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Abstract
Background: Identification of protein interaction networks has received considerable attention in the post-genomic
era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour
intensive. Consequently there is a growing need for the development of computational tools that are capable of
effectively identifying such interactions.

Results: Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine
termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces
cerevisiae proteins from their primary structure and without the need for any additional information or predictions about
the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an
overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used
biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30) and YMR135C (gid8)
yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c). The
observed interaction was confirmed by tandem affinity purification (TAP tag), verifying the ability of PIPE to predict novel
protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared
from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion
strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered
with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any) on
the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us
to predict protein interactions that are not included in genome-wide yeast TAP tagging projects.

Conclusion: PIPE analysis can predict yeast protein-protein interactions. Also, PIPE analysis can be used to study the
internal architecture of yeast protein complexes. The data also suggests that a finite set of short polypeptide signals seem
to be responsible for the majority of the yeast protein-protein interactions.
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Background
Proteins carry out the majority of the biological processes
in cells. Most often, proteins accomplish this task in asso-
ciation with protein partners, forming stable or transient
protein complexes. It is therefore generally accepted that
protein-protein interactions are responsible for the cell's
behaviour and its responses to various stimuli [1-3]. Fur-
ther, the completion of higher eukaryotic genome projects
have led to the understanding that the biological com-
plexity underlying higher organisms is not accomplished
by increasing the number of genes [4-6]. It is now thought
that this complexity stems from an elevated pattern of
protein-protein interactions in higher organisms [7,8]. As
a consequence, charting protein-protein interaction maps
remains a major goal in biological research.

A large part of post-genomic research has focused on the
analysis of protein-protein interactions. Measurement,
prediction and analysis of interactions between proteins
have been extensively used to identify proteins that are
functionally related. As a consequence, analysis of protein
interaction networks has become a powerful tool to assign
putative functions to previously ill-characterized proteins
[2,3]. In this context, the yeast Saccharomyces cerevisiae has
emerged as the model organism for studying functional
proteomics. Very recently, we used protein interaction
analysis to assign putative functions to different yeast pro-
teins [9,10].

Protein-protein interactions can be most readily identified
by protein affinity chromatography or pull-down experi-
ments, yeast two-hybrid screens, or purifying protein
complexes that have been tagged in vivo. These methods
are all labour and time consuming and have a high cost
associated with them. Each of them has inherent advan-
tages and disadvantages. The yeast two-hybrid system has
the advantage of identifying the direct interaction
between protein pairs [11,12]. However, the data gathered
from this method has a high (as much as 50%) rate of
false positives and in the absence of other lines of evi-
dence, this data alone may not be considered as biologi-
cally significant [13,14]. Affinity purification methods
such as the in vivo double-tagging of protein complexes
followed by purification steps using affinity chromatogra-
phy, also known as tandem affinity purification (TAP tag),
has the advantage of identifying complexes that really
exist in vivo (as long as the tagged protein is not overpro-
duced) [15,16]. However, all affinity purification meth-
ods suffer from limitations [13,14,17]. First, the addition
of a tag, large or small, to the protein may change its prop-
erties, causing changes in complex stability or composi-
tion. Second, all purification methods suffer from the co-
purification of "contaminating" proteins. It is often diffi-
cult to conclude whether these "contaminants" represent
true endogenous partners or artificial associations

induced by cell disruption. Third, during affinity purifica-
tions proteins are isolated as complexes and therefore the
direct interactions between protein pairs are not readily
distinguished from the indirect (via intermediates) ones.

The high cost, as well as the technical limitations associ-
ated with such biochemical approaches has resulted in a
growing need for the development of computational tools
that are capable of identifying protein-protein interac-
tions. As a result, there have been a number of such tools
developed over the past few years. Some of these tools are
based on previously identified domains [18-20], some use
similarities and sequence conservation between interact-
ing proteins [21,22], others use the structural information
of proteins [23-25] etc. The primary structure of the pro-
teins has also been used to detect protein-protein interac-
tions. Using a vector based learning machine it has been
shown that the primary sequence of amino acids alone
may successfully be used to detect protein-protein interac-
tions [26,27]. A disadvantage of the protein-protein inter-
action detection tools is that they often have limited
abilities to detect novel interactions and to differentiate
them from false positives. A high rate of false negatives is
another disadvantage associated with some of these tools.

Here, we ask the question: can novel protein-protein
interactions be successfully predicted from amino acid
sequences (the primary structures) alone and without any
further information/prediction about the proteins? Our
hypothesis is that some of the interactions between pro-
teins are mediated by a finite number of short polypeptide
sequences. These sequences may be typically shorter than
the classical domains and are used repeatedly in different
proteins and in different contexts within the cell. Once the
interaction database is large enough to sample these
sequences, it should be possible to accurately predict such
protein-protein interactions. In this paper, we report on
the development and implementation of a computational
tool termed Protein-Protein Interaction Prediction Engine
(PIPE). This engine uses the primary structure of proteins
together with the available protein interaction data to pre-
dict the potential interaction between any target pairs of S.
cerevisiae proteins.

