  and  are rates.

Hasegawa et al's six-parameter modelFigure 2
Hasegawa et al's six-parameter model. The state order is {A, 
C, G, T}. The negative on-diagonal elements have been omit-
ted for brevity (they are constrained by the requirement that 
each row sums to zero). Each entry is a function of the 
reduced parameter set ( , , A, C, G, T) where ( , ) are 
rates and ( A, C, G, T) are probabilities.
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site [79,85], the local indel rate [54] and/or the CpG
mutation bias [81,55] have all shown merit.

Analogously to some of the point substitution models,
many phylo-HMMs can be expressed parametrically. An
example of such a model is the one used by Siepel's
PHASTCONS program, whose phylo-HMM has ten states
ranging from slow to fast overall substitution rate. Moving
from one state to another, the relative substitution rates
between different nucleotides do not change (i.e. the ratio
Rij/Rkl is constant for any i, j, k, l  {A, C, G, T}); only the
overall substitution rate varies (i.e. the absolute value Rij is
not constant). Such consistency across states can be
achieved by writing the rate matrices for the ten states as
k1R, k2 × R, k3 × R... k10 × R where the ki are scalar multipli-
ers and R is a relative rate matrix shared by all the states.
Similarly, the rate matrices of Felsenstein and Churchill's
three-state phylo-HMM can be written 0.3 × R, 2 × R and
10 × R. Both are examples of the general parametric
phylo-HMM.

Phylo-SCFGs
The most complex class of phylo-grammar considered
here is the phylo-SCFG. Most commonly used to model
RNA secondary structure, these grammars are capable of
modeling covariation between paired sites. In an SCFG,
covarying sites must be strictly nested, allowing the mod-
eling of foldback structures but not pseudoknots, kissing
loops or other topologi-cally elaborate RNA structures
[45].

Tasks that have been addressed using phylo-SCFGs
include:

Prediction of RNA secondary structure [46,47]. The
Pfold program in this paper introduced the first phylo-
SCFG, combining stochastic context-free grammars (used
to model RNA structure) with evolutionary substitution
models. Since HMMs are a subset of SCFGs, the frame-
work of phylo-SCFGs includes the previously discussed
phylo-HMMs. The Pfold program also allowed for user-
specified grammars; however, it lacked a fast EM-like algo-
rithm for estimating grammar parameters from data (by
contrast, the non-phylogenetic SCFGs used elsewhere in
bioinformatics can be rapidly trained using the Inside-
Outside algorithm [16]). A key feature of these models is
the use of 16-state "basepair models" for modeling the
simultaneous coevolution of functional base-pairs in RNA
structures. Again, fast and effective parameterization of
the model is an important issue.

Detection of noncoding RNA genes [67]. A similar
model to Pfold was used by the Evofold program, which
uses a phylo-SCFG to parse genomic alignments into non-
coding RNA and other features [67].

Detection of RNA secondary structure within exons
[69]. The RNA-Decoder program uses a parametric phylo-
SCFG to model exonic regions in which there is simulta-
neous selection on both the translated protein sequence
and the secondary structure of the pre-mRNA. Such
regions have been found in viral genomes and hypothe-
sized to fulfil a regulatory role [69]. Due to the complexity
of these models and the sparsity of training data, paramet-
ric rate functions are required to limit the number of free
parameters that must be estimated.

Detection of accelerated selection in human noncoding
RNA [70]. Pollard et al used phylo-HMMs and phylo-
SCFGs to identify a neurally-expressed RNA gene, HARF1,
that had undergone recent accelerated evolution in the
lineage separating humans from the human-chimp ances-
tor.

Implementation
In practice, users of phylo-grammars need to do a similar
core set of tasks in order to perform data analysis. These
tasks may include model development, structured param-
eterization, estimation of parameter values and applica-
tion of the model to annotate alignments. Using the
framework of phylo-grammars, an implementation ena-
bling all these tasks is possible. The EM algorithm pro-
vides a general and consistent approach to parameter
estimation, while standard "parsing" algorithms (the
Viterbi and Cocke-Younger-Kasami (CYK) algorithms
[16]) address the problem of annotation.

We have implemented EM and Viterbi/CYK parsing algo-
rithms in our software. The general irreversible phylo-EM
algorithm, using eigenvector decompositions, is described
in the Supplementary Material to this paper [see Addi-
tional file 1]. (Note that this model is more general than
the "general reversible model" [92], which can be
regarded as a special case wherein the rates obey a detailed
balance symmetry so that iRij = jRji.) The main advance
over previous descriptions of this algorithm [38,81] is a
complete closed-form solution for the M-step of EM for
irreversible models, including a full algebraic treatment of
the complex conjugate eigenvector pairs [see Additional
file 1]. This closed-form solution for the M-step eliminates
the need for numerical optimization code as part of EM.
The Viterbi and CYK algorithms are described in full else-
where [16].

The essential idea of EM is iteratively to maximize the
expected log-likelihood with respect to the rate parameters,
where the expectation is taken over the posterior distribu-
tion of the missing data using the current parameters. In
the case of phylo-EM, the missing data are the sequences
ancestral to the observed sequence data.
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As with many instances of EM, the posterior distribution
over the missing data in phylo-EM can be summarized via
a representative set of "counts" that, being expectations,
have convenient additive properties.

