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Abstract

Background: We describe Distill, a suite of servers for the prediction of protein structural
features: secondary structure; relative solvent accessibility; contact density; backbone structural
motifs; residue contact maps at 6, 8 and 12 Angstrom; coarse protein topology. The servers are
based on large-scale ensembles of recursive neural networks and trained on large, up-to-date, non-
redundant subsets of the Protein Data Bank. Together with structural feature predictions, Distill
includes a server for prediction of C ,traces for short proteins (up to 200 amino acids).

Results: The servers are state-of-the-art, with secondary structure predicted correctly for nearly
80% of residues (currently the top performance on EVA), 2-class solvent accessibility nearly 80%
correct, and contact maps exceeding 50% precision on the top non-diagonal contacts. A
preliminary implementation of the predictor of protein C ,traces featured among the top 20 Novel
Fold predictors at the last CASP6 experiment as group Distill (ID 0348). The majority of the
servers, including the C, trace predictor, now take into account homology information from the
PDB, when available, resulting in greatly improved reliability.

Conclusion: All predictions are freely available through a simple joint web interface and the
results are returned by email. In a single submission the user can send protein sequences for a total
of up to 32k residues to all or a selection of the servers. Distill is accessible at the address: http://
distill.ucd.ie/distill/.

Background

De novo prediction of protein three-dimensional struc-
ture from the primary sequence remains a fundamental
and extraordinarily challenging problem. Many one-
dimensional and two-dimensional structural features, i.e.
structural properties of individual residues or of couples
of residues in a protein, have long been identified as use-
ful intermediate representations between the primary

sequence and the full three-dimensional structure, which
can be adopted as a stage towards the prediction of pro-
tein structure and function. For instance accurate second-
ary structure and solvent accessibility information have
been shown to improve the sensitivity of fold recognition
methods (e.g. [1,2]) and are at the core of most ab initio
methods (e.g. see [3]) for the prediction of protein struc-
ture.
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We have developed a number of predictors of structural
features of proteins. Some of the features predicted are
novel and highly informative (e.g. protein contact density
[4], local structural motifs [5], multi-class coarse contact
maps [6]), others are well established (secondary struc-
ture, solvent accessibility, residue contact maps) but pre-
dicted at state-of-the-art accuracy levels [4,7].

All methods are freely available through simple web inter-
faces, which allow the processing of medium- to large-
scale jobs by any selection of the servers with only a small
number of manual submissions.

Implementation

Algorithms

All one- and two-dimensional structural feature predictors
are based on single- or dual-layer Recursive Neural Net-
work architectures for Directed Acyclic Graphs (DAG
RNNs) [8]. One-dimensional feature predictors (i.e. those
mapping the primary sequence into a sequence of the
same length) are based on 1D DAG RNNs [9], while two-
dimensional feature predictors (where a property of pairs
of residues or secondary structure elements is predicted)
are based on 2D DAG RNNs [8,10], or combinations of
the two [6]. All RNNs have shortcut connections to cut the
length of paths between different inputs. This facilitates
the transmission of long-range information, which is rel-
evant to determine non-local structural properties such as
the formation of fsheets. In dual-layer RNNs, the second
layer, or filter, incorporates long-range information
directly (e.g. predicted secondary structure and solvent
accessibility composition, averaged over multiple contig-
uous windows). In this way, information from up to 225
residues is taken into account when a final prediction is
made. For a more detailed description of the models and
training algorithms, see [4-7,11]. All systems adopt large-
scale ensembles of predictors (40 or more models for each
architecture), trained on large, non-redundant datasets
extracted from the PDB [12].

The predictor of C traces relies on a simple optimisation
procedure, similar to that in [13], guided by a potential or
pseudo-energy based on one- and two-dimensional fea-
ture predictions. The target of the optimisation is realising
the C, trace which enforces the predicted features (e.g.
presence of helices, presence or absence of contacts
between residues) "best", while preserving some trivial
properties such as realistic distances between neighbour-
ing C,s and absence of clashes. The optimisation algo-
rithm and potential are described in detail in [11].

