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Abstract
Background: Single nucleotide polymorphisms (SNP) constitute more than 90% of the genetic
variation, and hence can account for most trait differences among individuals in a given species.
Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions
even with stringent parameter values. We developed a machine learning (ML) method to augment
PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to
other bioinformatics problems in predicting genes, promoters, transcription factor binding sites
and protein structures.

Results: The ML program C4.5 was applied to a set of features in order to build a SNP classifier
from training data based on human expert decisions (True/False). The training data were 27,275
candidate SNP generated by sequencing 1973 STS (sequence tag sites) (12 Mb) in both directions
from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate
SNP were generated similarly from 1359 additional STS (8 Mb). SNP from both sets were classified
by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data
compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive
values (PPV) (i.e., fraction of candidate SNP being real) were 7.8% for all predictions and 16.7% for
those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to
10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the
ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The
complexity of the soybean genome may have contributed to high false SNP predictions by
PolyBayes and hence results may differ for other genomes.

Conclusion: A machine learning (ML) method was developed as a supplementary feature to the
polymorphism detection software for improving prediction accuracies. The results from this study
indicate that a trained ML classifier can significantly reduce human intervention and in this case
achieved a 5–10 fold enhanced productivity. The optimized feature set and ML framework can also
be applied to all polymorphism discovery software. ML support software is written in Perl and can
be easily integrated into an existing SNP discovery pipeline.
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Background
Machine learning
Machine learning (ML) is the study and computer mode-
ling of learning processes including the acquisition of new
declarative knowledge, organization of new knowledge
into general effective representations, and the discovery of
new facts through observation and experimentation.
Machine learning programs are advantageous in many
cases where the input/output pairs can be specified, but
the concise relationship between the input/output pairs is
not known. Machine learning programs can help in
extracting the complex relationships and correlations hid-
den in large data sets (a process sometimes known as data
mining).

The prediction accuracy of different machine learning pro-
grams varies and depends on the type of problem, dataset
and the algorithm used. Examples of application domains
include protein classification[1] tissue classification for
different types of cancer[2], protein secondary structure
prediction [3], text mining[4], protein-protein interac-
tions[5] and RNA binding proteins[6]. The most common
ML algorithms include decision trees, production rules,
support vector machines, naïve Bayes, neural networks,
and genetic algorithms. There are several free software
suites available, including Weka [7], C4.5 [8], and GIST
[9].

SNP discovery
Single nucleotide polymorphisms (SNP) are single base
variations or short insertions/deletions in the nucleotide
sequence from different individuals or between homolo-
gous sequences within an individual. SNP markers are rel-
atively dense and abundant when compared to other
marker types. SNP can be used for distinguishing between
individuals and species, genetic analysis of disease and
complex traits, assessment of linkage disequilibrium
(LD), haplotype map generation, pharmacogenomics, etc.
In a large scale SNP discovery project after sequencing and
assembly of the sequences from different individuals/gen-
otypes, candidate SNP are usually identified by using pro-
grams like PolyBayes [10] or PolyPhred [11].

PolyPhred is more commonly used for SNP detection in
re-sequencing data as it can detect the heterozygotes. Poly-
Bayes was designed to statistically detect SNPs in multiple
alignments of overlapping EST or shotgun sequences.
However, PolyBayes is more suitable for soybean re-
sequencing data as soybean is an extensively in-bred spe-
cies and most "heterozygous" bases observed would be
due to single base differences between paralogs. Each of
the candidate SNP identified by PolyBayes is expertly ver-
ified by visual inspection. The criteria for a good SNP
include high quality phred scores of the varying base posi-
tion, minor allele frequency, agreement between the for-

ward and reverse reads and co-variance of polymorphisms
for the same genotype. This paper addresses the issue of
reducing the amount of intervention required by human
experts.

