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Abstract
Affymetrix microarrays have become a standard experimental platform for studies of mRNA
expression profiling. Their success is due, in part, to the multiple oligonucleotide features (probes)
against each transcript (probe set). This multiple testing allows for more robust background
assessments and gene expression measures, and has permitted the development of many
computational methods to translate image data into a single normalized "signal" for mRNA
transcript abundance. There are now many probe set algorithms that have been developed, with a
gradual movement away from chip-by-chip methods (MAS5), to project-based model-fitting
methods (dCHIP, RMA, others). Data interpretation is often profoundly changed by choice of
algorithm, with disoriented biologists questioning what the "accurate" interpretation of their
experiment is. Here, we summarize the debate concerning probe set algorithms. We provide
examples of how changes in mismatch weight, normalizations, and construction of expression
ratios each dramatically change data interpretation. All interpretations can be considered as
computationally appropriate, but with varying biological credibility. We also illustrate the
performance of two new hybrid algorithms (PLIER, GC-RMA) relative to more traditional
algorithms (dCHIP, MAS5, Probe Profiler PCA, RMA) using an interactive power analysis tool.
PLIER appears superior to other algorithms in avoiding false positives with poorly performing
probe sets. Based on our interpretation of the literature, and examples presented here, we suggest
that the variability in performance of probe set algorithms is more dependent upon assumptions
regarding "background", than on calculations of "signal". We argue that "background" is an
enormously complex variable that can only be vaguely quantified, and thus the "best" probe set
algorithm will vary from project to project.

Mini-intro to the Affymetrix array
Current Affymetrix microarrays [1] use chemical synthesis
of 25 mer oligonucleotides in 8 µm2 features on glass
slides, resulting in a density of approximately 1 million
oligonucleotides per 1.3 cm2 microarray. The impressive
density of oligonucleotides provides adequate space on
the chip ("real estate") for use of multiple probes per
mRNA transcript. Thus, each transcript is queried by a
probe set (typically 22 oligonucleotides on current

arrays). The assessment of the amount of a specific mRNA
in a solution from a tissue or cell is determined by the
amount of hybridization to the different oligo features for
that mRNA. While "hybridization" is a highly sensitive
and specific assay, it is not perfectly sensitive or perfectly
specific. Thus, it is critical to provide measures of non-spe-
cific hybridization and probe binding (background), and
one method is to print mismatch probes, where a single
base mutation in the center of each 25 mer probe should
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disrupt most "specific" hybridization. Current expression
profiling microarrays use 11 perfect match and mismatch
probe pairs for each probe set, although there may be
many probe sets per transcript unit.

The multiple measurements of hybridization for each
mRNA allow a more robust measure of expression, as "sig-
nal" is derived from many assessments. However, the
multiple measures has led to considerable debate with
regards to the best method of integrating the 11 perfect
match and 11 paired mismatch hybridization intensities
into an ensembled "signal" for each gene. There are many
calculations intrinsic to the probe set algorithms that
derive gene expression signal, including varied penalties
for the mismatch signal, different intra-probe set normal-
izations, and normalizations between microarrays. Recent
publications have reviewed the specific calculations used
by different probe set algorithms [2,3]. To illustrate the
effects of choice of probe set algorithm on data interpreta-
tion, a 27 time point series data was analyzed with 5 dif-
ferent probe set algorithms, and a single gene (myogenin)
visualized for the time series (Figures 1, 2). The absolute
expression calculations are shown (Figure 1; signal inten-
sities = Y axis), and then the same data normalized to time
0 to generate a Y axis showing fold-change (Figure 2).
MAS5.0, dCHIP difference model (Diff) [4], and Probe
Profiler PCA (PCA) [5] correct for hybridization to the
mismatch probes for this myogenin transcript, and lead to
absolute expression levels near 0 at time 0 (Figure 1). On
the other hand, RMA [6] and dCHIP perfect match only
(PMonly) [7] do not correct for hybridization to the mis-
match, and these show a very high expression of myo-
genin at time 0 (signals of 5,000–10,000) (Figure 1).
From this difference, one can conclude that there was con-
siderable hybridization to the mismatch probes, and that,
at time 0, the mismatch and perfect match probe intensi-
ties were similar, leading to a level of "0 specific binding"
for those probe set algorithms giving a penalty to the mis-
match (MAS5.0, PCA, dCHIP Diff). On the other hand,
the perfect match only probe set algorithms (dCHIP
PMonly, RMA) make the assumption that much of the
mismatch signal is "bona fide" signal from the myogenin
transcript, and thus do not impart a penalty on the perfect
match probes. This leads to very high signal for myogenin
at time 0. While the "signals" are very different for myo-
genin between probe set algorithms, this is a difference in
assumptions concerning background, not signal per se.