These counts have the following intuitive meaning with
respect to the ancestral states of the evolutionary process:
(i) the expected residue composition at the root node of
the tree; (ii) the expected number of times each type of
point mutation occurred; (iii) the expected amount of
evolutionary time each residue was extant.

Each of these counts is summed over all branches of the
phylogenetic tree and then over all columns in the align-
ment (or groups of columns). The sum over columns is
weighted by the posterior probability that each column
(or group of columns) was generated by a particular state.

Note that it is relatively easy to obtain naive estimates for
the phylo-EM counts (e.g. using parsimony), but that such
naive estimates are in general systematically biased. In
particular, they tend to underestimate the number of sub-
stitutions that actually occurred.

A stochastic grammar consists of a set of "nonterminal"
symbols (equivalent to the "states" of an HMM), a set of
"terminal" symbols and a set of "production rules" for
transforming nonterminals. In a context-free grammar,
each production rule transforms a single nonterminal into
a (possibly empty) sequence of terminals and/or nonter-
minals. The iterative application of such rules can be rep-
resented as a tree structure known as the "parse tree" [16].
In biological applications, there is typically a large
number of parse trees that can explain the observed data.
This contrasts with applications in computational linguis-
tics, where there are typically only a small number of
parses consistent with the data.

To apply EM to a stochastic grammar, one must compute
the expected number of times each production rule was
used in the derivation of the observed alignment. These
expected counts are summed over the posterior distribu-
tion of parse trees, and are calculated using the Inside-
Outside algorithm.

The set of terminal symbols for a phylo-grammar is the set
of possible alignment columns (in contrast to a single-
sequence grammar, where the set of terminal symbols cor-
responds to the residue alphabet). The phylo-EM algo-
rithm is used to estimate the rate parameters associated
with the emission of these symbols by the grammar.

Programs
The following open source software tools, implementing
the algorithms and models described in this paper, are
freely available (see Availability and Requirements).

xgram – a implementation of the EM algorithm for train-
ing phylo-grammars, i.e. the Inside-Outside and Forward-
Backward algorithms combined with the EM algorithm
for the general irreversible (and reversible) substitution
models. This program implements the general irreversible
EM algorithm described in the Supplementary Material
[see Additional file 1], along with the general reversible
EM algorithm described previously [38]. The grammar
can be user-specified via an extensible file format,
described below. Parametric grammars are allowed (so
that individual substitution rates and/or rule probabilities
can be constrained to arbitrary functions of a smaller set
of model parameters). The xgram tool is capable of repro-
ducing most of the phylo-grammar models listed in this
paper. In its generic applicability, xgram is similar to the
dynamic programming engine Dynamite [5], although
the class of models is different (phylo-grammars vs single-
and pair-HMMs) and the functionality broader (including
parameterization by phylo-EM, as well as Viterbi and CYK
annotation codes). Also included is an implementation of
the neighbor-joining algorithm for fast estimation of tree
topologies [77], and another version of the EM algorithm
for rapidly optimising branch lengths of trees with fixed
topology [24]. The model underlying xgram also allows
for dynamically evolving "hidden states" associated with
each site, again as previously described [38].

xrate – a version of xgram including several "preset" gram-
mars for point substitution models, including the general
irreversible and reversible substitution models.

xfold – a version of xgram including several "preset" gram-
mars for RNA analysis, including that of the Pfold pro-
gram [46].

xprot – a version of xgram including several "preset"
grammars for protein analysis, including a grammar sim-
ilar to that used by Thorne et al. for protein secondary
structure prediction [83].

All of the above programs can be driven by any user-spec-
ified phylo-grammar. Having specified a grammar, or cho-
sen one of the presets, the user can

• Estimate the ML parameterization of the grammar for
the training set via EM, using Inside-Outside or Forward-
Backward algorithms (auto-selected by program) [16],
together with the phylo-EM algorithm described in the
Supplementary Material [see Additional file 1];
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• Find the maximum likelihood (ML) parse tree, using
Cocke-Younger-Kasami (CYK) or Viterbi algorithms
(auto-selected by program) [16], with phylogenetic likeli-
hoods calculated by pruning [21];

• Annotate the alignment, column-by-column, with user-
specified labels, using the ML parse tree;

• Find the posterior probability of each node in the ML
parse tree.

The parse tree can also be constrained, completely or par-
tially, by including complete or partial annotations in the
input alignment. For example, one can annotate several
known examples of a TF binding site in a multiple align-
ment. One can then allow the grammar to "learn" these
examples and predict new binding sites.

File formats
The input and output format for sequence alignment data
is the Stockholm format, as used by PFAM and RFAM. The
wildcard character is the period ".". Annotation of col-
umns with the wildcard character allows for incompletely
labeled data and hence partially supervised learning. If a
given annotation is specified in the grammar but absent
from the training data, it will be treated as a string of wild-
cards and all compatible possibilities will be summed
over.

Any phylo-grammar can be specified, using a format
based on LISP S-expressions [56,75]. The format is
human-readable and succinct, while being machine-par-
seable and extensible.