Application of machine learning in polymorphism 
discovery
To reduce the cost of expert intervention in polymor-
phism discovery, we applied the ML program C4.5 [8] to
train a SNP classifier model from an expert reviewed data-
set. The classifier can be subsequently used to predict
unseen cases. C4.5 was chosen because it gives prediction
for a previously unseen case and also generates a decision
tree (or a set of production rules) that can be interpreted
to understand the expert evaluation process in more detail
(Fig. 1). C4.5 program is freely available with open source
C code that can be compiled and executed on nearly any
platform. A decision tree consists of a number of nodes,
where each node corresponds to a test based on a single

Application of machine learning program in training and test/prediction modesFigure 1
Application of machine learning program in training 
and test/prediction modes. The left side of the flow chart 
represents the training mode where the input features along 
with the expected output are fed simultaneously to the ML 
program. The program then analyzes the data and generates 
a model in the form of decision tree or a set of production 
rules. The right side of the flow chart represents the testing 
or prediction mode where the model generated in the train-
ing mode is used to evaluate a new set of input features for 
predicting an expected output.
Page 2 of 9
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:4 http://www.biomedcentral.com/1471-2105/7/4
feature. At each point in the construction of the decision
tree, C4.5 selects the feature to test based on maximum
information gain. The goal is to generate a minimum size
tree that correctly classifies all the elements in the training
set. The size of the tree is the number of nodes (decision
nodes + leaves) and the numbers of errors are the misclas-
sified cases. The program also gives projected prediction
accuracy for unseen cases. Production rules are generated
by starting with an initial rule set and iteratively improv-
ing the rule set using heuristic techniques or by first gen-
erating a tree and then converting the tree into an
equivalent rule set and finally pruning unnecessary rules.

Specific objectives of this study were to

(1) identify features that can influence the polymorphism
scoring decisions,

(2) develop a software program for applying the ML pro-
gram C4.5 to SNP features,

(3) optimize features to improve prediction accuracy of
the classifier,

(4) use optimized feature set on a large dataset for
improved prediction accuracy.

Results
Training and test data
The training/test candidate polymorphism data for imple-
menting ML algorithms was extracted from a large-scale
soybean STS amplification and sequencing project. For
the primers designed the STS that produced a single dis-
crete band PCR product on agarose gel electrophoresis

were sequenced. A total of 3332 STS comprising 20 Mb
were sequenced from both directions in 6 inbred individ-
uals representing each of 6 diverse soybean genotypes pre-
viously identified by Zhu et al [12]. Most of these data
have a uniform sequence depth of 6 reads in each direc-
tion. These data were split into a training set consisting of
1973 STS (12 Mb sequence) with 27,275 candidate poly-
morphisms (identified by the PolyBayes program) and a
test set of 1359 STS (8 Mb sequence) with 18,390 candi-
date polymorphisms. Subject matter experts classified the
above candidate polymorphisms as 2969 true and 24,306
false in the training set and 1435 true and 16,955 false in
the test set.

Application of PolyPhred
PolyPhred is a commonly used tool for polymorphism
identification in re-sequencing data as it can detect heter-
ozygotes. Application of PolyPhred on the test data
resulted in only 1346 candidates (743 true positive, 563
false positive). Thus the sensitivity of this tool for this
dataset is only 54.5% with a positive predictive value of
58.1%. The poor performance of polyphred in this case
may be partly because of the un-suitability of this tool for
in-bred species like soybean where heterozygosity is
mostly due to sequencing noise or co-amplification of
paralog sequences. In the latter case all genotypes appear
to be "heterozygous" at a given position and PolyPhred
identifies a SNP at that position.