When the same data set is then normalized to time 0, the
Y axis becomes a measure of "fold-change" between base-
line (time 0), and peak expression (day 3) (Figure 2). As
the graph now becomes a ratio of day 3 (numerator) and
day 0 (denominator), the very different values for day 0
expression lead to very different ratios for the different
probe set algorithms (Figure 2). In the example shown,

the PCA probe set algorithm calculates a 90-fold increase
in expression of myogenin (PCA), while the perfect match
only probe set algorithms show only a 2-fold increase
(RMA, dCHIP PMonly) (Figure 2). The volatility of the
fold-change is a consequence of different calculations of
the denominator for a ratio, and this is due to different
assumptions concerning what is "background", and what
is true "signal". If one takes this single example and
extrapolates to all 40,000 probe sets on a microarray, one
quickly understands why different probe set algorithms
give very different interpretations of the same data.

Comparison studies of probe set algorithms
There has been growing interest on the effect of probe set
algorithms on data interpretation, with development of
new probe set algorithms, and also comparisons between
probe set algorithms (see [2] and [3] for reviews). A
number of studies have found the lower variance of the
perfect-match only algorithms, and other methods of
reducing variance, to lead to more precision, with the con-
clusion that these provide the best performance [2,8-12].
However, one recent paper studying the issues of effects of
normalizations methods on variance and data interpreta-
tion noted, "Any normalization reduces variance and
increases sensitivity with no clear winner" [13]. Other
authors have similarly cautioned against equating
increased precision with improved performance, as preci-
sion may come at the cost of accuracy. The dramatic dif-
ferences in fold-change interpretation of myogenin by
different probe set algorithms shown in Figure 2 illustrate
this point. The signal of the mismatch probes for myo-
genin is relatively high at time 0, but this mismatch signal
does not rise proportionately with the increased myo-
genin perfect match signal seen at day 3. Thus, the greater
precision of RMA and dCHIP PMonly comes at a cost of
underestimating the fold-change at day 3. In other words,
the balance of precision and accuracy would fall in favor
of the greater accuracy of PCA, dCHIP diff, and MAS5.0 in
this specific instance. Thus, appropriate assessments of
"performance" may depend on a balance of precision and
accuracy, and that this is likely project and probe set
dependent [3,14,15].

An excellent R package to compare the performance of dif-
ferent probe set algorithms (Affycomp II) [16] has been
used to compare over 50 probe set algorithms in a paper
describing the effects on accuracy, precision, and sensitiv-
ity into low signals [2]. Consistent with expectations, the
authors found that background correction (e.g. using mis-
match signal) improved accuracy but worsened precision.
They proposed that GC-RMA, PLIER, ZL, and RSVD algo-
rithms provided the best balance of accuracy and preci-
sion [2]. This interpretation was based upon a spike-in
data set, where a limited number of synthesized mRNAs
were studied at varying concentrations.
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Effects of probe set algorithms on absolute expression values and varianceFigure 1
Effects of probe set algorithms on absolute expression values and variance. Shown is the same 54 microarray data 
set from a muscle regeneration 27 time point temporal series [25], analyzed by five different probe set algorithms. While all 
probe set algorithms show the same transcriptional induction of this transcript at the day 3.0 time point (expression pattern), 
the absolute expression levels both at baseline (time 0), and peak expression (day 3.0) computed by the probe set algorithms 
vary significantly. For example, at baseline, MAS5, dCHIP Difference model, and PCA all show expression near background lev-
els (0), while dCHIP perfect match and RMA show baseline values at 5,000–10,000 units. All graphs are output of the PEPR 
public access tool [26].
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Effects of probe set algorithms on fold-change calculationsFigure 2
Effects of probe set algorithms on fold-change calculations. Shown is the same data set in Figure 1, now normalized to 
time 0, with the Y axis showing fold-change. The calculated fold change from day 0 (baseline) to peak transcript induction at 
time point 3.0 days varies considerably from algorithm to algorithm. For example, PCA algorithm shows a 90-fold induction 
compared to baseline, while RMA and dCHIP show only 2.5-fold induction.
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We recently took a different approach, where three differ-
ent large data sets with different biological variance intrin-
sic to each organism and experimental system (grass, rat,
and human biopsy samples) were studied. We built an
interactive analysis tool to query the statistical power of
each probe set on the arrays in the project, with dynamic
user-definition of sample size, effect size (fold-change),
and statistical significance [3]. We found that the same
algorithms that were found to provide excellent accuracy
using spike in data [2], tended to reduce variance to inap-
propriate levels, leading to high false positives [3]. A
recent paper found similar results where the majority of
RMA-specific probe sets were unable to be validated by
RT-PCR [8]. A generalization from all of these studies is
that probe set algorithms that utilize only the perfect
match probes give much better sensitivity with less vari-
ance (enhanced accuracy), particularly at low signal levels.
However, these same low signals are particularly suscepti-
ble to strong effects from cross-hybridization from related
mRNA sequences (non-specific hybridization), and other
sources of undesired background signal. It should be kept
in mind that in "real experiment" (e.g. not spike in data),
the levels of both the desired (specific) transcript are
changing, as well as the levels of the cross-hybridizing
(non-specific) transcripts. This serves to make the system
highly (if not impossibly) complex, and the ideal balance
of precision and accuracy could be project and organism
specific. Thus, all probe set algorithms should be viewed
as a necessary but imperfect compromise in data interpre-
tation.