Phylo-grammar specification files contain several ele-
ments:

• An alphabet, describing valid sequence tokens (e.g.
nucleotides or amino acids) along with any degenerate or
(in the case of nucleotides) complementary tokens.

• One or more chains, each describing a finite-state contin-
uous-time Markov chain, including rate parameters;

• Optionally (for parametric models) a set of rate and
probability parameter values;

• A set of transformation rules, which also serve to define
the nonterminals in the grammar.

As an example, the grammar for the Kimura two-parame-
ter rate matrix is shown (see figure 3). A more complete
and up-to-date description of the format can be found
online [88], as can discussion of the latest version of xrate
and its companion programs [89].

Results and discussion
We illustrate the potential of xrate as a quick tool for pro-
totyping phylo-grammars by re-implementing several
prior applications and testing on real and simulated data.

An xgram-format grammar for Kimura's two-parameter modelFigure 3
An xgram-format grammar for Kimura's two-parameter 
model.

;; The grammar.
;; For Kimura’s two-parameter model, the concept of a phylo-grammar
;; is a bit superfluous, but necessary "boilerplate code" to do this
;; sort of thing in xrate.
(grammar
(name KimuraTwoParameterModel)

;; Transformation rules. These follow the pattern for a null model
;; with rate matrix X.
;; There is one emit state, corresponding to emissions from matrix X.
(transform (from (S)) (to (X S*)))
;; A hacky (but common) way of conditioning on the observed alignment
;; length is to set both transition probs from the emit state to one:
(transform (from (S*)) (to (S)) (prob 1))
(transform (from (S*)) (to ()) (prob 1))
;; Finally we clear a flag, indicating we don’t want to re-estimate
;; the rule probabilities during EM training:
(update-rules 0)

;; Here are the parameters for Kimura’s model.
(params
((alpha 4)) ;; transition rate
((beta 1)) ;; transversion rate
) ;; end params

;; Now here is the algebraic structure of the rate matrix.
(chain
;; The state of this chain is a single symbol from alphabet DNA.
;; Call this symbol X.
(terminal (X))
;; The following line indicates that the initial probabilities
;; and mutation rates should be treated as fixed parametric functions,
;; not free variables.
(update-policy parametric)

;; initial probability distribution
(initial (state (a)) (prob 0.25))
(initial (state (c)) (prob 0.25))
(initial (state (g)) (prob 0.25))
(initial (state (t)) (prob 0.25))

;; mutation rates
(mutate (from (a)) (to (c)) (rate beta))
(mutate (from (a)) (to (g)) (rate alpha))
(mutate (from (a)) (to (t)) (rate beta))
(mutate (from (c)) (to (a)) (rate beta))
(mutate (from (c)) (to (g)) (rate beta))
(mutate (from (c)) (to (t)) (rate alpha))
(mutate (from (g)) (to (a)) (rate alpha))
(mutate (from (g)) (to (c)) (rate beta))
(mutate (from (g)) (to (t)) (rate beta))
(mutate (from (t)) (to (a)) (rate beta))
(mutate (from (t)) (to (c)) (rate alpha))
(mutate (from (t)) (to (g)) (rate beta))
) ;; end chain X
) ;; end grammar

;; Define the standard DNA alphabet with IUPAC degeneracies
(alphabet
(name DNA)
(token (a c g t))
(complement (t g c a))
(extend (to n) (from a) (from c) (from g) (from t))
(extend (to x) (from a) (from c) (from g) (from t))
(extend (to u) (from t))
(extend (to r) (from a) (from g))
(extend (to y) (from c) (from t))
(extend (to m) (from a) (from c))
(extend (to k) (from g) (from t))
(extend (to s) (from c) (from g))
(extend (to w) (from a) (from t))
(extend (to h) (from a) (from c) (from t))
(extend (to b) (from c) (from g) (from t))
(extend (to v) (from a) (from c) (from g))
(extend (to d) (from a) (from g) (from t))
(wildcard *)
) ;; end alphabet DNA
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As applications we choose firstly a codon substitution
model which is both computationally intensive and
parameter-rich (due to the size of the rate matrix). Sec-
ondly, we compare xrate's performance in predicting pro-
tein structure to a previously used phylo-HMM. Thirdly,
we compare xrate to a previously used phylo-SCFG for
predicting RNA secondary structure.

To visualize rate matrices, we use figures that we refer to as
"bubble-plots" (see figure 11). In a bubbleplot, the area of
a circle in the main matrix is proportional to the rate of

the corresponding substitution, with the grey circle in the
upper-left repesenting the scale. The offset row shows the
equilibrium probability distribution over states: here, the
area of a circle is proportional to the equilibrium proba-
bility of the corresponding state. Additional color-coding
is used on a case-by-case basis.