Feature selection and optimization
While ML programs are useful for creating classifiers
based on a given set of features, the selection of the rele-
vant features is often a challenging task, usually requiring
an iterative approach. We first selected a set of 10 features

Table 1: Final set of optimized features chosen for machine learning

Feature Number Feature Variable Type

1 Sequence depth Continuous
2 Variation type transition transversion indel
3 PolyBayes probability Continuous
4 Frequency of major allele Continuous
5 Frequency of minor allele Continuous
6 Relative distance from closest end Continuous
7 Agreement in the forward and reverse reads Continuous
8 Maximum quality of the major allele Continuous
9 Maximum quality of the minor allele Continuous
10 Average quality of major allele Continuous
11 Average quality of minor allele Continuous
12 Haplotype of second variation Continuous
13 Local average quality Continuous
14 Overall average quality Continuous
15 Alignment quality Continuous
16 Common repeats Repeat_type

A detailed definition and explanation of these features is given the methods section. The values for the features can be continuous in a given 
numerical range or discrete with limited options.
Page 3 of 9
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:4 http://www.biomedcentral.com/1471-2105/7/4
that were likely to influence the human expert when clas-
sifying a putative SNP. These features were then optimized
by modifying the existing features and adding new fea-
tures that helped in improving the prediction accuracy.
The final set of optimized features is given in Table 1.

Description of these features is given in the methods sec-
tion. The optimization runs for feature selection are dis-
cussed in more detail at the website containing
supplementary material [21].

Application of C4.5 on training data and evaluation on test 
dataset
A software program was developed to extract the features
described above, execute C4.5 and analyze the results. The
software features are described in the methods section 5.2.
A five fold cross-validation was performed on the training
data of 27,275 cases using both available options with
C4.5 i.e., decision tree and production rules. To perform
the cross-validation, the data were divided into five parts
and the ML classifier was recursively trained on four parts
and tested on the remaining part (analogous to a jack-
knife procedure). The performance of the resulting deci-
sion trees/production rules was evaluated (definitions of
the measures used are given in the methods section 5.3).
The average prediction accuracies of validation runs were
above 96.5%.

A new decision tree and production rule set was con-
structed using the training set of 27,275 cases and was
then applied to the test set of 18,390 previously unseen
cases. Results are shown in Table 2.

Since only PolyBayes predictions were used in both train-
ing and test data sets, the true negative and false negative
terms for PolyBayes are not known for this study. The pre-
diction accuracy of ML algorithms using both decision
trees and production rules was above 96%. Also imple-
mentation of ML algorithms resulted in 10 fold increase
in productivity by increasing the PPV from 7.8% to
84.8%.

The number of false positives in the training/test data set
is expected to decrease by increasing the PolyBayes thresh-
old probability values. From Table 3, it can be observed
that the numbers of TP and FP both increased with the
PolyBayes probability score, to reach a maximum PPV of
16.7% with a PolyBayes posterior probability of 1.00. By
using machine learning the overall PPV can be enhanced
to 82.8%. The ML PPV did not improve with the confi-
dence values from the ML algorithm; hence confidence
values were not informative.

Subject matter expert re-analysis of a small sample of 116
candidate SNP where ML algorithm prediction did not
agree with the expert decision revealed that some of the
decisions were subjective and those can influence the ML
algorithm. Out of the 116 re-evaluated calls, 52 calls were
re-classified and 64 calls were confirmed to be correctly
annotated by the expert previously. Some of the reasons
cited for re-classification were SNP calls made even with
poor sequence quality (32), misalignment of bases (7),
deletions overlooked (2) and simple sequence repeat pol-
ymorphism (SSR) (3). Similar considerations may
account for some of the 19.7% SNP not flagged by the ML

Table 2: Comparison of ML and PolyBayes on test data set

Measure Decision Tree Production Rules PolyBayes

TP 1153 1202 1435
TN 16,748 16,706 NA
FP 207 249 16,955
FN 282 233 NA
Accuracy 97.3 97.4 7.8
Sensitivity 80.3 83.8 100 (Set)
Specificity 98.7 98.5 NA
Positive Predictive Value 84.8 82.8 7.8
Negative Predictive Value 98.3 98.6 NA