Is there a best bet?
One could envision that the ideal probe set algorithm
would optimize background correction and normaliza-
tion for each project and each probe set in that project.
While such approaches are doomed to be "data starved",
recently, new "hybrid" probe set algorithms have emerged
that attempt to better combine the precision of model
based approaches, with more judicious use of background
correction (mismatch penalty). These include the Affyme-
trix PLIER algorithm [17] and GC-RMA [9]. The new
hybrid algorithms have the potential to achieve a more
ideal balance of accuracy and precision. To test this, we
took a novel approach; namely statistical power analysis
of "absent call only" probe sets in a microarray project. To
explain this approach, the original MAS5.0 probe set algo-
rithm looks at the signals from the 11 probe pairs in a
probe set, and determines if the signals from perfect
match probes exceed the signals from the paired mis-
match probes. The statistical confidence that the ensem-
bled perfect match signals from a probe set are
significantly above background is derived as a "detection
p value". If, on average, the perfect match probes show
greater signal intensity than the corresponding mismatch,
then the detection p value improves, to a threshold to

where a "present call" is assigned (e.g. the target transcript
is likely "present" in the sample tested). Whereas poor sig-
nal from the perfect match, and increasing signal from the
mismatch, causes the detection p value to worsen, leading
to an "absent call" determination. The "present call" is
thus a statistically derived threshold reflecting a relative
confidence that the desired mRNA is indeed present in the
RNA sample being tested at a level significantly above
background hybridization. An "absent call" suggests that
the target mRNA is not present in the sample, or that there
is non-target mRNAs binding to the probe set (non-
desired cross-hybridization), or both. Thus, limiting data
analyses to "present calls" can restrict analyses to the bet-
ter performing probe sets and target mRNAs [18]. dCHIP
algorithms also have an option to utilize the MAS5.0
"present calls" as a form of noise filter, and we have
recently shown that use of the detection p value as a
weighting function improves the performance of all probe
set algorithms [19].

We reasoned that use of only those probe sets that showed
100% absent calls by MAS5.0 algorithms would enrich for
poor quality signals with considerable noise components,
due to poorly performing probe sets, low level or absent
target mRNAs, or cross-hybridization. By limiting our sta-
tistical power analysis to these 100% absent call probe
sets, we hypothesized that this would lead to a sensitive
test for performance of probe set algorithms with regards
to balance of precision and accuracy, and further, an
assessment of the potential for false positives.

We used our public domain power analysis tool (HCE-
power) [20] to study the effects on power analysis of two
newer hybrid algorithms (PLIER, GC-RMA) relative to
other popular algorithms (MAS5.0, RMA, and dCHIP dif-
ference model) (Figure 3). Power is the probability of call-
ing a null hypothesis false when the null is actually false.
By studying only poor signals (absent calls), many or
most sufficiently powered probe sets will be prone to false
positive results. Both RMA and GC-RMA showed statisti-
cally significant power for the large majority of these
poorly performing probe sets, even at groups of n = 2. This
suggests that both RMA and GC-RMA are subject to high
false positive rates, consistent with conclusions of a recent
study [3]. On the other hand, PLIER showed inability to
appropriately power the large majority of probe sets, even
at n = 10 per group (Figure 3). The exquisite precision of
RMA and GC-RMA affords desired sensitivity into low sig-
nal ranges for these untrustworthy probe sets, but it is rel-
atively unlikely that the derived signals correspond to
specific hybridization. Thus, chip-to-chip fluctuations in
background might lead to false positives from these probe
sets when using RMA and also the GC-RMA hybrid algo-
rithm. In the example shown, we can assume that the per-
formance of the "absent call" probe sets is poor, with
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background signal and cross-hybridization to non-spe-
cific mRNAs leading to "signal" that is suspect. The data
presented in Figure 3 suggests that improving precision
through mathematical reduction of variance can become
"inappropriate", and result in high risk for false positives.
By this analysis, the PLIER algorithm appears the most
stringent, with the lowest likelihood for false positives in
poorly performing probe sets.