Data sets

All predictors of one-dimensional and two-dimensional
features are trained on datasets extracted from the Decem-
ber 2003 25% pdb_select set [14]. We use the DSSP pro-
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gram [15] to assign target structural features and remove
sequences for which DSSP does not produce an output
due, for instance, to missing entries or format errors. After
processing by DSSP, the set contains 2171 protein and
344,653 amino acids (set S2171).

Multiple sequence alignments for S2171 are extracted
from the NR database as available on March 3 2004 con-
taining over 1.4 million sequences. The database is first
redundancy reduced at a 98% threshold, leading to a final
1.05 million sequences. The alignments are generated by
three runs of PSI-BLAST [16]. Multiple alignment genera-
tion in online server operation is handled transparently
and does not require user intervention.

The predictor of C, traces is benchmarked on a subset of
the PDB available on April 5 2005 generated as follows:
all proteins showing more than 22% sequence similarity
to S$2171 or shorter than 30 residues were excluded; the
remaining set was redundancy reduced at a maximum
22% sequence similarity threshold; proteins longer than
200 residues were excluded. The final set contains 258
proteins (S258).

Servers

The Distill suite of servers currently contains 7 predictors:
4 of one-dimensional features (Porter, Porter+, Pale Ale,
BrownAle); 2 of two-dimensional features (XStout and
XXStout); the predictor of Ctraces (3Distill). The chart in
Figure 2 represent the flow of information between the
servers. Details about each server are provided below.

Secondary structure

Porter [7] is a system for protein secondary structure pre-
diction based on an ensemble of 1D DAG-RNN:Ss. Porter is
an evolution of the SSpro [17] server. Porter's improve-
ments include: rich input coding (each residue is coded as
a letter out of an alphabet of 25); output filtering and
incorporation of predicted long-range information (225
residues are considered to yield the final predictions);
large training sets (S2171); large-scale ensembling (45
models). Moreover, when this is available, homology
information to structures in the PDB is provided as a fur-
ther input to the system [18] (see results section).

Structural motifs

Porter+ [5] classifies each residue into one out of 14 local
structural motifs. The motifs are built by applying multi-
dimensional scaling and clustering to pair-wise angular
distances between quadruplets of ® - ¥ dihedral angle
pairs collected from high-resolution protein structures
[19]. Structural motif predictions are highly informative
and provide a finer-resolution picture of a protein back-
bone than (and may be used to improve [5]) traditional
3-class secondary structure. The definition and one-letter
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code for the 14 structural motifs are provided in the help
web page.

Relative solvent accessibility

PaleAle, a novel component of Distill, classifies each resi-
due as being in one of 4 (approximately equally frequent)
classes of solvent accessibility: B = completely buried (0-
4% exposed); b = partly buried (4-25% exposed); e =
partly exposed (25-50% exposed); E = completely
exposed (more than 50% exposed). The architecture of
PaleAle's classifier is an exact copy of Porter's (described
above and in [7]). As in the case of Porter, when available,
homology information to structures in the PDB is pro-
vided as a further input, yielding more accurate predic-
tions [18] (see results section).

Contact density

BrownAle [4] is a system for the prediction of protein
Contact Density. We define Contact Density as the Princi-
pal Eigenvector (PE) of a protein's residue contact map at
8A, multiplied by the principal eigenvalue. Let A(C) = {4
: Cx = Ax} be the spectrum of C (where C is a protein's con-

tact map, for whose definition see below), S ;= {x: Cx =

Ax} the corresponding eigenspace and A = max{1 e
A(C)} the largest eigenvalue of C. The principal eigenvec-

tor of C, x, is the eigenvector corresponding to A, ie.
suchthat Cx = 1 x. Thus, we define a protein's contact

densityas A x.