We define the following terms used to contrast ML performance with PolyBayes: We say that a SNP prediction program produces a true positive 
(TP) if it predicts a SNP that is judged true by the expert. Likewise, a false positive (FP) is a predicted SNP that is judged false by the expert, a true 
negative (TN) is a prediction of a non-SNP that concurs with the expert, and a false negative (FN) is a failure to identify a SNP that is identified by 
the expert. Also the following parameters were used to measure the performance of the ML output: Accuracy (i.e., fraction of candidate SNP 
correctly classified), sensitivity (i.e., fraction of positive outcomes correctly identified), specificity (i.e., fraction of the negative outcomes correctly 
identified), positive predictive value (i.e., fraction of predicted SNP being true) and negative predictive value (i.e., fraction of predicted false SNP 
being correctly classified)
Accuracy = (TP + TN)/total
Sensitivity = TP/(TP + FN)
Specificity = TN/(FP + TN)
Positive Predictive Value (PPV) = TP/(TP + FP)Negative Predictive Value (NPV) = TN/(TN + FN)
Application of machine learning program substantially reduces the number of false positives from 16,955 to only about 250. Other statistical 
measures also demonstrate considerable advantage in the application of machine learning.
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algorithm. Subject matter experts scored differently in
some cases especially with low reliability ambiguous
sequence data and others were errors due to oversight.
Decision trees and production rules revealed interesting
insights in the expert decision criteria and helped improve
ML features (Fig. 2).

ML programs other than C4.5
Several ML algorithms other than C4.5 such as neural net-
works, SVM and genetic algorithms are being widely used.
In this study we explored the use of feed forward neural
networks (Matlab toolbox) for the same dataset with dif-
ferent options (number of nodes, layers and training algo-
rithms) and obtained similar overall accuracies (97%)
and marginal increase in PPV up to 87%. Details of these
runs are provided as supplementary materials on the web-
site. C4.5 is free software that can be implemented with
relative ease with an equivalent performance for the
options tested with neural networks.

Discussion
The soybean has a complex genome, with studies suggest-
ing multiple rounds of duplication of some genomic
regions resulting in high paralog frequency [13-15], This
complex genome structure may account to some extent
for observing a higher number of false positive SNP from
the PolyBayes analysis. Soybean is an extensively inbred
species and the variation between the two homologous

chromosomes is negligible. Hence, PolyBayes, rather than
PolyPhred, was used for SNP discovery for these data. This
paper only attempts to automate the expert confirmation
process. To evaluate the performance of expert scoring a
different ML training and test dataset is required. Con-
firmed SNP are currently being mapped to the soybean
genome.

PolyBayes and PolyPhred are primarily used for analyzing
small sequence datasets. Large-scale, genome-wide SNP
discovery projects routinely use customized versions of
neighborhood quality standard (NQS) [16]. NQS is a set
of rules for SNP filtering based on the sequence quality of
the varying base along with the quality of the neighbor-
hood bases.

The application of ML is not dependent on the screening
method used, but instead can be used with any of the
aforementioned tools that are used for SNP discovery. The
ML tool simply automates the rule development and can
be applied to small and large datasets where good training
data are available.

Machine learning has been applied to polymorphism dis-
covery from amplified STS and was demonstrated to have
a positive impact in polymorphism discovery. The opti-
mized ML feature set can be tailored and applied to other
instances of polymorphism discovery and ML in general
can be applied to other genomics and bioinformatics deci-
sion making problems.

Conclusion
Major efforts are now being undertaken in polymorphism
discovery in several species, including humans, to help
characterize population differences. ML can enhance the
prediction accuracies of these existing programs. In this
study we have

• Identified a feature set to enhance polymorphism pre-
diction accuracies,

• Used the ML program C4.5 to generate a decision tree
(production rules) from a training set to obtain an overall
prediction accuracy of 97% in the five fold cross-valida-
tion and from a new unseen test set,

• Enhanced the PPV by 5- to 10-fold compared to using
only PolyBayes for these data, and