Results and discussion
Our protein-protein interaction prediction algorithm
(PIPE) is described in detail in the Materials and Methods
section of this paper. It relies on previously determined
interactions for S. cerevisiae. For two target proteins A and
B, PIPE determines the likelihood for A and B to interact.
Typical PIPE output for non-interacting and interacting
pairs of proteins are shown in Figure 1(a) and 1(b) respec-
tively. A peak with a score higher than 10 indicates that
PIPE is predicting an interaction.
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Interaction graphsFigure 1
Interaction graphs. Two interaction graphs showing potential interaction sites for a pair of non-interacting proteins (a) and 
a pair of interacting proteins (b). In (a), the number of corresponding short amino acid sequences between YBL090W and 
YGL055W, which also co-occur in the dataset of the interacting proteins, is calculated to be very low and hence no obvious 
picks are detected in this graph. In (b), a sharp pick with a score of 115 indicates that the two corresponding short amino acid 
sequences one in middle section of YBR288C (around amino acid 140) and the other at the C-terminal end of YGR261C co-
occur 115 times in the dataset of the interacting protein pairs. It is therefore hypothesized that the two proteins YBR288C and 
YGR261C can potentially interact.
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Ability of PIPE to detect interacting proteins
PIPE accuracy was determined by analyzing sets of known
interacting pairs and expected non-interacting pairs. PIPE
successfully detected 61% of interacting proteins in a ran-
domly selected set of 100 protein pairs from the yeast pro-
tein interaction literature for which at least three different
lines of experimental evidence supported the interaction
(positive validation set; see Table 1). This positive valida-
tion set was selected independently of the dataset of the
interacting protein pairs used by PIPE to predict interac-
tions. This observation suggests a sensitivity of 61% and a
false negative rate of 39% for PIPE data. As discussed in
Materials and Methods below, the PIPE method is compu-
tationally intensive and our evaluation of PIPE took close
to 1000 hours of computation time. PIPE's success rate is
comparable to those obtained by in vivo experiments. TAP
tag data are estimated to have a false negative rate of 15–
50% [13] with an internal reproducibility of 70% [14],
which applies only to those proteins that can be success-

fully tagged in vivo (89%) [14]. A conservative estimation
of false negative rate in yeast two-hybrid screens suggests
a range from 43 to 71% [13]. This finding indicates that
protein interactions mediated by short polypeptide
sequences may comprise the majority of protein interac-
tions experimentally observed.

In order to evaluate the specificity and the rate of false
positives associated with PIPE, a negative validation set of
100 protein pairs were gathered from the literature (see
Table 2). These protein pairs are expected to not interact
based on protein localization data, co-expression profil-
ing, known direct or indirect functional or genetic rela-
tionships and the information gathered from the
complete set of protein interaction datasets. 11 of these
non-interacting protein pairs were predicted by PIPE to be
interacting, indicating a specificity of 89% and a false/
novel positive rate of 11%. It also suggests that PIPE has
an overall accuracy of 75%. The low false positive rate

Table 1: Positive validation set. The list of the protein pairs that our known to interact. This list was used to evaluate PIPE's accuracy 
to detect protein interactions.

Protein A Protein B Protein A Protein B Protein A Protein B

YAL021C YNR052C YDR394W YOR117W YJL187C YBR133C
YAL032C YDR416W YDR416W YKL095W YJR068W YBR087W
YAR003W YBR175W YDR477W YGL115W YJR076C YHR107C
YBL007C YHR016C YDR490C YPL004C YJR093C YPR107C
YBL045C YPR191W YDR490C YGR086C YJR093C YMR061W
YBL056W YDR071C YEL037C YER162C YKL028W YDR311W
YBR102C YLR166C YER027C YDR477W YKL135C YPR029C
YBR102C YDR166C YER027C YGL115W YKL135C YPL259C
YBR103W YIL112W YER081W YIL074C YKL135C YHL019C
YBR123C YOR110W YER095W YML032C YKL139W YJL006C
YBR125C YDR071C YFL039C YNL138W YKR046C YLR291C
YBR126C YMR261C YFR004W YOR261C YKR048C YCL024W
YBR126C YML100W YGL112C YBR198C YKR068C YBR254C
YBR135W YDL155W YGL190C YML109W YKR068C YDR472W
YBR154C YOR116C YGL195W YFR009W YLR103C YLR274W
YBR160W YBR135W YGL208W YGL115W YLR103C YBR202W
YBR170C YGR048W YGL237C YOR358W YLR166C YPR055W
YBR200W YER114C YGR040W YDL159W YLR226W YPR161C
YBR200W YAL041W YGR040W YPL049C YLR274W YBR202W
YBR254C YDR472W YGR240C YMR205C YLR291C YGR083C
YCR052W YFR037C YGR261C YBR288C YLR371W YDL203C
YCR077C YDL160C YHR148W YJR002W YLR423C YBR217W
YCR093W YPR072W YHR166C YBL084C YLR423C YNL182C
YDL002C YER092W YHR172W YNL126W YLR423C YGL237C
YDL002C YGL150C YHR172W YLR212C YML077W YDR472W
YDL092W YKL122C YIL021W YOL005C YML094W YLR200W
YDL126C YKL213C YIL033C YKL166C YML098W YML015C
YDL126C YBR170C YIL033C YJL164C YMR091C YFR037C
YDL147W YDR179C YIL038C YPR072W YMR146C YDR429C
YDL216C YMR025W YIL062C YKL013C YMR167W YNL082W
YDR074W YMR261C YJL005W YNL138W YMR231W YDL077C
YDR074W YML100W YJL008C YOR117W YNL126W YLR212C
YDR148C YFR049W YJL124C YBL026W YNR006W YHL002W
YDR179C YMR025W
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associated with PIPE is substantially better than most
experimental protein interaction detection methods. It is
thought that the false/novel positive rate might be as high
as 77% and 64% in TAP tag and yeast two hybrid experi-
ments, respectively [13].

