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Abstract
Background: We previously demonstrated that gene expression profiles during neuronal
differentiation in vitro and hippocampal development in vivo were very similar, due to a conservation
of the important second singular value decomposition (SVD) mode (Mode 2) of expression. The
conservation of Mode 2 suggests that it reflects a regulatory mechanism conserved between the
two systems. In either dataset, the expression vectors of all the genes form two large clusters that
differ in the sign of the contribution of Mode 2, which for the majority of them reflects the
difference between down- or up-regulation.

Results: In the current work, we used a novel approach of analyzing cis-regulation of gene
expression in a subspace of a single SVD mode of temporal expression profiles. In the putative
upstream regulatory sequences identified by mouse-human homology for all the genes represented
in either dataset, we searched for simple features (motifs and pairs of motifs) associated with either
sign of the loading of Mode 2. Using a cross-system training-test set approach, we identified E2F
binding sites as predictors of down-regulation of gene expression during hippocampal
development. NR2F binding sites, for the transcription factors Nr2f/COUP and Hnf4, and also
NR2F_SP1 pairs of binding sites, were predictors of down-regulation of expression both during
hippocampal development and neuronal differentiation. Analysis of another dataset, from gene
profiling of myoblast differentiation in vitro, shows that the conservation of Mode 2 extends to the
differentiation of mesenchymal cells. This permitted the identification of two more pairs of motifs,
one of which included the CDE/CHR tandem element, as features associated with down-regulation
both in the differentiating myoblasts and in the developing hippocampus. Of the features we
identified, the E2F and CDE/CHR motifs may be associated with the cycling progenitor cell status,
while NR2F may be related to the entry into differentiation along the neuronal pathway.

Conclusion: Our results constitute the first prediction of an expression pattern from the genomic
sequence for the developing mammalian brain, and demonstrate a potential for the analysis of gene
regulation in a subspace of a single SVD mode of expression.
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Background
Transcriptome profiling experiments documented
changes in gene expresion in several areas or cellular pop-
ulations of the developing mammalian brain [1-4]. The
availability of genomic sequences of an increasing
number of vertebrate species, including human and
mouse, permits – by their comparison – the identification
of putative regulatory sequences on the scale of whole
genomes [5,6]. Analysis of regulatory sequences together
with data from expression profiling holds promise of
computational identification of features of regulatory
sequences associated with particular patterns of expres-
sion [7,8].

The motifs present in corresponding cis-regulatory
sequences of orthologous genes are often the same, but
their precise arrangement may be changed [9,10]. Such
conserved motifs are more likely to correspond to func-
tional motifs, namely transcription factor binding sites
[11]. Pairs of closely situated conserved motifs are partic-
ularly attractive candidate features, as pairs of closely situ-
ated transcription factor binding sites were postulated to
constitute minimal units or "composite elements" con-
tributing to specific patterns of gene regulation [12,13].

Regulatory regions of genes of metazoans, including
mammals, have hierarchical and subunit organization
[14]. Promoters and enhancers are built of cis-regulatory
modules (CRM), which in turn are built of transcription
factor binding sites. Importantly for the computational
approach used here, some of these subunits have largely
independent and approximately additive (in a log scale)
effects on expression. Examples of such subunits include:
different enhancers of the same gene [15], certain CRMs of
well studied promoters [14,16], multiple instances of the
same motif, or even different motifs, within the same pro-
moter [7,17]. Effects of independent and additive mecha-
nisms on regulation of many genes can be conveniently
analyzed after transformation of the expression data from
the original basis of time-points to an orthogonal basis. In
this new basis, the temporal expression profiles are
regarded as weighted sums of orthogonal (uncorrelated)
modes, analogous to the modes of a vibrating violin
string. Decomposition of temporal expression profiles
into orthogonal modes, by singular value decomposition
(SVD) [18] was described before [19,20].

Hippocampal neuronal culture [21] is a well-established
experimental system, in which a wealth of information on
almost every aspect of neuronal differentiation has been
obtained. In particular, this system is relevant for studies
of gene regulation during the neuronal differentiation,
because the expression profiles in vivo are highly similar to
those in vitro [22]. Apparently, once the cells have taken a
neuronal fate, the remainder of the gene expression pro-

gram is relatively autonomous. Another advantage of this
system for studies of gene regulation is a relative ease of
experimental manipulations [23,24], which opens a pros-
pect of verification of the predictions generated in silico by
experimental work.

In a recent paper [25], we applied the SVD analysis to the
expression data from neuronal differentiation in vitro [22]
and hippocampal development in vivo [2]. We demon-
strated that the high correlation observed between the in
vitro and in vivo expression profiles stems from the conser-
vation of a single SVD mode (Mode 2) of temporal expres-
sion profiles. In both systems, Mode 2 was the most
important among the modes that carried information
about the relative changes of expression in time. The con-
tributions (loadings) of Mode 2 were highly conserved
across the 453 genes that were common to both datasets,
suggesting that this mode reflects an underlying regula-
tory mechanism conserved between the two systems. A
loading of Mode 2 to the expression of a particular gene
corresponded to a component of a continous decrease
(for the negative loading), or a continuous increase (for
the positive loading) to the expression vector of this gene.
In both compared datasets, the expression vectors of the
genes form two large clusters – differening by the sign of
the contribution of Mode 2, which, for the majority of the
genes, reflects the difference between down- or up-regula-
tion in the course of neuronal differentiation and hippoc-
ampal development.

