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Abstract
Background: DNA methylation, a molecular feature used to investigate tumor heterogeneity, can
be measured on many genomic regions using the MethyLight technology. Due to the combination
of the underlying biology of DNA methylation and the MethyLight technology, the measurements,
while being generated on a continuous scale, have a large number of 0 values. This suggests that
conventional clustering methodology may not perform well on this data.

Results: We compare performance of existing methodology (such as k-means) with two novel
methods that explicitly allow for the preponderance of values at 0. We also consider how the ability
to successfully cluster such data depends upon the number of informative genes for which
methylation is measured and the correlation structure of the methylation values for those genes.
We show that when data is collected for a sufficient number of genes, our models do improve
clustering performance compared to methods, such as k-means, that do not explicitly respect the
supposed biological realities of the situation.

Conclusion: The performance of analysis methods depends upon how well the assumptions of
those methods reflect the properties of the data being analyzed. Differing technologies will lead to
data with differing properties, and should therefore be analyzed differently. Consequently, it is
prudent to give thought to what the properties of the data are likely to be, and which analysis
method might therefore be likely to best capture those properties.

Background
With the invention of new high-throughput technologies,
researchers are using molecular features to identify novel
cancer subtypes. Currently, the most commonly analyzed
molecular feature is gene expression. In such experiments,
expression values are measured for a large number of
genes (1,000's) across a smaller number of samples (10's-
100's). More recent studies have used high-throughput

arrays to measure protein abundances, single nucleotide
polymorphisms (SNPs), or DNA methylation [1-3]. SNPs
and DNA methylation are a more stable characteristic
than gene expression, since they are based on DNA, which
has less biological temporal variation and greater analyte
stability than RNA. We investigate the use of DNA meth-
ylation for the classification of samples into disease sub-
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types. Previous studies of colon and lung cancer have
shown some success [4,5].

Currently there is no single platform for studying DNA
methylation that is amenable to all study designs. As a
result, measurements are obtained on some technology-
dependent scale. In the data sets presented in this paper,
DNA methylation is measured using the MethyLight tech-
nology [6]. Put briefly, this technology determines quan-
titative values from a standard curve of defined dilutions
of a reference sample plotted (after taking logs) against
the C(t) value (which is the cycle number at which the flu-
orescence signal crosses a detection threshold). The quan-
titative value for a sample is then derived via a linear
regression on this curve. This value is normalized using a
methylation-independent control reaction by taking the
ratio. The ratio (multiplied by 100) of the normalized
value for an experimental sample compared to that of a
methylated reference sample represents the percent of
methylated reference (PMR). The methylation-independ-
ent control reaction is used to normalize sample-to-sam-
ple variation in DNA quantity and integrity, while the
methylated reference sample is used to control for the dif-
ferent efficiencies of reactions based on different oligonu-
cleotide sequences. MethyLight probes are designed to
detect a fully methylated sequence covering 5–10 CpG
sites. Because of this stringent detection criterion, in some
samples we do not detect any fully methylated molecules.
This results in a distribution of PMR values that is quanti-
tative and non-negative, but has an excess of zeros. We
give an example of this in Figure 1 in which we plot the
distribution of methylation values measured across a data
set of 48 samples (see below for full details). One can
clearly see the excess of zeros. Thus, the nature of our DNA
methylation measurement is somewhat different than
what is typical in a gene expression context, in which
expression is conventionally reported on a scale corre-
sponding to the real line (i.e., (log) expression can take
any value, positive or negative). In previous work we have
modeled this using a two-part model consisting of a Ber-
noulli distribution for the number of samples without
detectable methylation and a log-normal distribution for
the positively methylated samples [7]. Using simulations,
we found that the Bernoulli-lognormal mixture can lead
to lower classification error rates in the presence of zeros
than a standard log-normal distribution.

It is conceivable that the two-part distribution is too flex-
ible, resulting in a lack of efficiency due to over-fitting.
Intuitively speaking, over-fitting is the phenomenon in
which, once one has introduced sufficient parameters
(i.e., genes) into the model to explain any signal present,
any further parameters will merely introduce greater vari-
ability in the overall parameter estimates. This will lead to
poorer performance in the final model. When using the

MethyLight technology, it is likely that the unmethylated
samples are due in part to a threshold of detection. This
detection threshold is thought to be determined in part by
sample-specific issues, such as template DNA quantity,
but also by reaction-specific characteristics, such as the
absolute and relative sensitivity of each reaction [8]. To
capture the latter feature we propose to model a single
detection threshold for each CpG region, reducing the
total number of parameters in the model and hopefully
resulting in a more successful fit. We propose to compare
these new models to other analysis methods, such as k-
means clustering. It is possible that the parsimonious
nature of k-means clustering, for example, while not accu-
rately modeling all features of the data, might more effi-
ciently capture the key features. We explore this issue here.