Fitting codon models
In the past, various amino acid substitution models have
been estimated using ML techniques (e.g., mtREV [15],
WAG [87]). An ML estimation of codon substitution

An excerpt from an xgram-format grammar reproducing the protein secondary structure phylo-HMM of Goldman, Thorne and JonesFigure 4
An excerpt from an xgram-format grammar reproducing the protein secondary structure phylo-HMM of Goldman, Thorne 
and Jones. This excerpt shows only the transformation rules, and omits the alphabet and chain definitions. Three separate 
Markov chains for amino acid substitution are used (and are assumed to be defined elsewhere in the file): alpha_col denotes an 
amino acid in an alpha helix (annotated with character H), beta_col denotes an amino acid in a beta sheet (annotated with char-
acter E) and loop_col denotes an amino acid in a loop region (annotated with character L).
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models, however, has seemed infeasible for a long time
because of the computational burden involved with such
parameter-rich models. This section shows that xrate is
capable of tackling the problem. The full results of a par-
ticular study are being published elsewhere (Kosiol, Hol-
mes and Goldman, in prep.); here, we will restrict
attention to simulation results showing that xrate can do
these sorts of analyses reliably.

The number of independent parameters for a reversible
substitution model with N character states can be calcu-

lated as . This means that for the estimation

of a 20-state amino acid model, 208 independent param-
eters need to be calculated. In contrast, to estimate a 61-
state codon model (excluding stop codons), 1889 inde-
pendent parameters have to be determined.

To test the robustness of xrate's ability to fit parameter-
rich models to aligned sequence data, we simulated a data
set using all phylogenies of the Pandit database of protein
domain alignments [86], using a standard model of
codon evolution (the MO model [93] [see Additional file
1]). In this model, rates of substitutions involving changes
to multiple nucleotides are zero, so that the rate matrix is
sparsely populated.

xrate is able to recover M0 well from this 'artifical' Pandit
database. The true rates used in the simulation are shown
(see figure 8). These may be compared with the recovered
rates (see figure 9).

A scatter plot of true vs estimated rates allows a more
detailed analysis (see figure 10). This plot shows the true

instantaneous rates  of M0 plotted versus the

instantaneous rates  estimated from data simulated

from M0. If  =  the points would lie on the

bisection line y = x. Thus the deviation of the points from
the bisection line indicates how different the rates are.

If one is interested in drawing biological conclusions from
the estimated rate parameters, then it is of interest to con-
sider xrate's estimates of rates which are zero in the true
model, xrate sometimes inferred erroneously very small
non-zero values for the instantaneous rates of double and
triple changes from the simulated data set (in the M0
model, which was used to generate the data, such substi-
tutions have zero rate). However, this error can be cor-
rectly identified by comparing log-likelihoods calculated
by xrate under the following nested models: For the gen-

N N( )+ −1

2
2

qij
true( )

qij
est( )

qij
true( ) qij

est( )

Example Stockholm-format input file for the protein second-ary structure grammar (see figure 4)Figure 5
Example Stockholm-format input file for the protein second-
ary structure grammar (see figure 4). The alignment is of the 
pancreatic hormone family.

# STOCKHOLM 1.0
#=GF ID pp
#=GF CLASS small
#=GF FAMILY pancreatic hormone
1bba APLEPEYPGDNATPEQMAQYAAELRRYINMLTRPRY
1ppt GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY
1ron YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
//

Example Stockholm-format output using the protein secondary structure grammar (see figure 4) and the pancreatic hormone alignment (see figure 5)Figure 6
Example Stockholm-format output using the protein secondary structure grammar (see figure 4) and the pancreatic hormone 
alignment (see figure 5). Line numbers have been added for reference; note the embedded New Hampshire-format tree at line 
2, the Viterbi bit-score at line 3 and the Viterbi secondary structure annotation at line 7.

1 # STOCKHOLM 1.0
2 #=GF NH (1ron:0.1274,(1bba:0.5087,1ppt:0.5034)node_3:0.1122)root;
3 #=GF SC_max_PROT3 -352.209
4 1bba APLEPEYPGDNATPEQMAQYAAELRRYINMLTRPRY
5 1ppt GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY
6 1ron YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
7 #=GC DSSP LLLLLLLLLLLLLLHHHHHHHHHHHHHHHHHHHLLL
8 //
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eral model allowing for single, double and triple nucleo-
tide changes 1889 parameters had to be estimated. The
best likelihood calculated for general estimation is In Lgen-

eral = -28930383.06. Using xrate we can also restrict the
rate matrices to single nucleotide changes only. For this
model 322 parameters had to be estimated. The best like-
lihood calculated for restricted estimation is lnLrestricted = -
28930894.86.

Although the log-likelihood for the general rate matrix
allowing for single, double and triple changes is better we
can show that the improvement is not significant. Signifi-
cance is tested using a standard likelihood ratio test
between the two models, comparing twice the difference

in log-likelihood with a  distribution, where 1567 is

the degrees of freedom by which the two models differ.