In the current work, we used a novel approach of analyz-
ing cis-regulation of gene expression in a subspace of a sin-
gle conserved SVD mode of temporal expression profiles.
Instead of looking for common patterns of expression in
the whole space of expression measurements, we consid-
ered a common pattern of expression in an orthogonal
subspace of the original measurement space with just a
single SVD mode as its basis vector. For this analysis we
choose the previously characterized Mode 2. In the puta-
tive upstream regulatory sequences identified by mouse-
human homology, we sought to identify simple features
(motifs and pairs of motifs) associated with either sign of
the loading of Mode 2 (up- or down-regulation). Conser-
vation of Mode 2 permitted the use of a cross-system
training-test set approach, where only the most promising
features that were selected in one dataset were tested on
the other dataset. This way we identified E2F binding sites
as features predictive of down-regulation of gene expres-
sion during hippocampal development, and Nr2f/COUP
binding sites, and NR2F_SP1 pairs of binding sites as fea-
tures predictive of down-regulation during both hippoc-
ampal development and neuronal differentiation.
Addition of another datset to the comparison – from the
gene profiling of myoblast differentiation in vitro, demon-
strated that the conservation of Mode 2 extends to the dif-
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ferentiation of cells of mesenchymal origin, and led to the
identification of two features associated with down-regu-
lation of gene expression during hippocampal develop-
ment and myoblast differentiation.

Results
Both the neuronal and the hippocampal dataset can be
split (partitioned) into two roughly equal sets of genes by
the loading sign of Mode 2 (Table 1). These two sets cor-
respond to the two clusters of expression vectors in the
subspace of the first two modes previously reported [25].
Here, we sought to identify features of the putative regula-
tory sequences associated with gene membership in either
of the two clusters. We assumed that the conservation of
Mode 2 demonstrated previously for the genes common
between the two datasets extends to all the genes in either
dataset. In our feature search, we used the expression data
and the putative regulatory sequence data of all the genes
in either dataset (i.e. not only the common genes) for
which we identified at least one putative regulatory
sequence (approximately half of the genes in either data-
set) – see Table 1.

We employed a candidate feature approach, with 148
non-redundant motifs conserved between mouse and
human (hereafter referred to as motifs), and their 10878
possible pairs (co-occurrences), in putative upstream reg-
ulatory regions, used as the candidate features. Identifica-
tion of the conserved non-coding sequences (CNSs) used
as the putative regulatory sequences, and of conserved
non-redundant motifs present in those sequences were
performed using established tools, as described in Meth-
ods. For each candidate feature, we evaluated its associa-
tion with the sign of Mode 2, by calculating the
probability of the split of the set of CNSs harboring this
feature between the sets of CNSs assigned to either sign of
the loading of Mode 2. The split ratio (odds) expected for
each feature under the H0 hypothesis of no association is
equal to the split ratio in the general population of all
CNSs, i.e. approximately 1:1 (Table 1). The more asym-
metric the split observed for a particular feature and the

larger the group of CNSs containing this feature, the less
likely is this split under the H0 hypothesis, thus permitting
the identification of the most promising features.

We took advantage of the conservation of Mode 2
between the two datasets [25], and employed a training-
test set approach, where one dataset is used as training set
and the other as the test set. During training all possible
features of a given type were ranked according to the sig-
nificance of their association with the sign of Mode 2, and
10 highest-ranking features (with the smallest p-values on
the training set) were selected (feature selection) for test-
ing on the other dataset (cross-system test). During the
testing, the same statistics (p-value) as during the training
was used, but this time calculated on the other (test) data-
set. The training and test were performed for both possible
choices of the training and testing dataset (neuronal for
training and hippocampal for testing, and the other way
round).

To address the issue of multiple testing we used the Bon-
ferroni correction. The p-values obtained on the training
set were multiplied by the number of features of a given
type scored during the training (148 for motifs, 10878 for
all their possible pairs). The p-values obtained on the test
set for the 10 features earlier selected on the training set
were multiplied by 10.

Single motifs
When the neuronal dataset was used for training and the
hippocampal dataset for testing, of the 10 highest-ranking
motifs selected on the neuronal dataset, all associated
with down-regulation, the NR2F motif scored as signifi-
cantly associated with down-regulation (corrected p-value
< 0.01) during the test on the hippocampal dataset (Figure
1A, B).

Notably, the same NR2F motif was identified as signifi-
cantly associated with down-regulation for the reverse
choice of the training and test dataset (Figure 1A, C). The
presence of the NR2F motif in a CNS was associated with

Table 1: Partition of genes and putative regulatory sequences between the two signs of Mode 2 loadings. Numbers (#) of genes 
(gene_stable_ids) and of putative regulatory sequences (CNSs) in the whole datasets, in their common parts, and in their partitions 
differing by the sign of loadings of Mode 2. The ratios of split used as the general population odds for down-regulation are shown in 
bold.

Dataset Number of genes, of which 
#negative:#positive = ratio of split

Number of genes with CNSs, of 
which #negative:#positive = ratio 
of split

Number of CNSs, of which 
#negative:#positive = ratio of split 
(odds)

Neuronal dataset (N) 1824 860:964 = 1:1.12 897 422:475 = 1:1.13 2516 1210:1306 = 1:1.08
Hippocampal dataset (H) 1885 1051:834 = 1.26:1 764 359:405 = 1:1.13 2021 906:1115 = 1:1.23
Common between N and H 453 223 562
Myoblast dataset (M) 2008 1052:956 = 1.1:1 918 451:467 = 1:1.04 2733 1201:1532 = 1:1.27
Common between H and M 454 216 610
Page 3 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:367 http://www.biomedcentral.com/1471-2105/7/367

Page 4 of 14
(page number not for citation purposes)