BrownAle predicts Contact Density in 4 classes. The class
thresholds are assigned so that the classes are approxi-
mately equally numerous, as follows: N = very low contact
density (0,0.04); n = medium-low contact density
(0.04,0.18); c = medium-high contact density (0.18,0.54);
C = very high contact density (greater than 0.54).
BrownAle's architecture is an exact copy of Porter's
(described above). Secondary Structure (by Porter) is fed
as input into BrownAle, beside the primary sequence. Pre-
dicted Contact Density contributes significantly to
improved residue contact map predictions [4], especially
for long-ranged contacts.

Coarse contact maps and topologies

XStout [6] is a system for the prediction of protein coarse
topologies. A protein is represented by a set of rigid rods
associated with its secondary structure elements (o-helices
and fAstrands, as predicted by Porter). 4-class distance
maps and 3-class angle maps between secondary structure
elements are first predicted based on the primary
sequence and on predicted secondary structure and sol-
vent accessibility (by Porter and PaleAle), and coarse 3D
folds of proteins are then assembled starting from these
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maps. 3D reconstruction is carried out by minimising a
cost function taking the form of a purely geometrical
potential. Coarse folds are only predicted when C,, trace
predictions are not available (for proteins longer than 200
residues), or not requested by the user.

Residue contact maps

XXStout [4] is a system for the prediction of protein resi-
due contact maps. The contact map of a protein with N
amino acids is a symmetric N x N matrix C, with elements
Cj; defined as:

if amino acid i and j are in contact

1
U {O otherwise (1)

We define two amino acids as being in contact if the dis-
tance between their C,is less than a given threshold.

XXStout predicts contacts at three different thresholds: 6
A, 8 A and 12 A. Contact maps are predicted as follows:
protein secondary structure, solvent accessibility and con-
tact density are predicted from the sequence using, respec-
tively, Porter, PaleAle and BrownAle; ensembles of two-
dimensional Recursive Neural Networks [4,8,10] predict
the contact maps based on the sequence, a 2-dimensional
profile of amino-acid frequencies obtained from PSI-
BLAST alignments of the sequence against the NR, and
predicted secondary structure, solvent accessibility and
contact density. XXStout is trained and tested in cross-val-
idation on a sample of the S2171 dataset containing only
sequences of length at most 200 residues (1602 proteins
in total).

C, traces

3Distill is a server for the prediction of protein C, traces.
3Distill relies on a fast optimisation algorithm guided by
a potential built on the 6 classes of structural features pre-
dicted by the other systems. A preliminary implementa-
tion of 3Distill (group Distill, ID 0348) [11], was ranked
with model 1 (only one model was submitted) 9-th out of
181 predictors for GDT_TS on Novel Fold hard targets,
and 20-th for Z-score for all Novel Fold and Near Novel
Fold targets (13-th for NF-hard) at the CASP6 competition
[20]. The online version currently available is a substan-
tial improvement of the CASP6 one, based on more accu-
rate structural feature predictions, and on a refined search
algorithm. Homology information to structures in the
PDB is also now exploited, when available. This is
achieved by two means: secondary structure, solvent
accessibility and contact maps are predicted by specialised
systems which incorporate homology information as a
further input [18]; structural similarity to homologues is
directly used in the optimisation. Not surprisingly, the
availability of homology information results in greatly
increased accuracy of the models (see results section).
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Input format

Input into the servers is handled by two simple HTML
forms: one for submissions of single queries (see Figure
1); the other for submitting multiple queries. In both
forms the user must provide an email address, to which
the response will be sent. In the single-query form the user
has also the option of providing a query name, that will
be reported in the server response. In the single-query
form the user needs to provide the query sequence in
plain 1-letter code, with no headers. New-line, tab and
space characters are ignored. In the multi-query form the
user may provide the queries in FASTA format, with each
query name preceded by the > symbol on a line and the
corresponding protein sequence on the following line or
lines (space and tab characters are ignored). If the user
adopts the multi-query form, a separate email will be sent
for each query. The query name quoted in the response
will be the query name as parsed from the FASTA format.
In both forms the user can select any combination of the
servers via a set of tick-boxes. Submissions of up to 32,768
characters (roughly 100 average proteins) are accepted by
the multi-query form, making medium- to large-scale pre-
dictions possible with only a small number of manual
submissions.