χ1567
2

An excerpt from an xgram-format grammar reproducing the RNA secondary structure phylo-SCFG of Knudsen and HeinFigure 7
An excerpt from an xgram-format grammar reproducing the RNA secondary structure phylo-SCFG of Knudsen and Hein. This 
excerpt shows only the transformation rules, and omits the alphabet and chain definitions. Two separate Markov chains for 
nucleotide substitution are used (and are assumed to be defined elsewhere in the file): LNUC and RNUC denote the left and 
right (i.e. 5' and 3') nucleotides of a co-evolving basepair in a 16-state Markov chain (annotated with characters < and >), while 
NUC denotes an unpaired nucleotide in a 4-state Markov chain (annotated with character _).
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True codon mutation rate matrix for the M0 mechanistic codon mutation model benchmark (see Results and Discussion)Figure 8
True codon mutation rate matrix for the M0 mechanistic codon mutation model benchmark (see Results and Discussion). 
These rates were used to generate simulated data; rates were then estimated from these data and compared to the true rates 
(see figure 9).
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Estimated codon mutation rate matrix for the codon model benchmark (see Results and Discussion)Figure 9
Estimated codon mutation rate matrix for the codon model benchmark (see Results and Discussion). These rates were esti-
mated by xrate from simulated data, generated using a mechanistic rate model (see figure 8).
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Using the normal approximation for  we com-

pare (2(ln Lgeneral - ln Lrestricted)-1567)/  = -9.71

with the relevant 99% critical value of 2.33 taken from a
standard normal  (0,1). The difference is seen to be
insignificant; the P-value is almost 1.

Predicting protein secondary structure
We compared xrate to the phylo-HMM for prediction of
protein secondary structure developed by Goldman,
Thorne, and Jones [26] (here referred to as GTJ). This sec-
tion uses a fully-connected three-state phylo-HMM with
general reversible Markov chains. Training sets were taken
from the HOMSTRAD database of structural alignments
of homologous protein families [61].

We trained the phylo-HMM on alpha-beta barrel align-
ments from HOMSTRAD, leaving out the beta-glycanase
SCOP family. xrate was then benchmarked on this beta-

glycanase SCOP family to compare the annotation pre-
dicted by xrate to the experimentally determined HOM-
STRAD annotation. We also tried a more comprehensive
training regime, training xrate on the complete HOM-
STRAD database (excluding the beta-glycanase SCOP fam-
ily) and again comparing predicted and database
annotations.

The performance of xrate was compared to that of GTJ.
The results show that xrate can be used to quickly proto-
type and train a phylo-HMM with comparable perform-
ance to that reported by Goldman et al.

Grammar
The PROT3 phylo-grammar has state labels for the three
secondary structure classes of alpha-helix (H), beta-sheet
(E) and loop (L). An excerpt of the grammar is shown (see
figure 4).

χ(1567,0.01)
2

2 1567×

Scatter plot comparing true instantaneous rates with estimated rates from simulated data for the codon model benchmark (see Results and Discussion)Figure 10
Scatter plot comparing true instantaneous rates with estimated rates from simulated data for the codon model benchmark (see 
Results and Discussion).
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Bubbleplot of amino acid substitution rates for alpha-helicesFigure 11
Bubbleplot of amino acid substitution rates for alpha-helices. See Results and Discussion for color-coding and explanation of 
bubbleplots.
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Bubbleplot of amino acid substitution rates for beta-sheetsFigure 12
Bubbleplot of amino acid substitution rates for beta-sheets. See Results and Discussion for color-coding and explanation of 
bubbleplots.
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Bubbleplot of amino acid substitution rates for loop regionsFigure 13
Bubbleplot of amino acid substitution rates for loop regions. See Results and Discussion for color-coding and explanation of 
bubbleplots.
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An example of usage for this grammar follows. We also
show an alignment from HOMSTRAD, too small to pre-
dict secondary structure with any confidence, but useful
for illustrative purposes (see figure 5). Suppose we want
to: (1) read in this alignment from a file named ' pp. stk';
(2) load a point substitution matrix from a file named
'dart/data/nullprot.eg' (this is an amino-acid matrix dis-
tributed with xrate; the filename path assumes that the
DART package was downloaded to the current working
directory); (3) use the above point substitution matrix to
estimate a phylo-genetic tree (by neighbor-joining fol-
lowed by EM on the branch lengths); (4) load the PROT3
model from a file named 'dart/data/prot3.eg' (again, this
is distributed with xrate); and (5) use the PROT3 model to
predict secondary structure classes for this protein family,
printing the annotated alignment to the standard output.
The following command-line syntax achieves this:

xrate pp.stk --tree dart/data/nullprot.eg --grammar dart/
data/prot3.eg

The output of this command is shown (see figure 6).

More such examples can be found in DART (the software
library with which xrate is distributed) and on the wiki
pages for the xrate program [89]. A full list of command-
line options for xrate can be obtained by typing xrate –
help or, equivalently, xrate -h.

Results
Both xrate and the GTJ program were evaluated on the
xylanase alignment used by GTJ, hereafter referred to as
gtjxyl. xrate was trained on the subset of HOMSTRAD cor-

responding to alpha-beta barrel structures, with members
of the beta-glycanase SCOP family (which includes the
gtjxyl proteins) removed to prevent overlap between the
training and test sets.

We report the prediction accuracy collectively for all sec-
ondary structure categories, and the sensitivity and specifi-
city with respect to each individual category. These metrics
are defined as follows

Sensitivity(n) = TPn/(TPn + FNn)

Speciflcity(n) = TPn/(TPn + FPn)

Accuracy = ( )/(  + FNn)

where (for secondary structure class n) TPn is the number
of true positives (columns correctly predicted as class n),
FNn is the number of false negatives (columns that should
have been predicted as class n but were not) and FPn is the
number of false positives (columns that were incorrectly
predicted as class n).

