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Abstract

Background: Identifying cis-regulatory elements is crucial to understanding gene expression,
which highlights the importance of the computational detection of overrepresented transcription
factor binding sites (TFBSs) in coexpressed or coregulated genes. However, this is a challenging
problem, especially when considering higher eukaryotic organisms.

Results: We have developed a method, named TFM-Explorer, that searches for locally
overrepresented TFBSs in a set of coregulated genes, which are modeled by profiles provided by a
database of position weight matrices. The novelty of the method is that it takes advantage of spatial
conservation in the sequence and supports multiple species. The efficiency of the underlying
algorithm and its robustness to noise allow weak regulatory signals to be detected in large
heterogeneous data sets.

Conclusion: TFM-Explorer provides an efficient way to predict TFBS overrepresentation in
related sequences. Promising results were obtained in a variety of examples in human, mouse, and

rat genomes. The software is publicly available at http://bioinfo.lifl.fr/TFM-Explorer.

Background

The computational identification of functional transcrip-
tion factor (TF) binding sites (TFBSs) from a nucleotide
sequence alone is difficult. TFBSs are usually short
(around 5-15 bases) and degenerate, and hence potential
binding sites can occur very frequently by chance, leading
to a high level of false positive in the predicted sites.
Wasserman and Sandelin have termed this the futility the-
orem, since nearly 100% of predicted TFBSs have no func-
tion in vivo [1]. Solving this problem is crucial for
mammalian genomes that contain large noncoding
regions.

Phylogenetic footprinting can significantly increase the
accuracy of TFBSs predictions. If a region is conserved

between sequences from distantly related organisms, it is
likely to be subject to greater selection pressure and to
have a biological role. Phylogenetic footprinting methods
are based on the assumption that TFBSs are located in
conserved regions that can be detected by alignment algo-
rithms. A current limitation for mammalian organisms is
that when nothing is known about the motif, the number
of orthologous sequences at the correct evolutionary dis-
tance needs to be high [2].

Another potentially fruitful approach for improving the
accuracy of TFBS prediction is to use a set of coexpressed
genes. The rationale behind this approach is that coex-
pressed genes should contain common cis-regulatory ele-
ments in their noncoding sequences, with the number of
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motifs for these elements being greater than what would
be expected by chance. The application of Gibbs sampling
algorithms [3] and combinatorial algorithms [4,5] to the
problem of de novo motif inference has proven successful
in identifying cis-regulatory elements in bacterial and
yeast genomes, but de novo motif discovery in higher
eukaryotic genomes remains an unsolved challenge [6]. It
is also possible to focus on overrepresented motifs mod-
eled by known profiles, such as position weight matrices
(PWMs) [7,8]. Large databases of PWMs are available,
including JASPAR [9] and TRANSFAC [10]. Several tools
for evaluating the significance of a set of putative TFBSs
modeled by PWMs have recently been made available
(e.g., MSCAN, OTEFBS, TOUCAN [11-14]). These pro-
grams can handle sequences coming from either one or
multiple species, although in the latter case the same
background model is used for all sequences. oPOSSUM
[15] makes an exception: it combines a precomputed
database of conserved TFBSs in human and mouse pro-
moters, and uses statistical methods to identify overrepre-
sented sites in a set of coexpressed genes.

In this paper, we present a new method that searches for
locally overrepresented TFBSs in a set of coregulated
genes, which we have named TEM-Explorer ("TF matrix
explorer"). TFM-Explorer associates motif overrepresenta-
tion with comparative genomics, allowing for multiple
species to be included. One novel feature of the method is
that it takes advantage of the spatial conservation of cis-
regulatory elements, when it exists. Often, the distance
from cis-regulatory elements to the transcription start site
(TSS) plays an essential role in the control of the gene. The
activity of basal or general TFs, such as GC-box binding or
TATA-box binding proteins, is strongly conditioned by the
distance from the binding site to the TSS and, as far as we
know, no existing tools exploit this information.

More precisely, TEM-Explorer relies on three main princi-
ples. The first is that the background distribution used to
assess the statistical significance of overrepresented motifs
is a local model that depends on the location on the
sequence with respect to the TSS. This allows us to cope
with large heterogeneous regulatory regions, including
proximal cis-regulatory elements as well as distal enhanc-
ers. Second, it is possible to combine background models
between sequences, which makes the method able to cope
with multiple species. In contrast with other phylogenetic
footprinting approaches, genes do not need to be orthol-
ogous, and conserved TFBSs are not expected to be sur-
rounded by similar regions that can be easily aligned.
Lastly, we use spatial conservation as supplementary
information, for which we have developed an algorithm
that is able to identify the portion of sequences with local
overrepresentation without prior knowledge of either the
size or the location of the involved region. This allows us
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to infer short regions exhibiting a local signal, as well as
large regions when we have to identify cis-regulatory
motifs that show no spatial conservation.