In addition to the negative validation set of 100 protein
pairs discussed above, we also presented 10 pairs of ran-
dom amino acid sequences of length 500 to PIPE, and
PIPE detected no interactions among those 10 pairs,
another indication of a low false/novel positive rate for
PIPE (data not shown).

All together these data indicate that PIPE can effectively
identify protein-protein interactions based on the primary
structure (amino acid sequences) of proteins alone and
without any previous knowledge about the higher struc-
ture, domain composition, evolutionary conservation or
the function of the target proteins. This is a significant

improvement over some commonly used protein-protein
interaction prediction algorithms. For example, our anal-
ysis using Interpret, one of the most commonly used pro-
tein-protein interaction prediction tools [24], failed to
detect the previously identified interactions for protein
pairs YKL028W-YDR311W, YKR048C-YCL024W [17,28]
and YOR358W-YGL237C [12] for which limited struc-
tural information is available. PIPE analysis, however,
detected an interaction for these pairs with scores of 250,
160 and 100, respectively.

We note, however, that although PIPE appears to have a
good specificity, it would be weak for detecting novel
interactions among genome wide large-scale data sets. For
example, assume that we were able to run PIPE on all
(approx. 20,000,000) pairs of yeast proteins, despite
PIPE's current running time. If we assume that there are
approximately 50,000 true interactions, then PIPE would
be expected to report approximately 30,000 true positives,

Table 2: Negative validation set. The list of the protein pairs that our known not to interact. This list was used to evaluate PIPE's 
accuracy to detect protein interactions.

Protein A Protein B Protein A Protein B Protein A Protein B

YAL003W YDL232W YCL004W YDL168W YLR170C YNL137C
YAL047C YBR243C YCL009C YDR077W YLR170C YOR346W
YAR071W YCL030C YCL018W YDL078C YLR170C YPL048W
YBL068W YBL099W YCL025C YDR079W YLR170C YPL147W
YBL068W YLR170C YCL040W YDR086C YLR195C YMR203W
YBL068W YNR006W YCL050C YCL057W YLR195C YNR006W
YBL068W YPL029W YCR005C YDL022W YLR244C YMR203W
YBL079W YBL090W YCR021C YCR053W YLR244C YPL147W
YBL079W YBL099W YCR094W YMR170C YMR011W YMR203W
YBL079W YKL122C YDL028C YDL066W YMR011W YNL137C
YBL079W YMR203W YDL055C YBR243C YMR011W YOR025W
YBL079W YNL137C YDL067C YDL212W YMR011W YPL048W
YBL079W YPL147W YDL142C YDL159W YMR011W YPL147W
YBL079W YPR133W-A YDL236W YDR086C YMR203W YNL029C
YBL084C YBL090W YDR001C YDL137W YMR203W YNR043W
YBL084C YBL099W YDR044W YCR014C YMR203W YOR025W
YBL084C YLR170C YDR144C YAL003W YMR203W YPL048W
YBL084C YNL137C YGL055W YLR170C YMR203W YPL147W
YBL090W YGL055W YGL055W YNR006W YMR261C YNL137C
YBL090W YKL122C YHR041C YDR538W YMR261C YNR006W
YBL090W YLR170C YIL021W YBR177C YMR261C YOR321W
YBL090W YMR203W YKL122C YKL181W YMR261C YPL147W
YBL090W YOR321W YKL122C YLR170C YMR261C YPR133W-A
YBL090W YPR133W-A YKL122C YLR195C YNL029C YNL137C
YBL099W YGL055W YKL122C YMR203W YNL029C YNR006W
YBL099W YKL122C YKL122C YNL137C YNL029C YOR025W
YBL099W YLR170C YKL122C YOR346W YNL029C YPL147W
YBL099W YNR006W YKL122C YPL048W YNL137C YNR043W
YBL099W YOR346W YKL122C YPL147W YNL137C YOL136C
YBR208C YCR048W YKL181W YLR170C YNL137C YOR025W
YBR218C YDL077C YKL181W YMR203W YNL137C YPL147W
YBR236C YCR011C YKL181W YNL137C YNR006W YOR025W
YBR237W YDL090C YLR170C YMR203W YNR006W YPL048W
YBR248C YDL194W
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2,200,000 false positives, 17,750,000 true negatives and
20,000 false negatives. The large number of false positives
compared to the number of true positives makes PIPE a
weak tool for analyzing such data sets.

During the preparation of this manuscript an algorithm
termed Linear Motif Discovery (LMD), which contains
some parallel features to PIPE, was published elsewhere
[29]. In that report the primary sequences of proteins in
the database of interacting protein pairs were analyzed to
identify novel protein interaction motifs. In this manner
the authors identified dozens of novel interacting motif
candidates. A significant difference between PIPE and this
approach is that PIPE is optimized to predict the likeli-
hood of an interaction between a given pair of proteins,
whereas LMD is optimized to identify protein-protein
binding motifs. The existence of a protein-protein binding
motif in a pair of proteins does not indicate how likely
this is going to result in an actual protein-protein interac-
tion.