Bubbleplots were used to visualize the amino acid substi-
tution rates. Substitutions are colored red if between aro-
matic amino acids, green if between hydrophobics and
blue if between hydrophilics. Substitutions from one such
group to another (e.g. from hydrophobic to hydrophilic)
are colored gray.

Figures 11, 12 and 13 show the amino acid substitution
matrices for the alpha-helix, beta-sheet and loop states,
respectively. The relative rates displayed in the figures in
general agree with what one would expect from each of
those states: the alpha-helix and beta-sheet states substi-
tute more slowly (and thus amino acid conservation is
higher) than for the loop states (loop regions being more
variable in structure [7]).

Table 1 shows the log likelihood scores of the training
alignments, log P(D| ), along with the log-posterior prob-
ability of the HOMSTRAD reference annotation, log
P(A|D, ). In this case, maximum-likelihood training also
yields an increase in the annotation posterior probability

TPn
n
∑ TPn

n
∑

Table 1: Log-likelihood scores of training sets and log-posterior 
probabilities of the true annotations for the PROT3 benchmark. 
Here D denotes the training alignment data (the HOMSTRAD 
database without the beta-glycanase SCOP family), A denotes 
the DSSP annotations of the alignment data, D denotes the 
model with parameters obtained from training on D, and G 

denotes the model with parameters obtained from the GTJ 
datafiles.

log2 P(A, D| ) log2 P(D| ) log2 P(A|D, )

D -173038 -162491 -10547

G -238632 -227979 -10653

Table 2: Effect of tightening the EM convergence criteria for the PROT3 benchmark. The "mininc" parameter is the minimum 
fractional log-likelihood increase per iteration of EM. Accuracies for the gtjxyl benchmark alignment are reported, along with log-
likelihoods. See Table 1 for additional notation.

mininc Runtime/min Acc(gtjxyl) log2 P(A, D| D) log2 P(D| D) log2 P(A|D, D)

le-3 14 64.1 -2696469 -2549947 -146522
le-4 35 64.7 -2686598 -2539908 -146690
le-5 84 68.0 -2682667 -2536849 -145818
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P(A|D, ). This is not in general a guaranteed result of the
EM algorithm, and alternative training procedures (such
as maximum-discrimination training [19]) have been
proposed to achieve this effect. It appears in this case that
such procedures are not required.

Table 2 reports likelihoods, accuracies and runtimes for
training set 2 as the EM convergence criteria are tightened.
As expected, the likelihood increases as the convergence
criteria are made more stringent. The annotation accuracy
for the gtjxyl benchmark alignment also consistently
increases.

Table 3 summarizes the results of running xrate and the
GTJ program on all the test cases. In general the accuracy
of xrate is comparable to or even slightly better than the
accuracy of the GTJ program.

Predicting RNA secondary structure
To illustrate the capability of xrate as a tool for RNA sec-
ondary structure prediction/annotation, we compare it to
Pfold, a phylo-SCFG developed by Knudsen and Hein
[46,47].

There are two goals of this section: (1) to see if xrate can
exactly emulate the Pfold phylo-grammar using the same
parameters as Pfold, and (2) to see if the EM algorithm
can estimate parameters that yield comparable perform-
ance to those produced by other methods.

We benchmarked the Pfold phylo-SCFG running on xrate
against the original Pfold program using alignments from
the Rfam database [30]. To address goal (2), we used xrate
to estimate the substitution rates and initial frequencies of
basepairs and single nucleotides from annotated Rfam
alignments.

Our results show that the Pfold phylo-SCFG is effectively
emulated by xrate, that the EM algorithm can estimate a
more likely parameterization for a given training set and
that the parameters so obtained are comparable in per-
formance to the Pfold program itself. We conclude that
xrate is a suitable platform for developing, parameteriz-
ing, and testing phylo-grammars without the necessity of
writing source code or performing manual parameteriza-
tion.

Grammar
The PFOLD grammar is taken from the Pfold program and
is described in the paper by Knudsen and Hein [46].

An excerpt of the grammar, containing the production
rules, is seen in figure 7 . 

Results
We report the sensitivity and positive predictive value (PPV)
of basepair predictions. These accuracy metrics are
defined as follows

Sensitivity = TP/(TP + FN)

PPV = TP/(TP + FP)

where TP is the number of true positives (base pairs that
are predicted correctly per the Rfam annotation), FN the
number of false negatives (base pairs that are not pre-
dicted but are in the Rfam annotation) and FP the false
positives (predicted base pairs that are not in the Rfam
annotation).

Training and testing sets were obtained by selecting the
148 RNA gene families in Rfam version 7 with experimen-
tally-determined structures, discarding pseudoknots,
removing excessively gappy columns (as this step is also
performed by Pfold), grouping the families into super-
families and randomly partitioning these superfamilies
into two sets [see Additional file 1]. This yielded a training
set of 71 alignments and a testing set of 77 alignments.

The benchmark results, shown in Table 4, indicate that the
sensitivity and PPV of the Pfold program and its emula-
tion on xrate are comparable. It should be noted, how-
ever, that the sets of base pairs predicted by the two
programs are slightly different [see Additional file 1]. After

Table 3: Summary of prediction performance for the PROT3 benchmark. "Sn" and "Sp" are the sensitivity and specificity for each 
secondary structure category; "Acc" is the overall accuracy.