Implementation

The input to TFM-Explorer is a set of upstream sequences
that are expected to share cis-regulatory elements. These
sequences may come from several species, and need not
be aligned beforehand. The only requirement is that the
location of the TSS needs to be known for each sequence.

TFM-Explorer then uses PWMs available in the TRANS-
FAC or JASPAR database to search for locally overrepre-
sented TFBSs, and outputs a list of regions that show
significant TFBS overrepresentation. The search algorithm
includes three steps that are discussed in the following
subsections: (1) localizing all potential TFBSs for a data-
base of PWMs, (2) identifying windows showing an over-
representation for a given PWM, and (3) assessing the
statistical significance of the regions found at the previous
stage.

Localizing all potential TFBSs

The method initially identifies all potential TFBSs for a set
of PWMs given by a database of profiles. TFBSs are usually
selected using a score cutoff that expresses the probability
in a target model - the profile - compared to the proba-
bility of the motif appearing in a background model
[8,16]. Therefore, the selection of putative positions is
highly dependent on the choice of background model.
This point is crucial for higher eukaryotic organisms due
to the variability of the sequence content in upstream
regions [17], which makes it difficult to build uniform
models for the entirety of upstream regions. We follow the
approach recently proposed by Huang et al., which is
using a threshold based on the parameters determined by
the genomic context [18]. Given a PWM, we obtain for
each sequence a set of putative TFBSs in which overlap-
ping occurrences are removed; these are referred to as hits.

Extracting regions with a high density of TFBSs

The second step involves discovering regions showing
local overrepresentation of hits for a given PWM. All exist-
ing methods implicitly rely on global overrepresentation,
looking for motifs that have a significant number of
occurrences among the entire set of sequences. But a short
signal, covering a few dozen bases, may be overwhelmed
by a flat distribution of hits in the neighborhood. In this
case, the result depends on the size of the input sequences:
the signal is found if the sequences are short, but is lost if
they are long. This is why we introduce a strategy that is
not influenced by the length of the data set, and that is
able to recover short but significant regions in large
sequences.
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One solution is to employ a sliding window technique,
applying statistical analysis to each window along the set
of sequences. The main drawback of this approach is that
the result can be highly dependent on the window size,
and testing several window sizes is time-consuming. To
circumvent this problem, we developed a heuristic algo-
rithm based on a positional scoring scheme that takes into
account the expected frequency of each hit according to
both its position in the upstream sequence and the corre-
sponding species. Let N be the total number of sequences,
i be a position relative to the TSS, and k; be the number of
sequences having a hit at position i. The associated score
s;is defined as follows:

N .n (i
_| 2| NE - )

DI

where A" and ' are the parameters of the Poisson dis-

Si

tribution for sequence n at position i in the target and
background models, respectively, and s; expresses ratio

between the probabilities of observing k; hits in the target
and background models when the distribution of hits is

approximated by a Poisson distribution. In practice, 4" is
determined from a large sets of sequences, and A/ is

obtained by scaling u'. This positional score is then

incorporated into an incremental score:
S;=max(0,S;; +Ins;)

High-scoring regions are retained as candidate regions for
the next step of the method (see Figure 1). This scoring
scheme leads to a very efficient search algorithm.
Sequences are scanned "on the fly", which enables large-
scale data analysis. One point worth noting is that this
scoring strategy allows windows to be extracted without
knowing a priori whether they are proximal or distal, short
or long. Moreover, as shown in the Results section, the
method can also detect several consecutive windows cor-
responding to collaborative TFs.

Evaluating the statistical significance of
overrepresentation

The final step of the method consists of evaluating the sta-
tistical significance of the candidate windows that have
been identified at the previous stage. We have to deter-
mine whether the number of hits for each window could
be observed by chance. To this end, we compute a proba-
bility called the P-value: given a PWM M and a window [i,
j] containing k hits for M, the P-value is defined as the
probability of observing at least k hits in window [, j] with
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Score profile and window extraction. Example of the
score used to predict windows with a significant overrepre-
sentation of TFBSs. Panel (a) shows the predicted TFBSs
(black boxes) along the upstream sequences of five genes
that come from two species. Panel (b) shows the evolution of
the cumulative score computed for a given PWM with those
sequences. Local overrepresentations detected by the algo-
rithm are represented by boxes.

the same combination of background models (i.e., the
same number of sequences coming from each species).