Identification of motifs associated with the sign of Mode 2 during hippocampal development and/or neuronal differentiationFigure 1
Identification of motifs associated with the sign of Mode 2 during hippocampal development and/or neuronal 
differentiation. The ten most promising motifs associated with the sign of Mode 2 selected on the neuronal dataset were 
tested on the hippocampal dataset. The same procedure was repeated for the reverse choice of the training and the test data-
set (hippocampal dataset used for training, neuronal for testing). A. Illustration of the training-test procedure. The X and Y 
coordinates represent single-test p-values computed for each feature on the neuronal and on the hippocampal dataset, shown 
as -log10(p-value). The 10 highest-ranking features on the neuronal dataset are indicated by blue dots, and the 10 highest-rank-
ing features on the hippocampal dataset are indicated by red dots. The vertical (blue) line, and the horizontal (red) line mark 
the alpha thresholds of the corrected p-value 0.01 in the cross-system test, on the neuronal and the hippocampal dataset, 
respectively. The feature is significant in the cross-system test if a blue dot is above the red line, or a red dot is to the left of 
the blue line. The dots representing the significant features are labeled with motif names. A double coloring of a dot (blue on 
red) indicates a feature that was among the 10 highest ranking features on both the training and the test dataset – such features 
are also labeled. A dummy p-value of 2 was used to mark features absent in either dataset. B. Results of the training on the 
neuronal dataset and the test on the hippocampal dataset. "Feature name" corresponds to the Genomatix "matrix family 
name". "Down" and "Up" indicate the numbers of CNSs assigned to the genes with the negative and the positive sign of Mode 
2. C. Results of the training on the hippocampal dataset and the test on the neuronal dataset.
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odds 1.44:1 (155:107) and 1.4:1 (126:90), on the neuro-
nal and hippocampal dataset, that this CNS would be
assigned to a gene with a negative loading of Mode 2.
These odds correspond to odds ratios 1.55:1 and 1.72:1,
respectively, when compared with the odds in the general
population of all the CNSs in a given dataset (Table 1).
The NR2F motif corresponds to a Genomatix-defined
family [26] of 6 matrices describing binding sites for the
transcription factor families Hnf4 (Hnf4, Hnf4g) and
Nr2f/COUP (Nr2e3, Nr2f1, Nr2f2), known to bind to
overlapping sets of sites. Two motifs, namely NR2F and
MYBL were common between the sets of motifs selected
during the training on the neuronal and the hippocampal
dataset (Figure 1A). The MYBL motif would be significant
for both directions of the cross-system test at alpha level
0.05. This motif corresponds to a family of 7 matrices
describing binding sites for the transcription factors from
the Myb family (Myb, Mybl1, Mybl2).

During the training on the hippocampal dataset we iden-
tified the E2FF motif as being most significantly associ-
ated with down-regulation (corrected training p-value of
2.4 × 10-8, Figure 1C) The presence of the E2FF motif in a
CNS was associated with odds of 1.67:1 (205:123) that
this CNS would be assigned to a gene with a negative
loading of Mode 2, corresponding to odds ratio 2.05.
Despite its highly significant association with the negative
sign of Mode 2 on the hippocampal dataset, the E2FF
motif was not significantly associated with the sign of
Mode 2 during the cross-system test on the neuronal data-
set. The E2FF motif corresponds to a family of 3 matrices
describing binding sites for the transcription factors from
the E2F family (E2f1–8).

The strong effect of the E2FF motif on expression was spe-
cific to Mode 2, as demonstrated by the comparison of the
distributions of loadings of modes 1–5 between the E2FF-
positive CNSs and the general population of all the CNSs
in the hippocampal dataset (supplementary Figure S1 A,
see Additional file 1). The same was true when the genes
with E2FF were compared to the population of all the
genes with at least one CNS (Figure S1 B, see Additional
file 1). For the NR2F motif, in addition to the identified
effect on the loadings of Mode 2, an effect on the loadings
of mode 5 was also observed (supplementary Figure S2,
see Additional file 2).

Pairs of motifs
When the neuronal dataset was used for training and hip-
pocampal for testing, of the 10 top ranking pairs identi-
fied during training, as many as 5 pairs, namely
NR2F_SP1F, E2FF_NR2F, AHRR_NR2F, AHRR_HNF6,
and MYBL_NR2F scored significant (corrected p-value <
0.01) on the hippocampal dataset (Figure 2A, B).

Notably, the pairs NR2F_SP1F and E2FF_NR2F were iden-
tified as the only two pairs significantly associated with
down-regulation in the cross-system test for the reverse
choice of the training and test dataset (Figure 2A, C).
These were the only pairs common between the sets of
pairs resulting from the feature selection on the neuronal
and on the hippocampal dataset (Figure 2A). The cor-
rected p-values associated with these two pairs were on
both datasets smaller than the corrected p-values for the
single NR2F motif.

The presence of the NR2F_SP1F pair in a CNS was associ-
ated with odds of 2.6:1 (52:20) and 2.64:1 (58:22), on the
neuronal and hippocampal dataset, that this CNS would
be assigned to a gene with a negative loading of Mode 2.
These odds correspond to odds ratios 2.8:1 and 3.24:1,
respectively. For the E2FF_NR2F pair the odds for down-
regulation were 2.9:1 (41:14) and 3.7:1 (37:10), corre-
sponding to odds ratios 3.16:1 and 4.5:1, on the neuronal
and hippocampal dataset, respectively. The SP1F motif
corresponds to a family of 6 matrices describing binding
sites for 14 transcription factors, including Sp1–8.

Five of the 10 top ranking pairs selected during the train-
ing on the hippocampal dataset were significantly associ-
ated with the down-regulation on the hippocampal
dataset (corrected training p-values < 0.01, Figure 2C). In
addition to the two pairs mentioned above that were sig-
nificant also during the test on the neuronal dataset, the
pairs significant on the hippocampal dataset included 3
pairs of E2FF with motifs frequently occurring in the CNSs
(SP1F, ETSF, TBPF). The ETSF motif corresponds to a fam-
ily of 11 matrices describing binding sites for a large
number of transcription factors from the Ets family. The
TBPF motif corresponds to a family of 5 matrices describ-
ing binding sites for the Tata-binding protein factor.