Output format

Server responses are sent by email. One-dimensional fea-
ture predictions (secondary structure, structural motifs,
solvent accessibility, contact density) are sent in plain text
attached to the email. A detailed description of the codes,
of their precise definitions, and an example of server
response, are provided in the help web page [21]. The fol-
lowing is an example of server's response to a query
sequence of length 106:

DISTILL
Pre

SUBMIT A QUERY

Prodictions (click for explanation):

¥ Parter (spcondary structure)

[¥ Porter+ flocal structural motifs)

7 PalcAle {relative solvent accessibility)
[¥ BrowmaAle (residue contact density)

Your email address

POIE the pradiction will be sent):
Name of your query (optional):

#X-Stout (residue contact mapsi:
¥ 6A ¥ 0A ¥ 124 ¥ png images
¥ X.Stout (coarse topology)

I¥ 3Distill {full €  trace)

Paste your protoin sequence hero {plain sequence, na headors -
spaces and newlines will be ignored):

Predict | Reset

Please note: it may take several minutes to serve a query.

Q
oY

Figure |

Distill's single-query interface. The multi-query interface
is identical, except that the query name box is missing (names
are extracted directly from the FASTA format).

http://www.biomedcentral.com/1471-2105/7/402

Sequence
Secondary Solvent Contact | Structural
Structure Accessibility Density Motifs
[

Coarse Maps

\

Topology

Length > 200

Length <= 200

Figure 2
Distill's flowchart. Information flows from the top of the
chart to the bottom.

Subject:
XStout,

Porter, PaleAle,
XXStout, 3Distill,

BrownAle,
Porter+ response to 256BA
Query name: 256BA
Query length: 106

Prediction:

ADLEDNMETLNDNLKVIEKADNAAQVKDALT
KMRAAALDAQKATPPKLEDKSPDSPEMKD

CCCHHHHHHHHHHHHHHCCCCCHHHHHHHHH
HHHHHHHHHHCCCCCCCCCCCCCCCHHHH

PhHHHHHHHHHHHHHHg I SHi hHHHHHHHHH
HHHHHHHHHgt CbEEEegsBTIihHHHHH

EEbEEbeEebeEbbEeBeEbEebEeBeEBBE
EBeEbBeeBbEbEbEEbEEeeEEbEebEe

NNcNNcennCeneCnnCceccCceccCcecceCCnCcCce
cCCcCCCcCCnncNNNNNNNNNNNNncnc

FRHGFDILVGQIDDALKLANEGKVKEAQAAA
EQLKTTRNAYHQKYR

HHHHHHHHHHHHHHHHHHHHCCCHHHHHHHH
HHHHHHHHHHHHCCC

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHhH
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bEEbbEebbebBeEBLELBEEEebEEBeebB
EEBeEbeEEbeEEDE

CccCCccCCcCCCeclCleclClecccellecctece
ccCcnccennceccecnNnN

Porter and PaleAle predictions
based on PDB templates

(seqg. similarity up to 100.0%)
All one-dimensional features come predicted in 1-letter
codes. The predictions are split into groups of lines of
length 60. The first line in each group is the 1-letter code
for the primary sequence (always present). The second
line is the secondary structure predicted by Porter (always
present). The symbols have the following meaning:

e H = helix: DSSP's H (¢+helix) or G (3-10 helix) or I (#
helix) classes.

e E = strand : DSSP's E (extended strand) or B (A-bridge)
classes.

e C =therest: DSSP's T (turn) or S (bend) or . (the rest).