For each sequence, the distribution of hits in window [i, j]
is approximated by a Poisson distribution, whose param-
eter is derived from the region [i, j] in the background
model. We used a goodness-of-fit test to evaluate the
validity range of this approximation of the hit-count dis-
tribution. For all JASPAR and TRANSFAC vertebrate matri-
ces, we computed the chi-square goodness-of-fit for
different locations and sizes of window applied to a large
set of human gene upstream sequences. Table 1 indicates
that the majority of PWMs passed the test.

To determine the significance of the window for the entire
set of sequences, we sum the distributions to handle the
combination of models for sequences coming from sev-
eral species.

Assuming that motif occurrences are mutually independ-
ent, the P-value can be defined as follows:

P(X2k)=1-)

_ N z
SYGT DI IS 1
z=0 z!

where g, is the parameter of the Poisson distribution for
the nth sequence in a window [i, j], and |w| is the window
width.
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Table I: Poisson chi-square goodness-of-fit test for the hit-count
distribution. Percentage of PWMs for which the hit-count
distribution (i.e., the number of putative TFBSs in a given
sequence) is well modeled by a Poisson distribution according to
the chi-square goodness-of-fit test, for three values of
significance. Proximal upstream sequences from 1000 randomly
selected human genes were used to compute the data listed.

Matrices Database a>0.1 o> 0.05 a> 0.0l
JASPAR 72% 80% 87%
TRANSFAC (public) 68% 74% 83%

Results

To evaluate the efficiency of TEM-Explorer, we performed
three case studies involving human, mouse, and rat data
sets: Rel/NF-xB target genes, muscle-specific genes, and
genes coding for histones. In the first part of this section
we compare the results of TFM-Explorer with those
obtained by using three existing tools that are also based
on PWM overrepresentation: OTFBS [13], TOUCAN [14],
and oPOSSUM [15]. In the last part, we describe the
results of applying TFM-Explorer to random data sets to
evaluate its robustness to noise.

TOUCAN is an integrated suite of software for discovering
cis-regulatory elements in a set of related genes. For our
purposes, we first used MotifScanner [14] to predict
potential TFBSs and then performed the statistical over-
representation analysis. MotifScanner searches for poten-
tial TFBSs in a set of sequences by maximizing the
probability of observing those sequences in a mixed
model composed of motif instances and a Markovian
background model. This allowed us to predict instances of
potential TFBSs for all the TRANSFAC vertebrate PWMs in
our input sequences. The statistical overrepresentation
tool was then used to extract PWMs that had significantly
overrepresented instances. This statistical overrepresenta-
tion is based upon a binomial P-value that is the probabil-
ity of finding at least the observed number of TFBSs
instances in a precomputed background model. We used
version 2.2.5 of TOUCAN with the TRANSFAC Public 7.0
Vertebrate PWMs database and the EPD(3) Markovian
model to run MotifScanner, leaving other parameters
unchanged. The prior-frequency file
epd_vertebrates_499_prior0.1.freq was then used to com-
pute the statistical overrepresentation.

OTFBS searches for overrepresented motifs of known TFs
from a set of related sequences. Like TOUCAN it proceeds
in two steps to extract the most significant TFs from
among all TRANSFAC PWMs: it first searches for potential
TFBSs using the Matinspector algorithm [19] and then
computes a P-value for each PWM using a binomial signif-
icance test. Version 1.0 of OTFBS was used simply by past-
ing our sequences (since no options were available).
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oPOSSUM uses different methods to identify overrepre-
sented TFBSs. It combines a precomputed database of
conserved TFBSs in human and mouse promoters with
statistical methods for detecting overrepresentation (one-
tailed Fisher exact probability analysis and Z-score) to
identify overrepresented TFBSs in the input gene promot-
ers. Version 1.3 of oPOSSUM was applied to all the data
sets using JASPAR vertebrate PWMs (no other PWM data-
base was available) and default parameters. Results were
sorted based on the Fisher P-value.

We used TEM-Explorer with the default parameters. All
upstream sequences were retrieved from the UCSC
Genome Browser [20] (assemblies hg18, mmS8, and rn3)
using RefSeq identifiers.