Ability of PIPE to detect the sites of interactions between 
protein pairs
To examine whether PIPE can detect the sites of interac-
tion between proteins, we took 10 protein pairs (Table 3)
for which their sites of interactions had previously been
reported. Of the 10 protein pairs, PIPE identified 7 pairs
as interactors. The sites of interactions reported by PIPE
for 4 of these pairs were the same as those previously
reported in the literature. It was previously shown in [30]
that the region 310–768 in protein YNL243W is responsi-
ble for its interaction with amino acids 118–361 in pro-
tein YBL007C. PIPE analysis of the protein pair is shown
in Figure 2. Apparent by a peak with a high score of 45,
PIPE analysis indicates that the region between amino
acids 350 and 410 in protein YNL243W co-occurs fre-
quently with the region between amino acids 100 and 250
in protein YBL007C. This observation suggests that the
two proteins are interacting via the mentioned regions.

This is in agreement with the regions experimentally
shown to mediate an interaction between YNL243W and
YBL007C [30]. Interestingly, PIPE also detected a second
potential site of interaction between the same region
(amino acids 350–410) for YNL243W as above and the C-
terminal region (amino acids 1175–1225) of YBL007C.
Of interest is that previously it was shown that the C-ter-
minal domain of YBL007C can function as a site of pro-
tein-protein interaction [31,32]. Further studies are
required, however, to verify the presence of an interaction
between these newly predicted sites. Furthermore, PIPE
successfully determined the previously documented site
of interaction between YCR084C and YBR112C. It is
reported that the first 75 amino acids of YCR084C is
responsible for an interaction with the N-terminal region
of YBR112C [33,34]. PIPE correctly predicted an interac-
tion between these two sites. In addition PIPE analysis
successfully predicted the known interaction site between
YBR079CandYNL243W[35] as well as the region respon-
sible for dimerization of YMR159C [36].

All together, this data indicates a 40% success for PIPE to
identify the previously reported interaction sites between
proteins. We note that this success rate is measured from
a very small data set since there is not much reliable data
available that correctly identifies the sites of protein inter-
actions.

Ability of PIPE to detect novel protein-protein interactions
The ability of PIPE to detect novel protein-protein interac-
tions was examined by analyzing the potential interaction
between a novel pair of proteins, YGL227W-YMR135C for
which no experimental interaction data was available
when we initiated this project. Little is known about the
molecular function of these genes, but the inactivation of
either YGL227W or YMR135C, also known as vid30 and
gid8, respectively, are shown to alter proteasome depend-
ent catabolite degradation of fructose-1,6-bisphosphatase
(FBPase) [37]. PIPE analysis of this protein pair is shown
in Figure 3(a). The peak score of 140 indicates that the
proteins are capable of interacting with one another. This
is in agreement with the phenotypic characteristics of the
yeast strains in which either YGL227W or YMR135C is
deleted. Both deletion strains are incapable of degrading
FBPase [37]. To confirm the validity of the observed inter-
action, TAP tag methodology was employed. An advan-
tage of TAP-tagging over other generic protein-protein
interaction detection assays is that it detects those interac-
tions that occur under native level of protein expression in
the cell. Therefore, TAP tag identifies those complexes that
really exist in vivo. As shown in Figure 3(b) when
YGL227W is TAP-tagged and its corresponding complex is
affinity purified, YMR135C is identified as an interacting
protein partner. The LC-MS MS analysis also indicated
that YMR135C co-purified as an interacting partner when

Table 3: Set of interacting proteins with previously reported 
interaction sites. This list was used to evaluate the efficiency of 
PIPE to predict sites of interactions for an interacting protein 
pair.

Protein A Protein B

YPL153C YBL051C
YNL088W YGL017W
YNL243W YBL007C
YCR084C YBR112C
YMR190C YNL282W
YGL153W YDR244W
YBR079C YNL243W
YDR477W YGL115W
YMR159C YMR159C
YDR216W YMR303C
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TAP-tagged YGL227W was purified. The reciprocal tagging
and purification of YMR135C confirmed this interaction.
YGL227W was identified as an interacting partner when
TAP-tagged YMR135C complex was affinity purified. The
presence of YGL227W in the purified mixture was also
verified by LC-MS MS analysis. All together, these data
demonstrate that PIPE has the ability to successfully pre-
dict novel protein-protein interactions.

Ability of PIPE to detect novel protein-protein interactions 
that cannot be identified by TAP tagging
Besides the obvious advantages of PIPE over TAP tagging
(speed and the ease of use), PIPE can also be used to ana-
lyse yeast proteins for which TAP tagging fails. A very
recent genome-wide yeast TAP tagging project has indi-
cated that out of the 6,466 yeast open reading frames,
only 1,993 (or 31%) can be successfully TAP-tagged and
purified [38]. Data from the same authors [38] suggest
that TAP tagging of YCR093W was unsuccessful. However,

with a score of 60, PIPE analysis successfully identified a
previously known interaction between YCR093W and
YPR072W [39]. Since the screening of yeast complexes to
saturation using TAP tag has identified approximately
62% of the expected yeast protein complexes [38], it
might be expected that a different approach like PIPE may
be able to contribute to the identification of some remain-
ing interactions.