Program Sn ( ) Sp ( ) Sn ( ) Sp ( ) Sn (L) Sp (L) Acc

GTJ 66.7 91.3 63.5 84.0 73.5 77.3 69.6
xrate 71.6 95.7 82.7 79.0 65.2 81.2 70.2

Table 4: Accuracy of RNA secondary structure prediction. 
Comparison of sensitivities and PPVs for the Pfold program, its 
phylo-SCFG running on xrate with its original rates, and its 
phylo-SCFG running on xrate with rates estimated from Rfam by 
the phylo-EM algorithm.

Sensitivity PPV

Pfold 45.0% 58.3%
xrate emulating Pfold 44.4% 61.7%

xrate trained on Rfam 42.8% 58.2%
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examination, we attribute this to differences in implemen-
tation and loss of precision due to numerical calculations.

We also tested whether parameterizing the phylo-SCFG
using the EM algorithm is comparable to the Pfold param-
eterization [46]. A comparison of Pfold's original rates
with the EM-estimated rates is shown in Figures 14–16.
Both sets of parameters display similar trends. Substitu-
tions that create or preserve canonical base pairs are more
frequent than substitutions that destroy basepairs (see fig-
ure 14). Transitions are more common than transver-
sions, both within basepairs (see figure 15) and unpaired
sites (see figure 16). There is a difference in the magnitude
of many of the rates, which we attribute to differences in
the training sets.

The predictive accuracy of Pfold is compared to that of the
xrate-trained phylo-SCFG in Table 4, while log-likeli-
hoods are compared in Tables 5 and 6. The results are sim-
ilar, indicating that the combination of training set and
xrate-implemented EM is comparable to the training pro-
cedure used in the development of Pfold.

An important point to check is whether the EM algorithm
actually performs as designed. We expect to see certain
phenomena if the algorithm is indeed working as
expected:

• The algorithm, over the course of its iterations, should
refine the parameter set (denoted at the n'th iteration by

(n)) to maximize the likelihood of the alignment data D
and (if supplied) the annotation A. Therefore, the log-like-
lihood log P(D| (n)) should increase with n towards an
asymptotic maximum value. This is indeed observed to be
the case for this example (see figure 17).

• In practice, the EM algorithm is not run for an infinite
number of iterations; rather, the algorithm stops when
some "convergence criteria" are met (relating to the frac-
tional increase of the log-likelihood) and the parameters
at this point are considered to be the "convergent param-
eters". We denote this convergent parameter set by *.

• If the EM algorithm is performing effectively (i.e. finding
a parameterization whose likelihood is close to the global

Comparison of basepair substitution rates, colored by basepairing conservation, gain, or lossFigure 14
Comparison of basepair substitution rates, colored by basepairing conservation, gain, or loss. Rates and equilibrium frequencies 
from the Pfold phylo-SCFG (left panel) are compared with those estimated by the phylo-EM algorithm from Rfam (right panel). 
Substitutions from non-canonical to canonical basepairs are blue (pairing gain), canonical to canonical are red (pairing conserva-
tion), non-canonical to non-canonical are black (unpaired and no change), and canonical to non-canonical are yellow (pairing 
loss).
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maximum), we would also expect P(D| *) to be greater
than P(D| ') for some arbitrarily chosen parameterization

' (for example, the Knudsen-Hein parameters, which
were optimized for a dataset other than D). A comparison
of Tables 5 and 6 confirms this to be the case.

• As the convergence criteria become more strict, log
P(D| *) should increase. The results in Table 5 confirm
this to be the case.

• If the training set is representative of the test set, then the
above statements should also hold true when D is taken
to mean the test set. Again, Tables 5 and 6 confirms this.

We note that Tables 5 and 6 shows that the posterior prob-
ability of the true annotation, P(A|D, ) = P(A, D| )/
P(A| ), is also increased after phylo-EM training. As men-
tioned above, this is not a provably guaranteed result of
the EM algorithm, which is designed to maximize only
P(A, D| ).

Conclusion
We have developed a tool, xrate, that combines the power
of stochastic grammars, phylogenetic models, and fast

automated parameter estimation from training data. The
tool combines a novel EM algorithm for estimating rate
parameters of the general irreversible substitution model
(extending our earlier results for reversible models [38])
with the Forward-Backward and Inside-Outside algo-
rithms familiar from the stochastic grammar literature
[16]. Novel grammars can be designed by the user, trained
automatically, and evaluated without the need for writing
or compiling any code. Example grammars that we have
used with xrate so far include the phylo-HMMs used by
Thorne, Goldman and Jones to predict protein secondary
structure [83], the phylo-SCFGs used by Knudsen and
Hein to predict ncRNA structure [46] and the DNA phylo-
HMMs used by Siepel and Haussler to predict protein-
coding genes and find highly-conserved elements
[81,80,39,79].