• Developed an open source software package in Perl to
apply machine learning in polymorphism discovery with
modules for computation of the values of the optimized
feature set, execution in test mode to retrieve predictions,
a graphical interface for easy SNP scoring and a provision
to store feature values of new data for further improve-

Table 3: Comparison of positive predictive values (PPV) from 
PolyBayes and ML predictor

PolyBayes

Probability (P) TP FP PPV

P ≤ 0.60 20 1756 1.1
0.60 < P ≤ 0.70 38 1529 2.4
0.70 < P ≤ 0.80 31 1683 1.8
0.80 < P ≤ 0.90 45 2015 2.2
0.90 < P ≤ 0.95 50 1613 3.0
0.95 < P ≤ 0.97 53 1055 4.8
0.97 < P ≤ 0.99 148 2069 6.7
P = 1.00 1050 5235 16.7
Overall 1435 16955 7.8

ML Predictor

TP FP PPV
Overall 1153 207 84.8

TP: True Positive, FP: False Positive,
Positive predictive value (PPV) = TP/(TP + FP).
The number of true positives in the dataset can be increased by using 
stringent PolyBayes posterior probability cut-off values. However, 
even when the posterior probability value is set to the maximum of 
1.0 the positive predictive value with PolyBayes is less than 20%. 
Application of machine learning showed a 5–10 fold increase in the 
PPV at different PolyBayes posterior probability values.
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ments. The system and source code along with test and
training data are provided in Additional file 1.

ML enhanced the prediction efficiency overall (97%)
along with the PPV (85%) in soybean sequences with a
complex genome that might have contributed to high
false positives being predicted by PolyBayes. Hence the
PPV with sequences from other genomes may vary.

Methods
Feature selection and optimization
While ML programs are useful for creating classifiers
based on a given set of features, the selection of the rele-
vant features is often a challenging task, usually requiring
an iterative approach. We first selected a set of 10 features
that were likely to influence the human expert when clas-
sifying a putative SNP. These features were then optimized
by modifying the existing features and adding new fea-
tures that helped in improving the prediction accuracy.
The final set of optimized features is given in Table 1. The
optimization runs for feature selection are discussed in

more detail at the website containing supplementary
material [21].

Sequence depth
Sequence depth (feature #1) is the count of number of
sequences in the alignment at the position of variation.
All sequences in the alignment may not overlap at the
position of variation; hence this number is different from
the total number of the sequences in the alignment. Hav-
ing more sequence reads at the polymorphic position
improves the confidence in making a judgment. We
defined the sequence depth sd as:

sd = a + t + g + c + i

Where a, t, g, c and i are the number of occurrences of A,
T, G, C and insertions/deletions(indel), respectively, at
the position of variation

Variation type
Variation type (feature #2) can be a transition, a transver-
sion or an indel. In humans, transitions are reported to be
more common than transversions with a ratio of 2 to 1
[17], however in soybean [12] transitions occur at nearly
equal rates as transversions (48 vs 52%). ML programs can
learn from the training data and may give more weight
based on the variation type observed for a given species.
Also, some general rules may evolve when the polymor-
phism is an indel.

PolyBayes probability
The PolyBayes program [10] assigns a Bayesian posterior
probability value (feature #3) for each called SNP using
the frequency priors given for observing a variation at that
position. However, the frequencies can be estimated for
only very few species and can vary by region (hotspots vs.
islands). The PolyBayes engine with its default values still
makes a very good judgment in identifying high quality
SNP from large sequence alignment data. The default
prior probability of PolyBayes is in close agreement with
the observed average polymorphism rate in soybean
genome.

However, for each STS the localized values tend to be
highly variable, which cannot be accounted for by Poly-
Bayes. Table 3 shows an improvement in prediction accu-
racy by increasing the PolyBayes threshold probability
values. Hence, this feature was included to improve the
performance of the ML algorithm.