Skeletal-muscle-specific genes

The first example involves a set of genes with skeletal-
muscle-specific expression. This is an up-to-date version
of the reference compilation of Wasserman and Fickett
[21], which has been widely used to assess the accuracy of
TFBS prediction programs [see Additional file 1]. The data
set contained nine human genes. Early steps in skeletal
muscle development are controlled by combinatorial
interactions between members of the MyoD family of
basic helix-loop-helix TFs (MyF) and TFs from the MADS
family, with the myocyte enhancer factor-2 (MEF2) and
the serum response factor (SRF) [22]. Other TFs, such as
TEF, MZF, and Sp1, are also known to contribute to skele-
tal-muscle-specific expression.

Table 2 reports the predictions of TEM-Explorer, Toucan,
OTFBS, and oPOSSUM for this data set. The three most
significant TFs ranked by TEM-Explorer are SRF, MEF-2,
and MZF_1, all of which correspond to factors that are
known to be involved in the regulation of muscle-specific
genes. Under the same conditions, OTFBS predicted two
TFs (MZF1 and MEF2) involved in the regulation of mus-
cle-specific genes, but only at the second and third rank.
oPOSSUM and TOUCAN predicted only one factor
(MEF2) that is known to contribute to muscle-specific
expression among the top five factors. Note that oPOS-
SUM achieved this result by using supplementary orthol-
ogous mouse genes and by taking advantage of
conservation between human and mouse promoter
sequences.

RellINF-xB target genes

The second data set comprised Rel/NF-xB human target
genes. Rel/NF-xB TFs are involved in inflammatory and
immunizing mechanisms, as well as apoptosis. Five regu-
latory proteins of this family are known in vertebrate
organisms: c-Rel, RelA (p65), RelB, NF-xB1 (p50), and
NF-xB2 (p52); and they share similar binding sites. This
corresponds to six PWMs in the TRANSFAC database:
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Table 2: Results for skeletal-muscle-specific human genes. Most
significant TFBSs detected in the muscle data set by TFM-
Explorer, TOUCAN, OTFBS, and oPOSSUM using sequences
that were 2 kb upstream. The TRANSFAC vertebrate matrix
collection was used with TOUCAN and OTFBS, and JASPAR
vertebrate matrices were used with TFM-Explorer and
oPOSSUM. TFs with experimentally verified sites in the data set
are marked with *.

TFM-Explorer

Rank PWM Window P-value
| * SRF [-0224: -0091] 7.869e-06
2 * MEF2 [-0060: -0030] 2.350e-05
3 * MZF_l-4 [-1431: -0576] 1.678e-04
4 Staf [-1950: -1311] 2.539e-04
5 Irf-2 [-1892: -1592] 3.002e-04
6 NRF-2 [-0779: -0324] 3.180e-04
7 Brachyury [-0307: -0048] 4.503e-04
8 Bsap [-1911:-0978] 4.800e-04
9 cEBP [-1733: -1679] 6.032e-04
10 * MZF_5-13 [-1633: -1078] 7.141e-04

TOUCAN

Rank PWM P-value
| HENI_OI 8.567e-02
2 * MEF2_02 1.021e-01
3 RSRFC4_0l 1.129e-01
4 TALIBETAITF2_0I 1.311e-01
5 STAT5A_0I 1.856e-01
6 TALIBETAE47_0I 2.322e-01
7 YYI1_Ol 2.391e-01
8 STAT5B_OlI 2.534e-01
9 * MEF2_03 3.056e-01
10 CDC5_0l1 3.134e-01

OTFBS

Rank PWM P-value
| YYI_02 2.047e-06
2 * MZF1_02 2.763e-06
3 * MEF2_02 9.493e-06

oPOSSUM

Rank PWM P-value
| * MEF2 1.768e-04
2 Hen-1| 3.730e-04
3 SRY 1.531e-03
4 c-MYB_I 1.780e-03
5 S8 2.983e-03
6 HFH-3 2.994e-03
7 * SPI 3.220e-03
8 * MZF_5-13 3.675e-03
9 Nkx 6.399e-03
10 RORalfa-2 7.747e-03
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CREL_01, NFKAPPA50_01, NFKAPPAB65_01, NFKB_QG6,
NFKAPPAB_01, and NFKB_C. All of these PWMs contain
the consensus pattern 5'-GGGRNYYYCC-3'.

A set of 99 human target genes with experimentally veri-
fied binding sites was compiled from the literature [23]
[see Additional file 2]. In order to test how the sequence
length influenced the predictions for each program, we
selected both large and short regulatory sequences for
these genes: those 2 kb upstream, and those 5 kb
upstream and 5 kb downstream of the TSS were used. We
first applied TFM-Explorer to those sequences, searching
exhaustively for all vertebrate PWMs in TRANSFAC (243
matrices). Nearly identical results were obtained by TEM-
Explorer for short and long sequence sets. This shows one
advantage of the local approach of TFM-Explorer: its abil-
ity to identify several local regions in a large data set with-
out compromising the sensitivity.