Ability of PIPE to elucidate the internal architecture of 
protein complexes
TAP tagging of YGL227W resulted in the co-purification of
six other proteins (YIL017C, YMR135C, YDL176W,
YIL097W, YBR105C and YDR255C) as indicated in Figure
3(b). This suggests that YGL227W forms a novel protein
complex with these proteins that here we term vid30 com-
plex (vid30c). The presence of this protein complex is fur-
ther confirmed by TAP tagging of YMR135C, which
resulted in the co-purification of the same constituent

Potential interaction sites between YNL243W and YBL007CFigure 2
Potential interaction sites between YNL243W and YBL007C. PIPE can successfully determine the previously known 
sites of interaction between the two proteins YNL243W and YBL007C. It was previously shown that the region 310–768 in 
protein YNL243W is responsible for its interaction with amino acids 118–361 in protein YBL007C. Visualized by its highest 
pick with a score of 45, PIPE has successfully detected an interaction between YNL243W and YBL007C via their correspond-
ing amino acid regions 350–410 and 100–250, respectively. A second highest pick with a score of 42 also suggest a second site 
of interaction between the two proteins. According to PIPE analysis it is possible that the C-terminal end of the YBL007C pro-
tein may also serve as a site of interaction.
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Novel protein-protein interactionsFigure 3
Novel protein-protein interactions. PIPE can successfully detect novel protein-protein interactions. With a score of 136 in 
(a), PIPE analysis predicts an interaction between YGL227W and YMR135C. (b) TAP-tag analysis confirms the interaction 
between YGL227W and YMR135C. When YGL227W is TAP-tagged, YMR135C is purified as an interacting subunit (panel 1). 
Reciprocal TAP-tagging of YMR135C also identifies YGL227W as an interacting partner, confirming the validity of the observed 
interaction between the two proteins (panel 2). Panels 3 and 4 show the purifications of TAP-tagged YGL227W strains in 
which either YDR255C (YDR255C∆) or YMR135C (YMR135C∆) were deleted, respectively. Deletion of YDR255C (panel 3) 
had no effect in the co-purification of other subunits. However, when YMR135C (panel 4) was deleted, the interactions 
between TAP-tagged YGL227W and most other subunits were eliminated. Panel 5 is used as a control and shows the purifica-
tion of a strain, which is not tagged.
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subunits; see Figure 3(b). The internal architecture of this
protein complex, however, remains unknown, as TAP tag
has a limited ability to resolve the internal structure of
complexes.

To test the ability of PIPE to provide a better understand-
ing of the internal architecture of protein complexes, we
systematically analyzed protein pairs of vid30c constitu-
ent subunits using PIPE. This resulted in the analysis of 21
protein pairs, the result of which is summarized in Table
4. This data was then used to generate a hypothetical rep-
resentation of how the protein subunits might be interact-
ing. As shown in Figure 4, vid30c seem to have a core
component consisting of four subunits YGL227W,
YIL017C, YMR135C and YDL176W. These four subunits
seem to be in direct interaction with each other. The com-
plex also seems to have a secondary component, the
members of which (YIL097W, YBR105C and YDR255C)
seem to interact with YGL227W and YIL017C only and
not to each other. The hypothesized interactions among
the subunits of the core component seem to have high
PIPE scores suggesting high affinity and likelihood for
interactions. The PIPE scores associated with the second-
ary components, however, tend to be lower. The highest
PIPE score (460) was that for the interaction between
YIL017C and YIL017C, which might be expected, as all
the subunits of vid30c seem to interact with these two pro-
teins. The lowest significant PIPE score was for YDR255C,
which only had two significant scores, 25 and 17, for
interactions with YGL227W and YIL017C, respectively,
suggesting a low affinity for an interaction with vid30c.

The hypothetical sites of interactions identified by PIPE
are different in size. For example, YIL017C seem to inter-
act with a small region of YBR105C (75–100), and with a
relatively broader region of YGL227W (100–200). It also
seems that each protein may have a specific region respon-
sible for interaction with protein partners. This in turn
may suggest that some of these proteins may compete for
an interaction with the same partner. There remains the
possibility however, that the broader regions (such as
YGL227W region 100–200) may support simultaneous
interactions with more than one protein partners.

To experimentally examine the information from PIPE
analysis about the internal topology of vid30c, we made
two gene deletion strains. For this purpose YDR255C and
YMR135C were selected which have similar molecular
weights (50 and 52 kD, respectively). According to PIPE,
YDR255C has the lowest affinity to vid30c. Therefore, it
might be expected that the deletion of this gene may be
insignificant to the integrity of vid30c. However, PIPE
analysis placed YMR135C in the core component of
vid30c. Depending on the molecular function of
YMR135C, it might be expected that the elimination of
this protein may (or may not) alter the formation of
vid30c. Therefore, two yeast deletion strains, YDR255C∆
and YMR135C∆, were generated in which either the
YDR255C or YMR135C gene was deleted, respectively, in
a TAP-tagged YGL227W yeast background. In agreement
with PIPE analysis, TAP tagging of YDR255C∆ strain indi-
cated that deletion of YDR255C showed no significant
effect in the formation of vid30c; see Figure 3(b). Besides
YDR255C all other members of vid30c co-purified with
TAP-tagged YGL227W. However, when YMR135C was
deleted (YMR135C∆), the interactions between TAP-
tagged YGL227W and most other vid30c subunits were
eliminated; see Figure 3(b). This suggests that vid30c was
not formed in the absence of YMR135C. This is in agree-
ment with PIPE analysis, which indicated a low affinity
between YDR255C and vid30c, but placed YMR135C in
the core component of vid30c with strong affinity to this
complex.