Another method of illustrating this point is to analyze
sample mixing data sets. We used a publicly available
dataset of two different human tissues (PBMC and pla-
centa) mixed in defined ratios (100:0, 95:5, 75:25, 50:50,
25:75, 0:100) [21]. To enrich for signals near detection
threshold, we selected all probe sets that were "present
calls" in all 100% PBMC profiles, but absent calls in 75%,

50%, 25%, and 0% PBMC profiles. We then took all
probe sets appropriately powered at n = 2 for PLIER and
GC-RMA, and studies the ability of the two probe set algo-
rithms to track dilutions of these low level PBMC-specific
probe sets. Correlation analysis between PBMC RNA con-
centration and expression levels of the selected probe sets
showed a statistically significant difference (F-Test p value
= 1.43449E-05). As expected, GC-RMA (average R2 =
0.244803) was considerably less accurate than PLIER (R2

= 0.324908).

Log transformation of microarray data is another method
that is frequently used to reduce variance, and hence
improve precision [22-24]. We hypothesized that log
transformation of the same data in Figure 3 would further
mathematically reduce variance, improve precision and

Power calculations of absent call-only probe sets shows variable rates of false positivesFigure 3
Power calculations of absent call-only probe sets shows variable rates of false positives. Shown is the output of 
HCE-power [20] for five probe set algorithms, including two newer "hybrid" algorithms (PLIER, GC-RMA), expressed as a % of 
probe sets fulfilling specific criteria (β = 0.2, α = 0.05, effect size = 1.5 fold change). Muscle biopsies from 16 normal controls, 
and 10 Duchenne muscular dystrophy patients were used on U133A microarrays [27], and the 8,200 probe sets that showed 
an "absent call" by MAS5.0 algorithm on all 26 arrays were then loaded into HCE-power. These "absent calls" reflect poorly 
performing probe sets, where there is low confidence that signal specific to the transcript is detected above background levels. 
By this analysis, both RMA and GC-RMA show significant powering of 70–80% of these "absent call" probe sets with only 2 
microarrays per group. This can be interpreted as a high proportion of false positive results expected from this project using 
RMA or GC-RMA. On the other hand, PLIER shows insufficient powering for 98% of the 8,200 probe sets, even at group sizes 
of 10 arrays/group. This suggests that PLIER will show no false positives.
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proportion of probe sets that are adequately powered, but
with the disadvantage of leading to more potential false
positives. Since the scale of signal values significantly
influences power analysis results, we ran HCE-power with
log2-scale data (Figure 4). Comparison of Figure 3 and
Figure 4 confirmed our hypothesis: log transformation
reduced variance and greatly increased the percentage of
sufficiently powered probe sets (Figure 4). Interestingly,
PLIER still showed the best performance in terms of the
lowest potential false positive rates. This result suggests
that the new dynamic weighting and error model for
PLIER signal calculation is effective in reducing the influ-
ence of noise in the power calculation. It is important to
note that the default signal calculations of the PLIER algo-
rithm (obtained through R) include log transformation of
the resulting signals. The data presented here suggests that
log transformation of data should be used very judi-
ciously; it may result in increased precision, but at a cost

of accuracy. This interpretation is in agreement with other
publications that have studied the balance of precision
and accuracy [3,22].

Conclusion
Efforts to use a single "best" probe set algorithm for all
probe sets and projects may be an unattainable goal.
Instead, selection of analysis methods for any particular
project should be viewed as striving towards an appropri-
ate balance of precision and accuracy. Emerging hybrid
probe set algorithms, such as PLIER, may prove particu-
larly powerful in reducing false positives. New tools such
as Affycomp and HCE-power can be used to assess this
balance.
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Log transformation of absent call signals shows a strong reduction in variance, leading to a greater proportion of sufficiently powered probe sets through greater precision, but less accuracy (higher expected false positives)Figure 4
Log transformation of absent call signals shows a strong reduction in variance, leading to a greater proportion 
of sufficiently powered probe sets through greater precision, but less accuracy (higher expected false posi-
tives). Log transformation of data is a commonly used method to reduce variance, and thus increase precision. Taking the 
same data set shown in Figure 3 and log transforming the data effectively increases the proportion of probe sets that are suffi-
ciently powered at low numbers of arrays per group.
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