The top-ten windows identified by TEM-Explorer with the
associated TFs are listed in Table 3. The first notable obser-
vation is that all windows are located around the TSS,
which is a region rich in cis-regulatory elements. Second,
the six PWMs corresponding to TFs from the Rel/NF-xB
family are all present in the list, and the location of the
associated window in the promoter is consistent with the
location of the experimentally verified binding sites [23].

The remaining TFs do not correspond to experimentally
verified binding sites for this data set. However, except for
CDXA_01, there are many indications that they are bio-
logically valid. Besides the Rel/NF-xB factors, TFM-
Explorer identified a short window for TATA-box binding
proteins located 40 bp upstream of the TSS. Both the size
and position of the window are characteristic of this fac-
tor. The prediction indicates that 40% of genes in the data
set contain a TATA-box, compared to 32% in the human
genome [24]. Fast inducible genes (such as genes medi-
ated by Rel/NF-xB) frequently contain a strong TATA-box
in their core promoter. In contrast, TATA-box-less genes
tend to be expressed at a low and constant rate.

Therefore, this relative abundance of TATA-boxes in the
core promoter is an expected property for this data set.
Another TF family detected by TFM-Explorer is Spl, which
is a zinc-finger TF that binds to GC-boxes. Once again, the
position of the window ([-94 : -43]) is consistent with the
information on this factor published in the literature. Sev-
eral Rel/NF-xB target genes that are present in the data set
show promoter organization containing functional GC-
boxes, such as MnSod [25] and interleukins [26].

In order to compare our results with predictions made by
other tools, we applied OTFBS, TOUCAN, and oPOSSUM
to the data set with both short and long sequences (Table
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Table 3: Results for Rel/NF-xB target genes. Most significant TFBSs detected in Rel/NF-xB target genes set by TFM-Explorer,
TOUCAN, OTFBS, and oPOSSUM. The data set comprised 99 human Rel/NF-xB target genes that have experimentally verified
binding sites. Both 2-kb-upstream sequences and 5-kb-downstream/5-kb-upstream sequences were used. The TRANSFAC vertebrate
matrix collection was used with TFM-Explorer, TOUCAN, and OTFBS, and JASPAR vertebrate matrices were used with oPOSSUM.
TFs of the Rel/NF-xB family are marked with *. Other TFBSs (such as TATA-box) are also likely to be biologically valid.

TFM-Explorer, region -5000, 5000

Rank PWM Window P-value
| * NFKAPPAB65_01 [-0520: +0115] 8.875e-27
2 * NFKAPPAB_O| [-0698: +0116] 1.026e-20
3 * NFKB_C [-0522: -0020] 9.148e-19
4 TATA_OI [-0056: -0010] 5.585e-18
5 * NFKB_Qé [-0537: +0092] 2.24le-16
6 TATA_C [-0055: -0015] 4.128e-16
7 * CREL_OI [-0501: -0020] 3.510e-15
8 CDXA_O0I [-0071: -0018] 4.262e-15
9 * NFKAPPAB50_01 [-0521: +0012] 8.60le-13
10 SPI_Qé6 [-0094: -0043] 1.451e-11
TFM-Explorer, region -2000, 0
Rank PWM Window P-value
| * NFKAPPAB65_01 [-0520: -0019] 7.706e-27
2 * NFKAPPAB_OI [-0698: -0019] 9.418e-20
3 TATA_OI [-0056: -0023] 1.118e-19
4 * NFKB_C [-0522: -0020] 9.148e-19
5 TATA_C [-0055: -0015] 4.128e-16
6 * CREL_OI [-0501: -0020] 3.510e-15
7 * CDXA_O0l [-0071: -0018] 4.262e-15
8 * NFKB_Qé6 [-0537: -0021] 3.574e-14
9 * NFKAPPAB50_01 [-0521: -0019] 1.066e-12
10 SPI_Qé6 [-0094: -0043] 1.451e-11
TOUCAN, region -5000, 5000
Rank PWM P-value
| HFH3_0I 0.0
2 BRACH_OI 4.667e-01
3 RORA2_0I 8.596e-01
4 NRSF_01 9.956e-01
5 E47_0I 1.0
6 VMYB_O0I 1.0
7 AP4_01 1.0
8 MEF2_0I 1.0
9 ELKI_OI 1.0
10 EVII_06 1.0
TOUCAN, region -2000, 0
Rank PWM P-value
| * NFKAPPAB65_01 1.381e-05
2 * NFKB_C 6.975e-05
3 * NFKAPPAB_OI 3.139e-04
4 ARPI1_0l 1.257e-03
5 SREBPI_OI 6.795e-03
6 * NFKB_Qé 4.683e-02
7 * NFKAPPAB50_01 8.661e-02
8 RORA2_0I 9.847e-02
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Table 3: Results for Rel/NF-xB target genes. Most significant TFBSs detected in Rel/NF-xB target genes set by TFM-Explorer,
TOUCAN, OTFBS, and oPOSSUM. The data set comprised 99 human Rel/NF-xB target genes that have experimentally verified
binding sites. Both 2-kb-upstream sequences and 5-kb-downstream/5-kb-upstream sequences were used. The TRANSFAC vertebrate
matrix collection was used with TFM-Explorer, TOUCAN, and OTFBS, and JASPAR vertebrate matrices were used with oPOSSUM.
TFs of the Rel/NF-xB family are marked with *. Other TFBSs (such as TATA-box) are also likely to be biologically valid. (Continued)