We hypothesize that the fewer parameters required by the
threshold detection model may translate into a lower clas-
sification error than the Bernoulli-lognormal model.
These two methods, along with other clustering
approaches, are compared on two data sets, one featuring
lung cancer and the other featuring colon cancer. We then
conduct a simulation study to evaluate the performance of
our proposed methods and k-means clustering when the
numbers of loci varies or when the studied genes show
correlation within disease subtype.

Distribution of methylation values for 91 genes in 48 samplesFigure 1
Distribution of methylation values for 91 genes in 48 
samples. A histogram of methylation values (PMR) is shown. 
PMR values were transformed using the natural log. Zeros 
were assigned a value of -5.5, a value slightly below the low-
est log-transformed value. The x-axis shows the methylation 
value. The y-axis shows the percentage of values in that 
range.
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Data sets
Lung cancer study Virmani et al. studied DNA methylation
of 24 CpG regions in a sample of 87 cell lines [5]. Out of
the 24 regions, three had no detectable level of DNA
methylation. Out of the 21 regions showing variable DNA
methylation levels, seven were identified that could dis-
tinguish small cell from non-small cell lung cancer. We
use these seven loci to cluster samples, comparing our
results from the different cluster analysis approaches with
the independently assigned histology.

Colorectal cancer study In a study at the University of South-
ern California, DNA methylation was measured on 91
genes for 48 colorectal cancer tissues [9]. These genes were
pre-selected for showing differential methylation in
tumor and adjacent normal tissue. Using a variety of dif-
ferent clustering routines, earlier analyses have identified
2–3 distinct clusters from these data, with the strongest
evidence for two clusters, referred to as CIMP/no-CIMP
(unpublished data). This classification of samples was
confirmed by analysis of an independent data set [9]. We
compare the results from the clustering approaches pre-
sented here to the classification of samples resulting from
that previous work.

Results
We analyze both real and simulated data sets using a vari-
ety of standard techniques, such as k-means clustering
[10], using the software S-PLUS version 6.1 [11]. In addi-
tion, we employ two particular alternate models that are
designed to capture the feature that there is a threshold
below which methylation cannot be detected: Model 1, a
Bernoulli-lognormal model; Model 2, a single threshold
model. In Model 1, the threshold of detection varies
across both CpG regions and disease subtype; in Model 2
the threshold varies by CpG region but is constant across
disease subtypes (thereby allowing the use of fewer
parameters). Further details of these two models are given
in the Methods section.

Real data
Figure 2 shows a plot of the mean of the log-transformed
positive PMR values against the proportion of PMR values
for the lung and colon cancer data sets. The curve is pro-
duced by the lowess() function in SPLUS, which fits a
smooth, robust, locally linear curve to represent trend in a
scatterplot [12]. A positive correlation between these two
measures supports the idea of a threshold for detecting
positive DNA methylation. A few zeros suggest that the
mode of the distribution of measurements (e.g. top of the
bell-shaped curve) lies far to the right of the threshold of
detection allowing for high estimates of the mean value
(high proportion positive/high mean). An abundance of
zeros suggest that the mode of the distribution is below
the minimum level of detection so that the mean of the

positive values would be low (low proportion positive/
low mean). We see a strong positive association across the
entire range of measurements for the lung cancer samples.
The association is only seen among the genes with a high
proportion of methylated samples for the colon samples.
Comparing the stability of the estimates from the two data
sets, the estimates from the lung cancer data should be
more stable due to the larger number of samples meas-
ured (n = 87 vs n = 48). The lung cancer data, with its asso-
ciated greater stability, is supportive of the biological
intuition that lies behind the specification of the second
of our alternative models. The colon cancer data are
clearly less supportive of this model, and this might lead
the model to perform less well on that data. (However, we
note that the greater number of genes in that data set will
have the effect of making clustering easier, which acts to
improve predictive power.)