Similarly to the significant motifs, all the significant pairs
were associated with down-regulation. The odds for
down-regulation observed for the significant pairs were
generally higher than for single motifs. The increased
odds observed for pairs of motifs that were independently
associated with down-regulation (NR2F_E2FF,
NR2F_MYBL) could be expected, and were indeed
observed, with odds ratios on both datasets of about 3.
More interesting was the fact that the presence of the ubiq-
uitous SP1F motif in the NR2F_SP1F pair resulted in an
increase of the odds for down-regulation, even though
SP1F alone was only weakly associated with down-regula-
tion on the hippocampal dataset, and not at all on the
neuronal dataset (Figure 1C). Two pairs, namely
AHRR_NR2F, AHRR_HNF6 that were selected on the neu-
ronal dataset and significant in the cross-system test on
the hippocampal dataset included AHRR as one motif.
The AHRR motif corresponds to a family of 4 matrices
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Identification of pairs of motifs associated with the sign of Mode 2 during hippocampal development and/or neuronal differenti-ationFigure 2
Identification of pairs of motifs associated with the sign of Mode 2 during hippocampal development and/or 
neuronal differentiation. The ten most promising pairs associated with the sign of Mode 2 selected on the neuronal dataset 
were tested on the hippocampal dataset. The same procedure was repeated for the reverse choice of the training and the test 
dataset (hippocampal dataset used for training, neuronal for testing). A. Illustration of the training-test procedure. For explana-
tion of the procedure – see legend to Fig 1A. B. Results of the training on the neuronal dataset and the test on the hippocam-
pal dataset. "Feature name" is a pair of Genomatix "matrix family names" for both motifs. C. Results of the training on the 
hippocampal dataset and test on the neuronal dataset.
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Hippo
Up

Hippo
pvalue

Hippo
pvalue ∗ 10878

Signif at
alpha 0.01

4445 {V$E2FF, V$ETSF} 104 52 4.5436�10�8 0.000494252 ∗

4533 {V$E2FF, V$SP1F} 128 74 1.27847�10�7 0.00139072 ∗

10728 {V$SP1F, V$STAT} 57 21 5.36408�10�7 0.00583505 ∗

4538 {V$E2FF, V$TBPF} 61 24 5.72848�10�7 0.00623144 ∗

9265 {V$NR2F, V$SP1F} 58 22 7.32136�10�7 0.00796417 ∗

4536 {V$E2FF, V$STAT} 46 15 1.76978�10�6 0.0192517 NS

10783 {V$STAT, V$ZBPF} 52 19 1.7776�10�6 0.0193368 NS

4493 {V$E2FF, V$NR2F} 37 10 2.64445�10�6 0.0287664 NS

4442 {V$E2FF, V$EGRF} 122 76 2.78414�10�6 0.0302859 NS

4546 {V$E2FF, V$ZBPF} 116 71 2.93918�10�6 0.0319725 NS

Test results

Feature
index

Feature
name

Neuro
Down

Neuro
Up

Neuro
pvalue

Neuro
pvalue ∗ 10

Signif at
alpha 0.01

4445 {V$E2FF, V$ETSF} 98 74 0.0218801 0.218801 NS

4533 {V$E2FF, V$SP1F} 119 101 0.0794112 0.794112 NS

10728 {V$SP1F, V$STAT} 57 50 0.288993 2.88993 NS

4538 {V$E2FF, V$TBPF} 52 32 0.0119313 0.119313 NS

9265 {V$NR2F, V$SP1F} 52 20 0.0000449438 0.000449438 ∗

4536 {V$E2FF, V$STAT} 33 35 1. 10. NS

10783 {V$STAT, V$ZBPF} 45 41 0.451454 4.51454 NS

4493 {V$E2FF, V$NR2F} 41 14 0.000112234 0.00112234 ∗

4442 {V$E2FF, V$EGRF} 108 111 0.735577 7.35577 NS

4546 {V$E2FF, V$ZBPF} 100 93 0.31369 3.1369 NS



BMC Bioinformatics 2006, 7:367 http://www.biomedcentral.com/1471-2105/7/367
describing binding sites for transcription factors Ahr and
Arnt. A direct interaction between the transcription factors
Ahr/Arnt and Hnf4 on the 3' enhancer of Epo [27] and
their joint binding to the promoter of Aldh3 [28] have
been described. The motif HNF6 corresponds to a family
of 2 matrices describing binding sites for the transcription
factors Onecut1–3. These pairs containing AHRR were
associated, on both datasets, with high odds for down-
regulation, for relatively small sample sizes.

E2FF versus other motifs
The single E2FF motif was most significantly associated
with the negative sign of Mode 2 on the hippocampal
dataset, and was present in 3 out of 5 significant pairs,
with the odds observed for pairs generally higher than for
E2FF alone. To explore the interactions between the E2FF
motif and other motifs, we analyzed the effect of the pres-
ence or absence of the E2FF motif on the distribution of
signs of Mode 2 assigned to the sets of CNSs selected by
each of the remaining 147 motifs. In Figure 3A, E2FF can
be identified as the motif that is most strongly associated
with the negative sign of Mode 2 corresponding to down-
regulation. However, to our surprise, the majority of the
other motifs were also weakly associated with the sign of
Mode 2 corresponding to down-regulation. This bias is
visible in Figure 3A, as a deviation of the majority of dots
to one side of the violet line, indicating (by the tangent of
its angle with X axis) the ratio of split expected under H0.
This deviation was data-driven, as confirmed by the same
plot for a randomized dataset, in which the expression
patterns assigned to the CNSs were randomly permuted
(Figure 3B). After excluding several alternative explana-
tions, we found out that the deviation of the majority of
motifs from the H0 disappeared when the CNSs contain-
ing the E2FF motif(s) were excluded from the analysis, i.e.
when the effect of each of the 147 remaining motifs was
analyzed only in the CNSs without E2FF (Figure 3C).
Finally, when we analyzed the effect of each of the 147
remaining motifs as another motif in addition to E2FF
(only in the CNSs containing E2FF), most motifs
enhanced the down-regulatory effect of E2FF, and practi-
cally no motif could revert it (Figure 3D). Thus, the weak
down-regulatory effect of the majority of motifs (Figure
3A) is explained by the fact that other motifs when co-
present with the motif E2FF tend to enhance its down-reg-
ulatory effect.