9 E47_02 1.628e-01
10 HENI_0l 2.882e-01

OTFBS, region -5000, 5000

Rank PWM P-value

OTFBS, region -2000, 0

Rank PWM P-value
| FOXJ2_0l 6.097e-49
2 FOXD3_0l 4.229e-45
3 HFH3_0lI 5.356e-41
4 HNF3B_0lI 7.352e-35
5 1K2_0lI 3.031e-20
6 SREBPI_OI 1.969e-19
7 * NFKAPPAB65_01 3.708e-19
8 * NFKB_C 8.819¢e-19
9 * CREL_OI 2.571e-18
10 CHOP_OI 1.004e-17

oPOSSUM, region -5000, 5000

Rank PWM P-value
| * p65 1.941e-08
2 * NF-kappaB 1.579e-05
3 * c-REL 7.877e-05
4 * p50 1.510e-04
5 c-FOS 6.236e-04
6 Irf-1 3.301e-03
7 MZF_5-13 5.543e-03
8 MZF_I-4 7.967¢-03
9 NRF-2 2.933e-02
10 SPI-B 3.239e-02

oPOSSUM, region -2000, 0

Rank PWM P-value
| * p65 1.333e-14
2 * NF-kappaB 3.234e-11
3 * c-REL 4.835e-09
4 * p50 3.272e-07
5 SPI-B 5.137e-05
6 c-FOS 1.519e-04
7 Elk-1 2.329¢-04
8 deltaEF| 2.877e-04
9 MZF_I-4 3.731e-04
10 Irf-1 6.815e-04
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3). One of the most noticeable results is that while all the
programs performed relatively well on relatively short
sequences (2 kb), this was not the case with longer
sequences (5 kb upstream and 5 kb downstream). In this
last case, only oPOSSUM was able to give reliable predic-
tions. Moreover, oPOSSUM produced similar results for
the long and short sequences, since it searches for TFBSs
only in regions that are conserved across human and
mouse.

Histone genes

Histone proteins are at the heart of the chromatin struc-
ture in the eukaryotic cell nucleus. They act as a spool and
help in packing DNA by wrapping it around. They also
play an important role in transcriptional regulation. They
are divided into five classes: H1, H2A, H2B, H3, and H4.
These proteins (particularly H3 and H4) are known to be
highly conserved evolutionarily. Four of the functional
motifs that are known to be involved in H3 regulation
have been clearly identified: CCAAT-box, Oct-1 box, GC-
box, and AC-Box.

Excluding the AC-box (for which no entry was found in
TRANSFAC), the corresponding matrices in TRANSFAC
database are as follows: NFY_01, NFY_C, NFY_QG6,
CAAT _01, and CAAT_C for CCAAT-boxes; OCT1_Q6,
OCT1_C, and OCT1_0* for Oct-1 boxes; and SP1_01 and
SP1_Q6 for GC-boxes.

One advantage of TFM-Explorer is its ability to cope with
heterogeneous sets of genes. We evaluated the impact of
using genes from a related species, with a set of 19 H3
genes compiled from [27] [see Additional file 3], compris-
ing 11 human, 7 mouse, and 1 rat genes. Sequences of 2
kb that were upstream of the TSS were submitted against
all TRANSFAC vertebrate matrices to TEM-Explorer. Table
4 indicates that two functional motifs (CCAAT-box and
Oct-1 box) known to be involved in the regulation of H3
genes were predicted, which correspond to the TRANSFAC
matrices NFY_C and NFY_Q6, and OCT1_04 and
OCT1_07, respectively.