The third line represents predictions by Porter+. The line
is present if the user asked for Porter+ predictions. Each
residue is mapped into one of 14 possible structural
motifs coded as 1-letter symbols - the 1-letter code for the
motifs is devised to be mnemonically related to secondary
structure (e.g. motifs 'H' and 'h' are frequent in helices, 'E'
and 'e' in strands, etc.). The online help page provides a
complete description of the codes representing Porter+
outputs.

The fourth line represents relative solvent accessibility
predicted by PaleAle: B = completely buried (0-4%
exposed), b = partly buried (4-25% exposed), e = partly
exposed (25-50% exposed), E = completely exposed
(50% exposed or more). The line is present if the user
requested a PaleAle prediction.

The fifth line reports contact density predictions by
BrownAle. Each letter in the sequence represents a contact
density class: N = very low contact density (0,0.04), n =
medium-low contact density [0.04,0.18), ¢ = medium-
high contact density [0.18,0.54), C = very high contact
density [0.54, + oo). This line is present if the user
requested BrownAle predictions.

Two dimensional feature predictions (residue and coarse
contact maps) come as files attached to the email. XStout's
outputs come as 6 attachments:

http://www.biomedcentral.com/1471-2105/7/402

e Attachment 1 (number.xstout4dc, where number is a 5
digit code for the submission) : the distance map. The seg-
ments (as predicted by Porter — only helices and strand of
length at least two are considered) are listed first, followed
by one line for each pair of segments, indicating predicted
distance range between the two contacts, followed by a
reliability index. Distance ranges predicted are [0A,10A),
[10A,18A), [18A,29A) and [29A, + ). An example of
XStout output is provided in the online help of the servers.

e Attachments 2-6 (number.x.topo.pdb, withx =1 ... 5): 5
coarse reconstructions, in PDB format. Points represented
are the termini of all Helices and Strands of length 2 or
greater — there will be 2N such points in a protein with N
segments.

Residue contact maps defined at 6, 8 and 12 A (files
number.xxstout0o, number.xxstout08 and
number.xxstoutl2) are formatted as an N x N matrix of real
numbers, where the j-th number on row i represents the
estimated probability of contact between residues in posi-
tions i and j. PNG images containing grey-scale represen-
tations of residue contact maps are also automatically
generated, if the user ticks the appropriate box. Figure 3
shows the PNG image of the contact map (thresholded at
12A) for the previous example. Probabilities of contacts
are represented as levels of grey ranging from pure black

Figure 3 .

XXStout PNG example output. The |2A contact map
predicted for the example given in the "output format” sec-
tion.
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(certainty of contact) to pure white (certainty of non-con-
tact).

If 3Distill is selected, 5 models for the C, trace are pro-
vided, if the query is at most 200 residues long. In case it
is longer, fold predictions by XStout are automatically
sent instead. The models come attached to the email in
PDB format, and readable directly by common PDB view-
ers such as Rasmol [22]. An index of reliability of the
model is provided in the remark fields of the PDB files.
The index is an estimate of the TM score [23] of the model
against the true structure, based on: the degree to which
the model enforces the various predicted constraints; the
size and estimated secondary structure composition of the
query; the absence or presence (and, in the latter case,
degree) of sequence similarity between the query and
entries in the PDB. The reliability index, a novel compo-
nent of Distill, is estimated by an artificial neural network
trained in 5-fold cross-validation on 25800 C, trace
reconstructions from the S258 set.

If homology information from the PDB is detected and
used, this is indicated in the text of the response (along-
side the percentage of sequence similarity to the best PDB
template used) and in the remarks of the PDB files when
these are present.