To estimate the success rate of PIPE in predicting the inter-
nal structure of protein complexes, we tested PIPE on 10
protein complexes (see Table 5). Each complex consists of
three subunits, and the subunits are reported to be inter-
acting with each other in a chain format, that is "a-b-c",
where protein "a" interacts with "b" but not with "c", and
protein "c" interacts with "b" only. It should be noted
however, that due to the technical limitations associated
with the approaches used to generate our current view of
the internal structure of protein complexes and in the
absence of a sufficient number of studies on the crystal
structural analysis of protein complexes, the topology of
the reported complexes should be considered with cau-

Table 4: Internal PIPE scores for vid30c. PIPE scores are used to 
show the potential interactions between the subunits of vid30c.

Protein A Protein B Score

YBR105C YDL176W 5
YBR105C YDR255C 4
YBR105C YGL227W 27
YBR105C YIL017C 23
YBR105C YIL097W 4
YBR105C YMR135C 10
YDL176W YGL227W 75
YDL176W YIL017C 46
YDR255C YDL176W 4
YDR255C YGL227W 26
YDR255C YIL017C 17
YDR255C YIL097W 4
YDR255C YMR135C 5
YIL017C YGL227W 460
YIL097W YDL176W 6
YIL097W YGL227W 50
YIL097W YIL017C 29
YMR135C YDL176W 21
YMR135C YGL227W 136
YMR135C YIL017C 105
YMR135C YIL097W 9
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tion. Regardless, these 10 protein complexes generated a
total of 30 potential interactions, 20 of which were shown
to exist and 10 of which were shown not to. PIPE detected
13 interactions of the 20 shown to exist. It also detected 4
false/novel interactions of the 10 shown not to exist. In
total, from the 10 protein complexes, PIPE detected 3
internal architectures identical to what was reported pre-
viously. It should be noted that due to the absence of
more reliable data, this may not represent the true success
rate of PIPE but instead represents the overlap between
the existing small data set and the data generated by PIPE.

Discussion of the algorithmic approach
As outlined in Materials and Methods, the PIPE method
predicts the likelihood of interaction between two query
proteins A and B by measuring how often pairs of subse-
quences in A and B co-occur in pairs of protein sequences
in the dataset that are known to interact. The amount of
computation involved is substantial. For a pair of interact-
ing proteins, on average, several hours of computation
time were required for a standard desktop machine. This
time was observed to be directly proportional to the
number of re-occurrences of similar sequences in different

Internal architecture of vid30c, as suggested by PIPEFigure 4
Internal architecture of vid30c, as suggested by PIPE. YGL227W, YIL017C, YMR135C and YDL176W all interact with 
each other with relatively high PIPE scores, and seem to form a core compartment of vid30c. YIL097W, YBR105C and 
YDR255C, with relatively lower PIPE scores, interact with YGL227W and YIL017C only, and not with each other, suggesting a 
secondary component of vid30c. PIPE scores are embedded within the connecting lines. The regions responsible for interac-
tions are indicated.
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interacting proteins in our dataset of interacting protein
partners. As the number of corresponding sequences that
co-occurred in the dataset increased, so did the computa-
tion time associated with analyzing the target protein pair.
Similarly, the computation time required for non-inter-
acting protein pairs were observed to be significantly
lower as the co-occurring sequences were absent in these
pairs. For the next version of PIPE, we expect considerable
speed improvements. The current version of PIPE concen-
trates on the predictive precision of the method and we
are currently in the process of applying more sophisti-
cated data structures and algorithms to reduce PIPE's com-
putation time. In addition, we plan to parallelize PIPE so
that it can be executed on a processor cluster instead of a
single workstation, which is rather straightforward. We
expect that this will provide further significant perform-
ance improvements.

Conclusion
Here we report on the making of a computational tool,
termed PIPE, which can effectively identify protein inter-
actions among S. cerevisiae protein pairs. The sensitivity of
this engine to identify true interactions is estimated to be
61%, which is comparable to that of the currently availa-
ble generic biochemical assays used for large-scale detec-
tion of protein-protein interactions. PIPE has an
estimated specificity of 89%, which is a significant
improvement over the currently available confidence rates
for most other assays. In addition, PIPE considerably
reduces the cost associated with detecting protein interac-
tions by traditional biochemical methods.

We are currently in the process of applying more sophisti-
cated data structures and algorithms as well as parallel
processing technology to significantly reduce PIPE's com-
putation time. Furthermore, by incorporating additional
protein interaction data into PIPE's database, as well as

using more precise tools for detecting similar short
polypeptide sequences in different proteins (e.g. allowing
for gaps), we hope to further increase the precision of
PIPE in the future. In addition, the incorporation of the
data gathered from three-dimensional structures of pro-
teins and protein complexes is also expected to further
enhance the ability of PIPE to detect protein-protein inter-
actions. The fact that protein-protein interactions can be
successfully detected from the amino acid sequences of
proteins alone and without additional information/pre-
dictions about the proteins can set path for the develop-
ment of other such tools for predicting interactions in
other organisms. We are currently in the process of modi-
fying PIPE to predict human protein-protein interactions.