Application to another dataset
To test the robustness of our novel approach of analysis of
cis-regulation in a subspace of a single SVD mode of tem-
poral expression profiles, we applied the same methodol-
ogy to another developmental dataset – the published
dataset from the gene profiling of C2C12 myoblast differ-
entiation in vitro [29]. This also permitted to test whether
the motifs that were associated with down-regulation dur-

ing neural differentiation would be the same or different
to the motifs that are important during the differentiation
of cells of the mesenchymal lineage.

SVD
The treatment of the data and the SVD on the myoblast
dataset, were performed as described previously for the
hippocampal dataset [30]. The myoblast dataset had 8
time-points, and hence the SVD resulted in 8 modes.
Notably, the temporal profiles of the top two most impor-
tant (Figure 4A) modes were almost identical to the
shapes of the top two SVD modes reported before for the
hippocampal and the neuronal dataset. The first mode
was constant in time (not shown). The second mode rep-
resented a component of a monotonous change in expres-
sion (followed by a plateau), either up-regulation for the
positive loading (Figure 4B), or down-regulation for the
negative loading. The distribution of loadings of myoblast
modes 1 and 2 was also very similar to the distributions
reported before for the hippocampal and the neuronal
dataset (Figure 4C). Most importantly, the loadings of the
myoblast mode 2 showed a marked correlation (r = 0.43)
with the loadings of the hippocampal mode 2 (Figure 4D)
for the 454 genes common to the two datasets, indicating
that many genes changed expression in the same direction
during the myoblast differentiation in vivo and the hip-
pocampal development in vitro. The agreement was higher
for the genes with the negative loadings of mode 2 in
either system (Figure 4E), many of which are important
for cell proliferation (data not shown). This highly signif-
icant correlation (t-test p-value of 10-22) of the respective
modes 2 (thereafter jointly referred to as Mode 2) between
the myoblast and hippocampal dataset, suggested that the
cross-system approach may also help to identify cis-regu-
latory features involved in myoblast differentiation, in
particular during the exit from the proliferating progenitor
cell stage. As before, we used all the genes with CNSs from
either dataset during the feature search (see Table 1).

Cross-system feature search
The training and testing were performed bi-directionally
(myoblast dataset for training and hippocampal for test-
ing, and the other way round), separately for two feature
types (motifs and pairs).

When the myoblast dataset was used for training and hip-
pocampal for testing, 2 pairs, namely YY1_ZF5F and
CHRF_ZBPF that were selected during training on the
myoblasts dataset scored significant on the hippocampal
dataset (Figure 5A). The odds for down-regulation among
the CNSs containing the YY1_ZF5F pair were very high on
both datasets (17:1, 19:5). The YY1 motif describes bind-
ing sites for the transcription factor Yy1. The ZF5F motif
describes a binding site for the transcription factor
Zfp161. The CHRF motif describes the CDE/CHR tandem
Page 7 of 14
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element, present in a number of cell cycle-regulated S/G2-
specific genes. We note that two more pairs, including
CAAT_CHRF would be identified as significant in the
cross-system at alpha level 0.05 (Figure 5B). The CAAT
motif contains 5 matrices, describing binding sites for the
nuclear factor Y (NFY). The CDE/CHR tandem element
was shown to interact with the NFY for at least three genes
[31].

Discussion
Analysis of regulation in a subspace of a single SVD mode
The identification of mammalian regulatory features by
the classical "group by expression approach" [32] may be
limited by sparse sampling of the relevant expression
space. Simultaneously, the number of genes with a partic-
ular feature in a dataset may limit the statistical power of
the "group by sequence approach" [33] to identify fea-

Dominant effect of the E2FF motifFigure 3
Dominant effect of the E2FF motif. Distributions of the signs of loadings of Mode 2 (numbers of CNSs assigned to either 
sign of loading of Mode 2), in the sets of CNSs selected by the presence of each of the 148 motifs, in the hippocampal dataset. 
In the panels A-C, a dot represents a set of all the CNSs containing a particular motif, in D – a particular pair of motifs. The X 
coordinate of the dot is the number of CNSs in this set assigned to the negative sign of Mode 2 (a component of Down-regu-
lation), and the Y coordinate is the number of CNSs in the same set assigned to the positive sign of Mode 2 (a component of 
Up-regulation). The associated single-test p-value is indicated by the color of each dot. The tangents of the two lines: violet, 
and black, indicate the ratio of the split expected under the H0 hypothesis, and the ratio observed for the set of CNSs selected 
by the presence of the E2FF motif. A. Distributions observed for each of 148 motifs, when analyzed in all CNSs. B. The same 
distributions as in A, for a randomized dataset in which the signs of the Mode 2 assigned to each CNS were randomly per-
muted. C. Distributions for each of the 147 motifs other than E2FF, analyzed only among the CNSs without E2FF. D. Distribu-
tions for each of the 147 motifs other than E2FF, as another motif in addition to E2FF, analyzed only among the CNSs 
containing the E2FF motif.
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tures specific for full temporal expression profiles –
because such features are likely to be quite complex (com-
posed of several motifs) and therefore present in relatively
few genes.