Results

Porter, tested by a rigorous 5-fold cross validation proce-
dure on S2171, achieves 79% correct classification on the
"hard" CASP 3-class assignment (DSSP H, G, I — helix; E,
B — strand; S, T, . — coil) [7], and currently has the high-
est performance (approximately 80%) of all servers tested
by assessor EVA [24]. When homology information from
the PDB is available, Porter's predictions are more relia-
ble, up to over 90% correct (in the sense of matching
DSSP assignments) when templates with over 90%
sequence similarity are available [18], and about 88% for
all residues for which any template information is availa-
ble. This result is not surprising by itself because, although
different programs for assigning secondary structure from
the experimental structure often differ by up to 20%, once
a semantics is chosen (e.g. DSSP over STRIDE or DEFINE)
it is possible to classify secondary structure almost per-
fectly [25]. That is, it is true that there is some ambiguity
in the assignment of secondary structures, but this is in

Table I: XXStout performance.

separation 26 212 224

8A 46.4% (5.9%)
12A 89.9% (2.3%)

35.4% (5.7%)
62.5% (2.0%)

19.8% (4.6%)
49.9% (2.2%)

Top protein length/5 contacts classification performance as:
precision%(recall%)

http://www.biomedcentral.com/1471-2105/7/402

Table 2: XXStout performance.

separation 26 =12 >24

8A 36.6% (11.8%)
12A 85.5% (5.5%)

27.0% (11.0%)
55.6% (4.6%)

15.7% (9.3%)
43.8% (4.9%)

Top protein length/2 contacts classification performance as:
precision%(recall%)

large part due to the different definitions of secondary
structures by different automated assignment programs,
and only by a smaller amount to actual uncertainties as to
what the structure may be.

PaleAle's accuracy, measured on the same large, non-
redundant set adopted to train Porter (S2171) exceeds
53% correct 4-class classification, and roughly 80% 2-
class classification (Buried vs Exposed, at 25% threshold).
As in the case of Porter, predictive accuracy improves sig-
nificantly when homology information is available [18],
up to 70% correct prediction for the 4-class case and 87%
for the 2-class one, when templates with over 90%
sequence similarity are available, and roughly 65% for
residues for which any kind of template information is
available.

The accuracy of BrownAle, measured on §2171, is 46.5%
for the 4-class problem, and roughly 73% if the 4 classes
are mapped into 2 (dense vs. non dense). In both cases the
classification performance of BrownAle is 16% above a
base-line statistical predictor [4].

Tables 1 and 2 summarise the performances of XXStout
measured on one fifth of the S2171 set after the exclusion
of proteins longer than 200 residues (327 chains in total).
Performances are given for the protein length/5 and pro-
tein length/2 contacts with the highest probability, for
sequence separations of at least 6, at least 12, and at least
24, in CASP style [26]. These performances compare
favourably with the best predictors at the latest CASP com-
petition [4].

Figure 4 shows the expected accuracy of the C trace recon-
structor, as a function of sequence similarity to the closest
homologue in the PDB, measured on the S258 set. The
accuracy is measured as the TM score to the C, trace of the
experimental structure. For sequence similarity above
30% the predictions' TM score is on average slightly above
0.7 indicating high reliability, is approximately 0.45 in
the 20-30% interval, and 0.27 in the region below 20%.
If reconstruction performances are measured on the S258
set without allowing homology information at any stage
(pure ab initio predictions) the average TM score is 0.27,
with 43 of the 258 structures above a TM score of 0.4 [11].
The reliability score reported in the remarks field of the
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Sequence identity to the best template

Figure 4

Expected performances of 3Distill. 3D reconstruction
performances measured as average TM scores against the
correct structure. Tested on the 5258 set (see text for
details). Maximum sequence similarity allowed to homo-
logues in the PDB: 95%.

PDB file has an average correlation of 0.7 with the TM
score against the true structure, and thus provides a good
estimate of the quality of the prediction.