Base frequencies
The number of occurrences of different bases including
indels at the position of variation is important in deter-
mining a polymorphic position. Frequencies of the first
(major allele) and the second (minor allele) most com-

Simplified Decision TreeFigure 2
Simplified Decision Tree. The decision tree after pruning 
has 491 nodes. The figure above shows only the top four lay-
ers of nodes that indicate the most critical features in the ML 
decision making process. A detailed version of this tree is at 
the website [21].
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monly observed bases at the positions of variation were
selected and are expressed as a ratio with respect to
sequence depth. (features # 4, 5)

We first computed the sorted values:

(s1, s2, s3, s4, s5) = sort descending (a, t, g, c, i)

where a, t, g, c, and i are defined as above. We then com-
puted the frequency ratios:

Frequency of the major allele = s1/sd

Frequency of the minor allele = s2/sd

Relative distance
Sequence quality at the ends of the alignment tends to be
poor due to inherent limitations of current sequencing
technology. Sequence alignment programs like Phrap do
not trim the sequence for low quality and use the low
quality sequence information to identify overlap between
any two reads for creating longer alignments. Hence poly-
morphisms detected at either end of an alignment tend to
be unreliable. To account for this factor, the polymor-
phism position was represented as the ratio of the dis-
tance in the consensus sequence from the closest end, or
the relative distance (feature # 6)

rd = p/L (if p/L ≤ 0.5)

rd = 1 - p/L (if p/L > 0.5)

Where rd is the relative distance, p is the polymorphic
position in the alignment and L is the length of the con-
sensus sequence.

Directional agreement
The PCR amplified DNA fragments or sequence tagged
sites (STS) were routinely sequenced in both directions.
This often results in a sequence overlap. If the polymor-
phic site lies on the overlapping sequence segment the
polymorphic base is more informative. Hence the number
of such sequences having the same base when sequenced
from both directions was chosen as one of the features
(feature # 7).

Sequence quality
Sequence quality of the bases at the polymorphic site is a
very important parameter when considering possible
SNP. Frequently, variation is observed because of a poor
quality base, and such polymorphism will be rejected in
the scoring process. Since there will be several reads at the
polymorphic site, aggregated features were defined:

These values were derived as follows. As described in 2.4
the sorted frequency values of bases (s1, s2, s3, s4 and s5)
were calculated for the polymorphic position. Let b1 be
the base for the major allele (s1) and b2 be the base for the
minor allele (s2), then the aggregate parameters for all the
sequencing reads in the polymorphic position were
defined as maximum qualities maxQ(b1), maxQ(b2) and
average qualities avgQ(b1), avgQ(b2) (features # 8,9,10
and 11).

Haplotype variation
In a previous report [12], our group observed that in 500–
700 bp soybean STS containing two or more SNP a high
level of linkage disequilibrium was present. Batley et al
[18,19] observed that co-segregation of the SNP pattern
between multiple SNP loci in an alignment as one of the
important factors in SNP discovery. Because of the result-
ing haplotype structure, the SNP allele present at any one
position in a fragment amplified from a particular geno-
type is highly predictive of other alleles in that fragment.
Thus if variations are observed in the same sequence at
different polymorphic sites and these polymorphisms cor-
respond to one of the two or three haplotypes present in
the STS then the polymorphisms detected in these posi-
tions are more likely to be true (Fig. 3). To capture this
concept a feature called haplotype factor (feature # 12)
was defined and the algorithm for the calculation is given
in Table 4.

Alignment quality
Misalignment of bases caused by sequence alignment pro-
grams sometimes result in an erroneous SNP call. To
account for that factor, alignment quality (features # 15)
was incorporated. This feature is calculated as follows:

(1) Create a list of all chromatograms that had coverage in
the polymorphic position.

SNP likelihood in sequences showing common variationFigure 3
SNP likelihood in sequences showing common varia-
tion. The positions indicated in dark grey are the polymor-
phic positions. Sequences 2 and 4 show common variation at 
two positions in the sequence alignment, and hence these 
polymorphisms are more likely to be real than the common 
variation shown in sequences 1 and 5 or the variation in 
sequence 3.
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(2) Set the alignment penalty parameter to zero.