Among the top-five predictions of TFM-Explorer, only one
matrix, XFD1_01, was unlikely to be found. An explana-
tion for this false positive prediction comes from the pro-
file of XFD1_02. It appears that it is likely to find
occurrences of XFD1_01 where OCT1_04 or OCT1_07
match, because of the similarity between their profiles. In
TFM-Explorer, we added the ability to compare two differ-
ent predictions and to identify such redundant or biased
results. The comparison was performed on the basis of the
proportion of overlapping hits. We also computed the
theoretical rate of overlapping hits using a previously
reported similarity measure [28]. In this case, a large
number of XFD1_01 TFBSs actually overlap with

http://www.biomedcentral.com/1471-2105/7/396

OCT1_07 and OCT1_04 TFBSs (37% and 53%, respec-
tively). A similar conclusion can be drawn for PBX1_02
and matrices corresponding to the CCAAT-box. The pre-
dictions made by TOUCAN and OTFBS are listed in Table
4; oPOSSUM is not included since it was unable to pro-
duce results from this data set.

Robustness to noise

In order to test the robustness of TFM-Explorer, we also
measured its ability to detect regulation signals in a noisy
environment. We constructed artificial data sets with var-
ious noise levels in the following way: starting with
homogeneous data sets (the NF-xB target genes and mus-
cle-specific data sets presented above), we replaced from
10% to 90% of the reference sequences with randomly
selected genes, generating 100 such data sets for each
noise level. The percentage of correct predictions is
reported in Figure 2. The prediction was considered to be
correct when the most significant predicted TF is known to
be involved in the regulation process. Figure 2 shows that
the tolerable amount of noise depends greatly on the
quality of the TF signal in the set and on its size. For exam-
ple, up to 50% of noise can be tolerated for the Rel/NF-xB
sample without altering the positive predictive value.
Note also that for most data sets, noise levels higher than
50% result in the progressive loss of the true regulation
signals.

Lastly, we evaluated the specificity of TEM-Explorer under
the extreme condition of there being only noise to identify
(i.e., no signal present). This tested the level of the P-value
that can be observed by chance. To achieve this we con-
structed a large number of sets of randomly selected genes
that are not expected to share common functional TFBSs.
Predictions returned by TFM-Explorer on these data sets
are thus considered as false positive. To estimate the rela-
tionship between the false positive rate and the P-value
cutoff, we generated 100 random sets of 10, 50, and 100
2-kb sequences. For each run, the ten most significant
windows identified by TEM-Explorer and their associated
P-value were retained. Figure 3 gives the percentage of tri-
als that produced false positive predictions for each size of
sample data set according to the chosen P-value cutoff.
The first conclusion is that the cutoff must decrease with
increasing sample size. For a fixed false positive rate of
10% (i.e., with no more than one false positive among the
top ten), the optimal P-value cutoff was 10-¢ and 10-7 for
data sets containing 10 and 100 sequences, respectively.
But for all data sets, a window with a P-value lower than
10-10 can be considered significant.

Conclusion

We have developed a new method for analyzing the regu-
latory regions of a set of genes sharing regulatory elements
that can come from several species. Our method compares
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Table 4: Results for the H3 gene set. Most significant TFBSs
detected in the H3 data set by TFM-Explorer, TOUCAN,
OTFBS, and oPOSSUM using sequences that were 2 kb
upstream. The TRANSFAC vertebrate matrices were used with
TOUCAN, OTFBS, and TFM-Explorer. oPOSSUM was unable to
produce results from this data set. TFs with experimentally
verified sites in the set are marked with *.

TFM-Explorer

Rank PWM Window P -value
| * NFY_C [-1375: -0039] 4.757e-24
2 * OCTI_04 [-0588: -0022] 1.537e-20
3 * NFY_Qé6 [-1318: -0039] 4.026e-16
4 * OCTI_07 [-0574: -0025] 7.932e-14
5 XFDI1_0l [-0890: -0025] 2.253e-13
6 PBX1_02 [-0491: -0040] 2.737e-13
7 SRY_02 [-0895: -0015] 1.803e-12
8 MEF2_04 [-0482: -0038] 1.826e-12
9 HNFI_0l [-0642: -0097] 7.08%e-12
10 EVII_04 [-0417: -0040] 9.277e-12