Methods
PIPE algorithm
Our protein-protein interaction prediction algorithm
relies on previously determined interactions. At the time
we initiated this study, our dataset was composed of
15118 pairs of protein-protein interactions using a total of
6304 yeast protein sequences and was compiled from the
S. cerevisiae protein interactions reported in the DIP [40]
and MIPS [41] databases. These interactions were deter-
mined using several methods, each having a limited accu-
racy. Since our algorithm is based on uncertain data, we
expect a certain degree of error associated with our predic-
tions.

The principle of our method is as follows: assume we have
two query proteins A and B, along with the knowledge
that certain proteins C and D are interacting. If a region
(subsequence) a1 in A resembles a region in C, and a
sequence b1 in B resembles a region in D, there is a possi-
bility that A and B are also interacting via an interaction
between the corresponding a1 and b1 sequences, which
co-occur in both protein pairs A-B and C-D. As the
number of interacting protein pairs in the database which
contain the corresponding sequences a1 and b1 increases
so does the likelihood that a1 and b1 are the true media-
tors of an interaction between A and B. The algorithm can
be divided into the following steps (see also Figure 5):

Step 1: Input the dataset of known protein interaction
(referred to as the interaction list):

(a) Every protein sequence in the interaction list is repre-
sented as a node in a graph G.

(b) Every interacting pair of sequences in the interaction
list results in an edge l in G between the two respective
nodes.

(c) Input the two query sequences: sequence A of length
m and sequence B of length n.

Table 5: Set of protein complexes with previously reported 
internal structures. This list was used to evaluate the efficiency 
of PIPE to predict the internal architecture of protein 
complexes. Only the adjacent subunits are reported to be 
interacting.

Protein A Protein B Protein C

YGR004W YLR324W YDL089W
YPR119W YBR135W YDL155W
YDR378C YER112W YJL124C
YMR197C YOR036W YBL050W
YPR185W YGR120C YPR105C
YKL103C YAL034W YGR120C
YBL026W YDL160C YEL015W
YLR423C YGR113W YIL144W
YDR084C YGL198W YPL095C
YLR045C YCL029C YER016W
Page 11 of 15
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Step 2: Sequence A is fragmented into overlapping seg-
ments of w amino acids each. In other words, we use a
sliding window of length w and move it forward by one
amino acid in each step. For each fragment ai, i = 1 to (m-
w+1), we do the following:

(a) Search for fragment ai in every sequence in the data-
base. We also use a sliding window of length w in every
sequence in the database and for every fragment in each
sequence, we use the PAM120 matrix to match the corre-
sponding amino acids with ai. We define a score which is

Illustration of PIPE algorithmFigure 5
Illustration of PIPE algorithm. Illustration of the four main steps in the PIPE algorithm. In Step 1 we input the database as 
well as the input sequences A and B. Using the database we build the interaction graph G. Step 2 involves searching every frag-
ment ai of size w in all the proteins of the database. When matches are found, the neighbours or the sequence containing the 
match are added to the list of neighbours R. In Step 3, we search for fragment bj in the proteins in R. If a match occurs, we 
increase the cell aibj in the result matrix M. Once all fragments have been processed, the result matrix M is graphed into a 3D 
surface, where peaks are possible sites of interaction.
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the sum of PAM120 scores for the w pairs of amino acids
matched. That score will be used to identify whether two
fragments are similar or not.

(b) For every sequence containing a fragment that
matches ai(score equal or greater than a threshold Spam),
we add to a list R all neighbours of that sequence in G (by
following its adjacent edges in G).

Step 3: Once all fragments ai have been searched in the
database and all neighbours of successful matches have
been added to the list R, we search all fragments bj of
sequence B in R. As in Step 2, we use again a sliding win-
dow of size w to create fragments bj, j = 1 to (n-w+1), of B
and then search each bj in R. Every match of a bj in R will
result in a score increment of one in a result matrix where
each row i represents a fragment ai in A and each column
j represents each fragment bj in B.

Step 4: The result matrix is presented as a 3D surface
where the rows and columns represent the fragments ai
and bj, respectively, and the elevation represents the score
S, i.e. the number of matches observed for the correspond-
ing fragments ai and bj.

PIPE parameter tuning
There are three main parameters that need to be set for
PIPE: (1) the window size w, (2) the threshold Spam that
determines a match between two fragments with respect
to PAM120, and (3) the threshold M for the PIPE score
(number of matches observed for two fragment ai and bj)

above which PIPE reports an interaction between two pro-
teins. The three values w, Spam and M depend on each
other. One of them can be set as a free parameter and the
other two then need to be set accordingly. We chose to set
the window size w to 20. Theoretically, one would want w
to be as small as possible in order to identify interaction
sites as precisely as possible. However, too small a win-
dow size would create too many random matches. A win-
dow size of 20 is a small value for which the probability
of random matches small enough (see "Method 2" discus-
sion below). We used two different methods to determine
the values of the remaining two parameters, Spam and M.