(3) For each chromatogram from the list above

▪ In the neighborhood (+/- 5 bases) of the polymorphism
site all the mismatches with the consensus sequence are
given a penalty and the penalty is more if the mismatch is
an indel.

▪ Ignore the mismatches at other polymorphic positions
in the neighborhood.

The alignment penalty parameter is then scaled from 0 to
1, where 1 is the highest quality alignment with no mis-
matches or indels in the neighborhood of the polymor-
phic base.

Repeat masking
The RepeatMasker program is used to identify low com-
plexity DNA sequences and common repeats that are spe-
cific for a given species [20]. Common repeats observed
were (A)n, A-rich, AT_rich, (CAG)n, (GAA)n, (GA)n,
GC_rich, (TA)n, (TATG)n and (TC)n. Some of the SNP are
due to changes in the number of repeat elements also
referred to as simple sequence repeats (SSR). This was pro-
vided as an optional feature to be able to distinguish SNP
from SSR (feature # 16).

Implementation of ML in polymorphism discovery
A software package to support ML in polymorphism dis-
covery was written in Perl that uses other open source Perl
modules from Bioperl [22] and CPAN [23]. The software
code will be portable to most platforms where Perl can be
executed. The software has modules for:

• Extracting the ML features (Table 1) from the output
files generated by the sequence assembly program (phred-
Phrap or CAP3) and polymorphism detection programs

(PolyBayes or PolyPhred) and creating a data file in the
format required for C4.5 execution.

• Running the C4.5 programs to obtain predictions for
test cases using either a decision tree or production rules.
These programs run in a fraction of the time required to
run phredPhrap.

• Creating a graphical display similar to the Consed
viewer on a web page along with the ML prediction to
facilitate easy scoring of polymorphisms.

• Distinguishing certain polymorphic heterozygous posi-
tions that are common in all genotypes sampled (ignored
by PolyPhred). This can help in distinguishing paralogs.

This package [see Additional file 1] can also be integrated
as a part of a polymorphism analysis pipeline. The soft-
ware features were optimized for discovering SNP in
homologous chromosomes. For enhancing the prediction
accuracies of heterozygous SNP (identified by PolyPhred)
additional features can be incorporated. Similarly, the fea-
ture set can be tailored for other instances of polymor-
phism discovery (WGS, EST) depending on the
availability of sequence and quality information.

List of abbreviations
SNP: Single nucleotide polymorphism

EST: Expressed sequence tag

SSR: Simple sequence repeat

STS: Sequence tagged site

PCR: Polymerase chain reaction

ML: Machine Learning

Table 4: Algorithm for haplotype variation factor determination

N is the total number of polymorphic positions
For each polymorphic position i = 1 to N

 List of chromatograms having the major allele b1, minor allele b2 are b1(i) and b2(i) respectively.
 Set Sum(HapVariationFactor) to zero.
 For each of the polymorphic position j = 1 to N and i ≠ j

 List of chromatograms having the major allele b1 and minor allele b2 are b1(j) and b2(j)
 c(i,j) is the number of elements (chromatograms) common in b2(i) and b2(j) and t is the number of elements in b2(j) then

 Sum(HapVariationFactor) += c(i,j)/t
 End of For loop
 HaplotypeFactor = Sum(HapVariationFactor)/N

End of For loop

Haplotype variation factor is defined as a measure of co-variance observed in the same chromatogram across different SNP loci. For each SNP locus 
the fraction of number of co-variances (observing minor alleles at different SNP locus on the same chromatogram) with respect to total number of 
minor alleles observed is first calculated. These values are then summed for all positions and the mean value (haplotype variation factor) is 
calculated by dividing by the total number of polymorphisms.
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TP: True positive

TN: True negative

FP: False positive
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PPV: Positive predictive value
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NQS: Neighborhood quality standard
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