There are many useful applications of stochastic gram-
mars in bioinformatics. Past triumphs of HMMs include
protein homology detection [49]; prediction of protein-
coding genes [10]; transmembrane and signal peptide
annotation [42]; and profiles of fragment libraries for de
novo protein structure prediction [76]. Applications of
"higher-power" stochastic grammars (i.e. grammars that

Comparison of basepair substitution rates, colored by transitions/transversionsFigure 15
Comparison of basepair substitution rates, colored by transitions/transversions. The rates were obtained from the Pfold pro-
gram and by training on Rfam (see figure 14). Transition of a single base in a pair is dark red, transversion is light red; transi-
tions in both bases is dark green, transition of one and transversion of the other is medium green, transversions of both is light 
green.
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are situated further up the Chomsky hierarchy, such as
Tree-Adjoining Grammars [40]) include beta-sheet pre-
diction [1]; RNA genefinding [74], homology detection
[17] and structure prediction [73]; and operon prediction
[6].

There are also many useful applications of phylogenetic
models. These include reconstruction of phylogenetic
trees [22], measurement of Ka/Ks ratios [27], modeling res-
idue usage [9,31], modeling covariation [71], detecting of
conserved residues [90] and sequence alignment
[84,33,37]. Furthermore, there are many applications of
probabilistic modeling in sequence analysis, e.g. "evolu-
tionary trace" [52] or prediction of deleterious SNPs [65],
that are either directly related to the above kinds of mod-
els or might productively be linked.

xrate and associated tools comprise an up-to-date,
friendly implementation of these models for the advanced

user. We believe these are powerful tools with broad util-
ity. Our results show that the performance of xrate is com-
parable to previously described phylo-HMM and phylo-
SCFG implementations customized to specific tasks, and
furthermore that the rate estimates produced by xrate can
be interpreted in a biologically meaningful way. In releas-
ing this general implementation, our hope is that we and
others will use these computational tools to further the
application of molecular evolution in biomedical
research.

Availability and requirements
Project name : xrate

Project home page : http://biowiki.org/dart

Operating system(s) : Platform independent

Programming language : C++

Table 5: Log-likelihoods of alignments, and log-posteriors of alignment annotations, for training and testing datasets under various EM 
convergence regimes in the PFOLD benchmark. The "mininc" parameter is the minimal fractional increase in the log-likelihood that is 
considered by our EM implementation to be an improvement, while the "forgive" parameter is the number of iterations of EM without 
such an improvement that will be tolerated before the algorithm terminates. The default settings are mininc = le-3, forgive = 0. Here 
D denotes the alignment data, A denotes the RFAM secondary structure annotations of the alignment data and  denotes the model 
with parameters optimized for the training set using the specified EM convergence criteria.

Dataset "mininc" "forgive" log2 P(D, A| ) log2 P(D| ) log2 P(A|D, )

Training set le-3 0 -466330.6649 -453589.9251 -12740.7398
Training set le-4 0 -465397.0642 -453403.7081 -11993.3561
Training set le-5 0 -465397.0642 -453403.7081 -11993.3561
Training set le-3 2 -465821.5239 -453476.0389 -12345.4850
Training set le-3 4 -465565.9224 -453437.5353 -12128.3871
Training set le-3 6 -465397.0642 -453403.7081 -11993.3561
Training set le-3 8 -465291.1983 -453356.6841 -11934.5142
Training set le-4 4 -465147.9174 -453318.4543 -11829.4631
Training set le-4 10 -465010.8431 -453209.0744 -11801.7687
Test set le-3 0 -360472.7960 -343832.6014 -16640.1946
Test set le-4 0 -360190.7940 -344117.5123 -16073.2817
Test set le-5 0 -360190.7940 -344117.5123 -16073.2817
Test set le-3 2 -360148.9090 -343841.2775 -16307.6315
Test set le-3 4 -360178.4500 -344016.2558 -16162.1942
Test set le-3 6 -360190.7940 -344117.5123 -16073.2817
Test set le-3 8 -360092.2930 -344078.8868 -16013.4062
Test set le-4 4 -360057.4880 -344116.5923 -15940.8957
Test set le-4 10 -360108.0100 -344166.2108 -15941.7992

Table 6: Log-likelihoods of alignments, and log-posteriors of alignment annotations, for training and testing datasets using the original 
Pfold program. Comparison with Table 5 shows that EM training increases all probabilities, as desired.

Dataset log2 P(D, A| ) log2 P(D| ) log2 P(A|D, )

Training set -487422.5964 -464828.9148 -22593.6816
Test set -370490.5284 -348550.7516 -21939.7768
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Other requirements : gcc version 3.3 or higher; GNU
build tools (make, ar)

License : GNU GPL

Restrictions to use : None

Abbreviations
CYK : Cocke-Younger-Kasami

DP : Dynamic Programming

EM : Expectation Maximization

HMM : Hidden Markov Model

ML : Maximum Likelihood

PPV : Positive Predictive Value

SCFG : Stochastic Context-Free Grammar
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Comparison of substitution rates of nucleotides in unpaired alignment columnsFigure 16
Comparison of substitution rates of nucleotides in unpaired 
alignment columns. Rates and equilibrium frequencies from 
the Pfold phylo-SCFG (left panel) are compared with those 
estimated by the phylo-EM algorithm from Rfam (right panel). 
Transitions are green, transversions are black.
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