Here we propose a modification of the "group by
sequence approach", which is to search for features asso-
ciated with expression patterns in a subspace of the origi-
nal measurements space. Particularly, we report the
analysis of cis-regulation in a subspace of a single SVD
mode of expression, chosen because it was biologically
interpretable and conserved between hippocampal devel-
opment and neuronal differentiation in vitro. By employ-
ing this approach we identified several features that are
associated with down-regulation of gene expression dur-
ing hippocampal development (here, the most significant
was the E2FF motif), or both during hippocampal devel-
opment and neuronal differentiation (here, the most sig-
nificant was the NR2F_SP1F pair), or during myoblast
differentiation and hippocampal development (here, the
most significant was the CHRF_ZBPF pair).

E2FF was identified through the analysis within a single
dataset, for the identification of the remaining features
crucial was the conservation of Mode 2 between the data-

sets, which permitted their combined use – resulting in an
increased statistical power of the analysis.

The effect size (odds) for most of the features identified by
our analysis was moderate, with typical odds for down-
regulation of about 3:1. Due to limitations of the micro-
array technology [4], some profiles may be incorrectly
assigned to the genes, with an effect similar to a partial
randomization of the dataset. Thus the specificity of the
identified features is likely higher than the obtained odds.
The odds, and the confirmation rate in the cross-system
tests, were generally higher for pairs than for single motifs,
in agreement with the postulated role of composite ele-
ments [12,13]. For some of the identified pairs a direct
interaction between the two motifs (CAAT_CHRF), or
between the transcription factors that can bind to them
(NR2F_SP1, AHRR_NR2F) has been described. The use of
triples of motifs reduced the confirmation rate to 1/10
(data not shown), suggesting that the use of more com-
plex features with the current dataset sizes leads to over-
fitting. The confirmation rate was higher for training on
the neuronal dataset and testing on the hippocampal
dataset than for the reverse choice of the training and the
test set.

Results of the SVD on the dataset from gene profiling of myoblast differentiationFigure 4
Results of the SVD on the dataset from gene profiling of myoblast differentiation. The relevant part of the results 
of the SVD on the dataset from C2C12 myoblast differentiation in vitro, performed as described in Methods. A. The singular 
values for all 8 modes, and for the modes 2–8 to illustrates the importance of the second mode. B. Temporal profile (loading 
onto the time-points) of the second mode. C. Loadings of the myoblast modes 1 and 2 (marked m1 and m2) to the expression 
vectors of individual genes. D. Correlations between the loadings of modes resulting from the SVD on the myoblast dataset 
(marked m1–m8) and the modes resulting from the SVD on the hippocampal dataset (marked h1–h5) calculated for 454 com-
mon genes, represented in the colour scale. E. Loadings of the respective second modes resulting from the SVD on the myob-
last (m2) and on the hippocampal dataset (h2) for the 454 genes common to both datasets.
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The identified features account for the sign of Mode 2 of
relatively small fractions of all the genes in the analyzed
datasets. This was expected, due to the limitations of both
the measurement of expression, and of the analysis of cis-
regulatory regions. Because of a sparse temporal sampling
(few time-points in the datasets, leading to the same
number of SVD modes) and only partial synchronization
of cells, Mode 2 must reflect many mechanisms of regula-
tion, acting through different cis-regulatory features, and
therefore a single feature cannot account for the loading
of this mode for the majority of genes. Our identification
of the putative cis-regulatory regions was limited only to
the CNSs in the upstream -10 kb region, and even in these

regions some of the functional motifs were surely missed,
and others called incorrectly. Despite all these limitations,
our analysis led to identification of features predictive of
gene expression during the development of a region of the
mouse brain.

The analysis of regulation in subspaces of SVD modes (but
without reference to regulatory regions) has been sug-
gested [34] but not reported before. Genes that are likely
to be co-regulated by a common regulator and that are
functionally related may have different expression profiles
due to the action of other regulators. This possibility was
noted before, and it was proposed to analyze gene regula-

Identification of pairs of motifs associated with the sign of Mode 2 during myoblast differentiation and hippocampal develop-mentFigure 5
Identification of pairs of motifs associated with the sign of Mode 2 during myoblast differentiation and hippoc-
ampal development. The ten most promising pairs associated with the sign of Mode 2 selected on the myoblast dataset 
were tested on the hippocampal dataset. The same procedure was repeated for the reverse choice of the training and the test 
dataset (hippocampal dataset used for training, myoblast for testing). A. Illustration of the training-test procedure. For an 
explanation of the procedure – see legend to Fig 1A. B. Results of a training on the myoblast dataset and a test on the hippoc-
ampal dataset, column names as in Figure 1B.
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Feature
index