TOUCAN

Rank PWM P-value
| * NFY_O0l 1.364e-08
2 * OCTI_0l 1.854e-05
3 GFII_0I 4.506e-05
4 TATA_OI 1.315e-03
5 * CAAT_OlI 1.781e-03
6 * OCT_C 1_018e-02
7 MEF2_02 1.041e-02
8 MEF2_03 1.041e-02
9 NFY_C 1.633e-02
10 CARTI_0I 2.569e-02

OTFBS

Rank PWM P-value
| IRFI_OI 5.099e-26
2 HFH3_0lI 6.865e-22
3 FOXJ2_0l1 1.606e-21
4 MEF2_0lI 6.896e-20
5 HNF3B_0l I.165e-18
6 MEF2_04 1.243e-18
7 FOXD3_0l 3.698e-18
8 MEF2_02 2.964e-15
9 XFDI1_0l 8.016e-15
10 * NFY_C 6.39%6e-14

favorably with existing tools, such as TOUCAN, OTFBS,
and oPOSSUM. We have also established that it can toler-
ate a high level of noise, which is a valuable property
when dealing with experimental data derived from micro-
array experiments. One basic principle of the method is
the use of the TSS as a reference element to handle gene
upstream sequences. While this assumption proved to be

http://www.biomedcentral.com/1471-2105/7/396

T
NF-kB target genes
108 muscle specific genes - - - -

Positive Predictive Value

0 0.2 0.4 0.6 0.8 1
Noise Level

Figure 2

Influence of noise on the positive predictive value.
Starting from the Rel/NF-xB and muscle data sets, an increas-
ing number of actual sequences were replaced by random
sequences. The noise level represents the proportion of
sequences for the given set that have been randomly selected
in the genome. The positive predictive value corresponds to
the proportion of valid predictions (the most significant
extracted TF is known to be involved in the regulation of the
reference set).

valid for a variety of examples, it is insufficient for at least
two reasons: (1) the correct position of the TSS is hard to
annotate, and alternative splicing may lead to alternative
TSSs; and (2) many regulatory elements show no spatial
conservation relative to the TSS. Moreover, regulatory ele-
ments can even be found in introns or in 3'UTR. We
believe that it would be useful to extend the method to
other reference elements - such as highly conserved
regions between species, or functional binding sites for a
given regulatory protein - when searching for collabora-
tive TFs.

04

False Positive Rate

02

Pvalue cutoff (~log P—value)

Figure 3

Effect of P-value cutoff on the false positive error
rate. Various set sizes (5, 50, and 100 sequences) were used
to evaluate the rate of false positive. The suggested P-value
cutoffs for a fixed false positive rate of 10% are 10-¢and 10-8
for 5 and 100 sequences, respectively.

Page 9 of 11

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:396

Availability and requirements

TFM-Explorer has been implemented in C/Python and is
freely available upon request. It takes only a few seconds
to execute on a standard workstation for a data sample of
20 genes with 2-kb-upstream promoter sequences while
scanning for both TRANSFAC and JASPAR databases.

We also offer an easy-to-use Web-accessible server http://
bioinfo.lifl.fr/TEM-Explorer, which includes precomputed
background models for human, mouse, and rat genomes.
All annotated genes with RefSeq identifiers [29] available
in the UCSC Genome Browser assembly [20] (release
dates: hg18, March 2006; mm8, March 2006; rn3, June
2003) have been retrieved. This corresponds to 24 328, 19
343, and 8 314 genes for the human, mouse, and rat
genomes, respectively. For all of these genes, promoter
regions corresponding to 10 kb upstream and 5 kb down-
stream of the TSS were used to build background models.
Potential TFBSs with a P-value of 0.001 have been exhaus-
tively precomputed for all TRANSFAC and JASPAR verte-
brate matrices. TFM-Explorer returns a ranked list of
overrepresented TFBSs. Various types of complementary
information are provided to enhance the understanding
of the raw prediction, including the location of binding
sites, the number of predicted binding sites per sequence
in the window, the PWM composition and quality, and
the correlation between hits and PWMs. The results can be
exported as ASCII files for later use.

Additional material

Additional File 1

muscle gene set. list of RefSeq identifiers of human genes that have skele-
tal-muscle-specific expression.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-396-S1.seq]

Additional File 2

NF-kB gene set. list of RefSeq identifiers of human Rel/NF-KB target
genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-396-S2.seq]

Additional File 3

H3 gene set. list of RefSeq identifiers of human, mouse, and rat genes that
code for H3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-396-S3.SEQ)]
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