Conclusion

The servers we designed allow the annotation of protein
sequences with a number of structural features which are
at least partially orthogonal. Given the speed of the under-
lying methods, large- or even genomic-scale predictions
can be handled by our servers in response of users' queries
- with up to 32,768 residues handled in a single submis-
sion. Up to 20,000 queries per day can be processed by the
servers based on their current implementation (a 40 CPU
cluster), and nearly 30,000 tasks from 63 national or
supernational domains have been served to date.

Our servers provide fast, reliable prediction of protein
structural features for the ab initio case, and allow fast, reli-
able, large-scale predictions of protein structures for the
case in which some homology to the PDB is detectable.

We are in the process of: extending the use of homology
information to all prediction stages; building a parallel
pipeline to Distill, for the case in which marginal similar-
ity templates exist in the PDB for a query. Training of the
systems for the latter case is completed and we expect that
the new pipeline will be running over the next few
months, complementing the current system with high-
throughput fold recognition facilities.

Availability and requirements
The servers are freely available for academic users at the

address http://distill.ucd.ie/distill/. Linux and Windows

binaries for all the servers are freely available for academic

http://www.biomedcentral.com/1471-2105/7/402

users upon request. The sets used for training, testing and
benchmarking the servers (S2171 and S258) are available
upon request.

Authors' contributions

DB designed implemented and benchmarked the C,trace
reconstructor. AJMM designed and implemented the code
for homology detection. CM designed and tested Porter+
and the homology-based versions of Porter and PaleAle.
AV contributed the idea behind BrownAle, and created
XStout. IW designed and implemented XXStout. GP
designed Porter, BrownAle, and parts of XStout, and sug-
gested the structure of the overall predictive pipeline,
including its homology-based component. The manu-
script was written by GP, AV and DB, and approved by all
authors.

Acknowledgements

We wish to thank Quan Le for useful discussions. This work is supported
by Science Foundation Ireland grants 04/BR/CS0353 and 05/RFP/CMS0029,
grant RP/2005/219 from the Health Research Board of Ireland, a UCD
President's Award 2004, and an Embark Fellowship to AV from the Irish
Research Council for Science, Engineering and Technology. We also wish
to acknowledge the SFI/HEA Irish Centre for High-End Computing
(ICHEC) for the provision of computational facilities and support.

References

I.  Jones D: GenTHREADER: an efficient and reliable protein
fold recognition method for genomic sequences. | Mol Biol
1999, 287:797-815.

2. Przybylski D, Rost B: Improving fold recognition without folds.
J Mol Biol 2004, 341:255-269.

3. Bradley P, Chivian D, Meiler J, Misura K, Rohl C, Schief W, Wede-
meyer W, Schueler-Furman O, Murphy P, Schonbrun |, Strauss C,
Baker D: Rosetta predictions in CASP5: Successes, failures,
and prospects for complete automation. Proteins 2003,
53(S6):457-68.

4. Vullo A, Walsh |, Pollastri G: A two-stage approach for improved
prediction of residue contact maps. BMC Bioinformatics 2006,
7(180):.

5. Mooney C, Vullo A, Pollastri G: Protein Structural Motif Predic-
tion in Multidimensional ¢ - y Space leads to improved Sec-
ondary Structure Prediction. Journal of Computational Biologyin in
press.

6. Pollastri G, Vullo A, Frasconi P, Baldi P Modular DAG-RNN
Architectures for Assembling Coarse Protein Structures.
Journal of Computational Biology 2006, 13(3):631-650.

7.  Pollastri G, McLysaght A: Porter: a new, accurate server for pro-
tein secondary structure prediction. Bioinformatics 2005,
21(8):1719-20.

8. Baldi P, Pollastri G: The Principled Design of Large-Scale
Recursive Neural Network Architectures - DAG-RNNs and
the Protein Structure Prediction Problem. Journal of Machine
Learning Research 2003, 4:575-602.

9. Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G: Exploiting the
past and the future in protein secondary structure predic-
tion. Bioinformatics 1999, 15:937-946.