Feature
name

Myo
Down

Myo
Up

Myo
pvalue

Myo
pvalue ∗ 10878

Signif
alpha 0.01

10866 {V$YY1F, V$ZF5F]} 17 1 8.94877�10�6 0.0973447 NS

2637 {V$CDEF, V$E2FF}

}

51 25 0.0000649142 0.706137 NS

2235 {V$CAAT, V$CDEF} 46 24 0.000268916 2.92527 NS

7978 {V$LHXF, V$OCTP} 25 8 0.000301266 3.27717 NS

6868 {V$HESF, V$YY1F} 12 1 0.000400713 4.35895 NS

2240 {V$CAAT, V$CHRF} 41 21 0.000488793 5.31709 NS

904 {V$AP4R, V$EVI1} 30 78 0.000642121 6.98499 NS

3371 {V$CHRF, V$ZBPF} 34 16 0.000859787 9.35276 NS

8339 {V$MINI, V$NRSF} 0 13 0.000940284 10.2284 NS

4904 {V$EBOX, V$HIFF} 73 51 0.00104646 11.3833 NS

Test results

Feature
index

Feature
name

Hippo
Down

Hippo
Up

Hippo
pvalue

Hippo
pvalue ∗ 10

Signif
alpha 0.01

10866 {V$YY1F, V$ZF5F} 19 5 0.000773092 0.00773092 ∗

2637 {V$CDEF, V$E2FF} 46 28 0.00326244 0.0326244 NS

2235 {V$CAAT, V$CDEF} 25 25 0.479911 4.79911 NS

7978 {V$LHXF, V$OCTP} 17 12 0.140344 1.40344 NS

6868 {V$HESF, V$YY1F} 14 5 0.0185334 0.185334 NS

2240 {V$CAAT, V$CHRF} 27 11 0.00158023 0.0158023 NS

904 {V$AP4R, V$EVI1} 37 41 0.650596 6.50596 NS

3371 {V$CHRF, V$ZBPF} 27 8 0.000125987 0.00125987 ∗

8339 {V$MINI, V$NRSF} 7 5 0.393809 3.93809 NS

4904 {V$EBOX, V$HIFF} 50 45 0.148346 1.48346 NS
Page 10 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:367 http://www.biomedcentral.com/1471-2105/7/367
tion separately for each time-point [7] or experimental
condition [35]. Our approach is analogous, but only after
the data have been transformed from the original basis (of
time-points or conditions) to an orthogonal basis (of SVD
modes). Our approach is likely more appropriate if a par-
ticular regulator is expected to operate at several time-
points.

Motifs associated with down-regulation during 
development
We identified the E2FF motif as associated with the nega-
tive sign of Mode 2 during hippocampal development,
but not during neuronal or myoblast differentiation in
cell culture. The transcription factors from the E2F family
have a well-established role in the regulation of gene
expression during the cell cycle [36]. Neural progenitor
cells present in the mouse hippocampus during normal
development withdraw from the cell cycle to give rise to
neurons or glia [37,38]. Transcription factors from the
E2F family are also known to participate in gene silencing
of several S-phase genes in fully differentiated neurons
[39]. Thus, the regulation of Mode 2 by E2FF may reflect
changes in gene expression associated with a progressive
withdrawal of neural progenitors from a self-renewing
pool and associated with differentiation itself. In the
developmental time-window (after the embryonic day 17
– E17) probed by both the neural datasets, the majority of
neurons in the hippocampus are already postmitotic, and
the cells that still proliferate will become mainly glia. This
suggests that the E2FF motif exerted its down-regulatory
effect during the hippocampal development after E17
mainly in the glial precursors. This could explain the lack
of E2FF association with Mode 2 in the neuronal culture
(where Ara-C blocks proliferation of glial precursors).

The finding that many motifs, when co-present in the
same CNS, tend to enhance the down-regulatory effect of
E2FF suggests that these motifs provide a cis-regulatory
context, in which the E2FF motif is more likely to have a
down-regulatory effect on gene expression. A tendency of
functional motifs to cluster in cis-regulatory regions is well
established [40]. The finding that the down-regulatory
effect of E2FF dominated over the effects of any other
motif present in the same cis-regulatory sequence is inter-
esting, because it seems to be in agreement with a possible
role of E2FF in gene silencing during the hippocampal
development. The fact that E2FF was not associated with
Mode 2 during myoblast differentiation is hard to explain,
as a role of E2F in gene silencing of several S-phase genes
was demonstrated in this model [41]. A possible hint is
offered by the observation of Tomczak et al. [29] that after
change to the differentiation medium at day 0, the C2C12
cells transiently up-regulate many cell cycle-related genes.
Possibly, the E2F regulation in this system is captured by
another mode(s).

We identified the NR2F motif as being associated with
down-regulation of gene expression during both the hip-
pocampal development and the neuronal differentiation
in vitro. This suggests that this motif exerts its role in the
differentiating neurons. This possibility is supported by
several studies. The NR2F motif is predicted to bind sev-
eral transcription factors, including the orphan nuclear
receptor NR2F1 alias COUP-TF. The transcription factor
NR2F1/COUP is a marker of neurogenesis from hydra to
vertebrates, postulated to regulate the entry of cells into
differentiation [42]. COUP binds to the promoter of nes-
tin in the neural progenitor cells [43]. COUP-TF was also
shown to inhibit outgrowth of neurites [44], and is
induced upon retinoic acid-induced neural differentiation
of the P19 embryonic carcinoma cells [45]. The signifi-
cance of the NR2F_SP1F pair was higher than of the motif
NR2F alone. A possibility of the interaction between the
two motifs is corroborated by the fact that the NR2F1 and
SP1 proteins were shown to directly interact [46].

All the significant features we identified were associated
with down-regulation. When we narrowed the feature
selection during the training to select only the features
that were associated with up-regulation we were not able
to identify any feature that was significant (data not
shown). This may reflect the importance of the negative
regulation of expression during development [47] and the
fact that during development a homogenous population
of precursor cells diversifies along many differentiation
routes. Consequently, the expression signal associated
with the precursor cells is stronger, resulting in an easier
identification of features that are associated with expres-
sion in the precursor cell status or in the exit from this sta-
tus. Of the features we identified, E2FF and CHRF may be
associated with the cycling progenitor status, while NR2F
may be related to the entry into differentiation along the
neuronal pathway.

Conclusion
1. We identified the E2FF motif as a feature significantly
associated with down-regulation of gene expression dur-
ing hippocampal development.

2. We identified the NR2F motif and the NR2F_SP1F pair
of motifs as features significantly associated with down-
regulation during hippocampal development and neuro-
nal differentiation in vitro, suggesting their role in the dif-
ferentiation of neurons.

3. We demonstrated that the conservation of Mode 2, pre-
viously identified between hippocampal development
and neuronal differentiation in vitro, extends also to the
differentiation of myoblasts in vitro.
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4. Simple features of cis-regulatory regions (such as motifs
or pairs of motifs) can be predictive of gene expression in
a subspace of a single SVD mode.