Method 1: Trial and error. For a set of 20 interacting pairs
and 20 non-interacting protein pairs, we tried various
combinations of Spam and M, requiring close to 400 hours
of computation time. It was observed that a PAM120 cut
off score Spam = 35 and a threshold for the number of
matches M = 10 was most selective in differentiating
between interacting and non-interacting pairs.

Method 2: Statistical evaluation. To evaluate the signifi-
cance of M = 10 matches observed for a PAM120 cut off
score Spam = 35 with window size w = 20, we measured the
likelihood of such an event for random sequences. First,
we built 1,000,000 random fragment pairs by creating
2,000,000 random fragments of length 20 whose amino
acid distribution is the same as measured for our yeast
database. Figure 6(a) shows the measured probability for
two random fragments to match with a given PAM120
score (fragment score). We observe that the probability for

PIPE parameter tuningFigure 6
PIPE parameter tuning. In (a) the measured probability for two random fragments to match with a given PAM120 score 
(fragment score) is shown to be 10-6 for scores larger than 35. This was done using 1 M random fragment pairs of length 20. In 
(b) 1,000 random protein pairs of length 500 are used to show that the measured probability for two random proteins to have 
a maximum PIPE score larger than 10 is 10-6.
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two fragments to match with a PAM120 score larger than
35 is less than 10-6. Next, we built 1,000 random protein
pairs by creating 2,000 random proteins of length 500
whose amino acid distribution is the same as measured
for our yeast database. For each protein pair, we ran PIPE
and determined the maximum score in the PIPE result
matrix. Figure 6(b) shows the measured probability for
two random proteins to have a given maximum PIPE
score. We observe that the probability of a PIPE score
larger than 10 is less than 10-6.

Interpretation of PIPE output
Typical graphs of non-interacting and interacting pairs are
shown in Figure 1(a) and 1(b) respectively. The x and y
axis represent the amino acids regions of the target pro-
teins, starting from the N-terminal amino acid at position
1. Therefore position 5 corresponds to the 20 amino acids
window starting at the fifth amino acid of the polypep-
tide. The score on the z axis represents the number of
times that a pair of 20 amino acid sequences co-occurs in
the dataset of interacting proteins. A high score corre-
sponds to a high incidence of co-occurrence of the
sequences among the database of interacting proteins.
Therefore a score of 5 indicates that the corresponding
sequences co-occur five times in our database, whereas a
score of 50 indicates that the co-occurrence is present in
50 pairs of interacting proteins. We assume that a high
score represents a soaring affinity for an interaction.

PIPE's sensitivity is calculated as (TP/(TP+FN)) [%], its
specificity as (TN/(TN+FP)) [%], and its accuracy as
((TP+TN)/(TP+FN+FP+TN)) [%] where TP is the number
of true positive, FN the number of false negatives, TN the
number of true negatives, and FP the number of false pos-
itives. We note that a major source of false positives
reported by PIPE is motifs with frequent occurrence in the
database. Pairs of such motifs can have a high co-occur-
rence simply because they are very frequent.

Yeast strains and purification procedure
The following yeast strains were used in this study: OshB6
MATa ura3-1 leu2-3,112 his3-11,15 trp1 ade2-1
YGL227W-TAP::TRP1 and OshB7 MATa ura3-1 leu2-
3,112 his3-11,15 trp1 ade2-1 YMR135C -TAP:TRP1. TAP-
tagged YGL227W and YMR135C proteins were purified as
in [9,10]. In brief, the tagged proteins were affinity puri-
fied on immunoglobulin G (IgG) and calmodulin col-
umns from extracts of yeast cells (3 liters). Half of the
affinity purified complex mixture was fractioned on an
SDS-PAGE and visualized (using silver staining). The pro-
tein bands were subjected to in gel trypsin digestion fol-
lowed by identification using matrix associated laser
desorption ionization-time-of-flight (MALDI-TOF) mass
spectrometry (MS). The protein detection limitations of
MALDI-TOF MS was complemented by subjecting the

other half of the purified mixture to gel-free microcapil-
lary-scale reverse-phase liquid chromatography-electro-
spray iontrap tandem (LC-MS) MS analysis. YDR255C∆
and YMR135C∆ yeast deletion strains were generated by
one-step PCR transformation as before [10] using primer
pairs:
TCAGTATGAGATAAGTGTGTCTTCAAGAGAGATGCAGC
ACTGAGTAGGGAACCAAGAAACGCACATACGATTTAG-
GTGACAC,
CGAGAGCAGGTTGCTAAAGGTGGTTTACTGTAGAAAAC
TACTGTGTTCTGTTATCGCTTCCAATAATACGACTCAC-
TATAGGGAG and
AAAGGGGCAGTAGAGACAAATATCAGCCGGATGAAGA
TATATTTGTGTGTGGTAACAAATAGAACACATACGATT-
TAGGTGACAC,
CACACTCACACATGCACACGCACACACACATATATAAA
TATATACGTACTATGTATGAATACGACTCACTATAG-
GGAG, respectively.

Availability and requirements
PIPE program was written in C++ with Linux as the oper-
ating system. The source code is subjected to the terms
established by GNU and is available free of charge from
the authors on request or can be downloaded from [42].
We have also set up a user-friendly WWW interface for the
program at [42].
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