10. Pollastri G, Baldi P: Prediction of Contact Maps by Recurrent
Neural Network Architectures and Hidden Context Propa-
gation from All Four Cardinal Corners. Bioinformatics 2002,
18(Suppl 1):562-S70.

Il. Pollastri G, Bau D, Vullo A: DISTILL: A Machine Learning
Approach to Ab Initio Protein Structure Prediction. In Anal-
ysis of Biological Data: A Soft Computing Approach Edited by: Bandyopad-
hyay S, Maulik U, Wang J. World Scientific in press.

Page 7 of 8

(page number not for citation purposes)


http://distill.ucd.ie/distill/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10191147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10191147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15312777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16573808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16573808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16706716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16706716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10743560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10743560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10743560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169532

BMC Bioinformatics 2006, 7:402

21.
22.
23.

24.

25.

26.

Berman H, Westbrook |, Feng Z, Gilliland G, Bhat T, Weissig H,
Shindyalov |, Bourne P: The Protein Data Bank. Nucl Acids Res
2000, 28:235-242 [http://pdbbeta.rcsb.org/pdb/Welcome.do].
Vendruscolo M, Kussell E, Domany E: Recovery of protein struc-
ture from contact maps. Folding and Design 1997, 2:295-306.
Hobohm U, Sander C: Enlarged representative set of protein
structures. Protein Sci 1994, 3:522-24 [http://bioinfo.tg.fh-gies
sen.de/pdbselect/].

Kabsch W, Sander C: Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometri-
cal features. Biopolymers 1983, 22:2577-2637.

Altschul S, Madden T, Schaffer A: Gapped BLAST and PSI-
BLAST: a new generation of protein database search pro-
grams. Nucl Acids Res 1997, 25:3389-3402.

Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction
of protein secondary structure in three and eight classes
using recurrent neural networks and profiles. Proteins 2002,
47:228-235.

Pollastri G, Martin AJM, Mooney C, Vullo A: High-throughput
comparative modelling of protein secondary structure and
solvent accessibility. . submitted

Sims GE, Choi |, Kim S: Protein conformational space in higher
order y~¢ maps. PNAS 2005, 18:618-621.

Vincent J, Tai C, Sathyanarayana B, Lee B: Assessment of CASPé6
Predictions for New and Nearly New Fold Targets. Proteins
2006, 61(S7):67-83.

Distill [Http:/distill.ucd.ie/distill/]

Sayle R, Milner-White E: RasMol: Biomolecular graphics for all.
TIBS 1995, 20(9):374.

Zhang Y, Skolnik J: Scoring function for automated assessment
of protein structure template quality. Proteins 2004,
57(4):702-710.

Eyrich V, Marti-Renom M, Przybylski D, Madhusudan M, Fiser A,
Pazos F, Valencia A, Sali A, Rost B: EVA: continuous automatic
evaluation od protein structure prediction servers. Bioinfor-
matics 2001, 17:1242-1251.

Ceroni A, Frasconi P, Pollastri G: Learning Protein Secondary
Structure from Sequential and Relational Data. Neural Net-
works 2005, 18(8):1029-39.

Moult |, Fidelis K, Zemla A, Hubbard T: Critical assessment of
methods of protein structure prediction (CASP)-round V.
Proteins 2003, 53(S6):334-9.

http://www.biomedcentral.com/1471-2105/7/402

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Page 8 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://pdbbeta.rcsb.org/pdb/Welcome.do
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019422
http://bioinfo.tg.fh-giessen.de/pdbselect/
http://bioinfo.tg.fh-giessen.de/pdbselect/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
Http://distill.ucd.ie/distill/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16182513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16182513
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Algorithms
	Data sets
	Servers
	Secondary structure
	Structural motifs
	Relative solvent accessibility
	Contact density
	Coarse contact maps and topologies
	Residue contact maps
	C

	Input format
	Output format

	Results
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