Methods
Sources, annotation and format of expression data
The published datasets from expression profiling of hip-
pocampal development [2], of neuronal differentiation in
the mouse hippocampal neuronal culture [4], and of dif-
ferentiation in vitro of the C2C12 myoblasts [29], were
mapped to the Ensembl 27_3 gene_stable_ids. We used
only the profiles with no missing values from each data-
set. This resulted in a mapping of 1926 hippocampal pro-
files to 1885 gene_stable_ids, of 3216 neuronal profiles to
1824 gene_stable_ids, and of 2895 myoblast profiles to
2008 gene_stable_ids. 453 genes were common between
the hippocampal and the neuronal dataset and 454 genes
were common between the myoblast dataset and the hip-
pocampal dataset. Separately for either dataset, we com-
puted a single average expression profile for each
gene_stable_id, resulting in the following expression
matrices: hippocampal DH (1855 genes × 5 time-points),
neuronal DN (1824 genes × 6 time-points) and myoblast
DM (2008 genes × 8 time-points). The matrices DH, DN
and DM were each column-normalized (i.e. each column
was divided by its vector norm) and then log-transformed,
resulting in the matrices AH, AN, and AM.

SVD analysis and comparison of loadings between two 
datasets
The SVD analysis, and the comparison of loadings
between two datasets, were performed as described before
[25]. Briefly, SVD was performed separately on matrices
AH, AN, and AM resulting in matrices uH (1855 × 5), mH, vH;
uN (1824 × 6), mN, vN; and uM (2008 × 8), mM, vM respec-
tively. The loadings of the respective second mode for
every gene in each dataset are given by the entries in the
second columns of the matrices uH, uN and uM. Only the
signs of the loadings of the respective second mode were
used during the feature search.

For the comparison of loadings between the hippocampal
and myoblast dataset, from the matrices uH and uM we
selected the gene loadings vectors for the 454 genes com-
mon between these two datasets. This resulted in matrices
uHM and uMH. Column k of matrix uHM contains the load-
ings of the k-th hippocampal mode for all the common
genes. Column l of matrix uMH contains the loadings of
the l-th myoblast mode for all the common genes. We cal-
culated the Pearson correlation coefficient r between each
pair of columns of uHM and uMH.

Selection of putative regulatory regions
We used conserved non-coding sequences (CNSs)
between mouse and human as putative regulatory

regions. For each mouse-human orthologous gene pair in
Ensembl [48] release 27, the 10 kb orthologous sequences
upstream of the annotated transcription start site were
aligned using the AVID alignment algorithm [5].
Sequence windows at least 100 bp long with at least 75%
identity were selected as candidate regulatory regions.
This resulted in the identification of 2021 CNSs for 764 of
the 1885 genes in the hippocampal dataset, 2516 CNSs
for 897 of the 1824 genes in the neuronal dataset, and
2733 CNSs for 918 of the 2008 genes in the myoblast
dataset. The average number of CNSs per gene for the
whole Ensemble dataset was 2.7 +/- S.D. = 2.4 CNSs per
gene, of average length 185 bp +/- S.D. = 128 bp. All the
CNSs identified for each dataset were used for the identi-
fication of transcription factor binding motifs.

Motif identification
Transcription factor binding sites were predicted for all
the vertebrate position weight matrices of the Genomatix
Matrix Family Library version 6.0 using the program Mat-
Inspector [49,50]. This was done in all the CNSs, sepa-
rately for the mouse and the human sequence of each
CNSs pair. Default thresholds, optimized for each motif
as described in [26] were used. The motif library con-
tained 431 vertebrate positional weight matrices grouped
into 148 matrix families [26].

Feature definition
Motifs identified with matrices belonging to the same
matrix family were treated as the same non-redundant (n-
r) motif. The use of n-r motifs allowed a considerable
reduction of the number of features, and increased the
number of CNSs containing each feature. A CNS was
defined to contain a conserved n-r motif X if both the
mouse and the human sequence of this CNS pair con-
tained a nonzero number of instances of X (not necessar-
ily in the same AVID-aligned position). A pair, designated
X_Y, of conserved n-r motifs X and Y was defined as a
simultaneous instance of X and Y in the same CNS. The
distance of motifs constituting a pair was limited by the
typical length of a CNS (see above). Unless indicated oth-
erwise, in the main text we use the words: "motif" and
"pair", in the sense of: "conserved non-redundant motif"
and of their pair.

Binomial model linking features with the sign of Mode 2
In the search for the features associated with the sign of
Mode 2, each CNS was assumed to be independent and
was assigned the sign of the loading of Mode 2 of its asso-
ciated gene. In our binomial model, each CNS with an
instance of a feature constitutes a binomial trial, in which
the positive sign of the loading of Mode 2 for the associ-
ated gene is a success, and the negative sign of the loading
is a failure. The number of trials for each feature is equal
to the number of the CNSs with this feature in a given
Page 12 of 14
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dataset. The probability s of success in a single trial, under
the H0 hypothesis of no association, is equal to the ratio
of the number of CNSs assigned to the genes with the pos-
itive loadings of Mode 2 to the number of all CNSs in a
given dataset (sH = 1115/2021 = 0.55, sN = 1306/2516 =
0.52, and sM = 1532/2733 = 0.56, for the hippocampal,
neuronal and the myoblast dataset). From this binomial
model we computed two-sided p-values, defined as: the
cumulative probability, under H0, of all the numbers of
successes equally or less likely than the observed number
(i.e. the cumulative probability of all possible splits as
likely or less likely than the observed split). Unless indi-
cated otherwise, in the main text we use the word "p-
value" in the sense of: "uncorrected single test p-value".
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CNSs. B. Comparison of the distributions of loadings for the genes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-367-S1.pdf]

Additional File 2
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