In Table 1 we show the performance of our two models
and a variety of popular alternative clustering methods on
both the colon and lung cancer data. Specifically, we also
include results for k-means clustering, Partitioning
Around Medoids (PAM) [13], divisive hierarchical cluster
analysis (HCD), the MCLUST software of [14], and self-
organizing maps (SOM) [15]. K-means and divisive hier-
archical clustering was performed using Euclidean dis-
tance. The self-organizing map analysis was undertaken
using the som() function in R. We pre-determine the
number of clusters at two, and then assess performance by
calculating the "misclassification rate", which is the pro-
portion of data that are clustered into the incorrect group.
We also show two measures of cluster integrity that are
independent of correspondence to any 'phenotype': sil-
houette width and Dunn's index. (See [16] and [17] for
detailed definitions.) Larger values of these statistics cor-
respond to better-clustered data, while smaller values cor-
respond to data for which the clustering is less-well
defined.

We see that there is a substantial difference in perform-
ance across the two data sets. This is a consequence of the
difference between the number of genes in each data set.
The colon data contains methylation values for 91 genes
on 48 samples. In contrast, the lung data contains meas-
urements for only 7 genes, albeit for a larger number of
samples. The results suggest, perhaps unsurprisingly, that
for the variation in methylation level across these sam-
ples, 7 genes are not enough to accurately classify the data
(although it is interesting to note that our methods are
among the best on that data, even though the signal is
poor). Below, we go on to investigate the issue of how
many genes are required to successfully cluster the data.

A second point is that, with the exception of self-organiz-
ing maps, there is relatively little difference between the
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analysis methods applied to the colon data. The single
threshold model does appear slightly more effective, as
per the intuition outlined earlier, but the difference is not
substantial. Curiously, self-organizing maps appear to
perform poorly here, although we note with interest that,
in a microarray context, [18] also found self-organizing
maps to perform poorly on lung and colorectal cancer
data whereas they obtained nearly perfect results when
applying the same methodology to a variety of other can-
cer types. We also tried an agglomerative hierarchical clus-

tering analysis, but this performed very poorly. A general
point here is that divisive clustering is likely to perform
better than agglomerative clustering when looking for a
few large clusters (since it is a top-down method, rather
than the bottom-up approach of the agglomerative
method) [13]. There also appears to be a poor corre-
spondence between independent measures of cluster
integrity and the degree to which those clusters corre-
spond to sample type. This indicates that there is a differ-

Mean of the log-transformed positive PMRFigure 2
Mean of the log-transformed positive PMR. Mean of the log-transformed positive PMR values are plotted against the per-
cent of positive PMR values in (a) lung cancer cell lines (87 samples/21 genes; x: small cell-predicting genes/o: non predicting 
genes) and (b) colon cancer tissue (48 samples/91 genes; x:CIMP-predicting genes/o: non predicting genes).

Table 1: Misclassification rates for analysis of two observed data sets

Colon cancer Error rate (Silhouette width/Dunn's index) Lung cancer Error rate (Silhouette width/Dunn's index)

Bernoulli-lognormal model 0.04 (0.15/1.16) 0.31 (0.29/1.19)
Single threshold model 0.01 (0.17/1.20) 0.30 (0.29/1.25)
k-means 0.04 (0.17/1.18) 0.38 (0.35/1.25)
PAM 0.04 (0.17/1.18) 0.30 (0.29/1.18)
HCD 0.04 (0.15/1.18) 0.38 (0.35/1.25)
MCLUST 0.04 (0.14/1.12) 0.36 (0.30/1.24)
SOM 0.21 (0.12/1.14) 0.37 (0.34/1.20)
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ence between tightness of clustering and correspondence
of those clusters to external clinical criteria.

Simulation study
We now undertake a simulation study, based on the colon
data (see Methods for details), in which we investigate the
relative accuracy of the models as the number of genes
decreases and as the correlation among genes in the same
family increases. Since k-means performs relatively well
on our data, we use it as a representative of the alternative
methods considered in Table 1 and therefore include
results for k-means with those for our methods in the sim-
ulation study. Our aim is to explore whether it is generally
true that k-means and our proposed models have similar
performance, and, perhaps more importantly, to assess
the dependency of accuracy of classification upon the
number of genes for which methylation is measured.

In Table 2 we present results showing how the misclassifi-
cation rate depends on the analysis model used, as well as
the percentage of genes for which methylation is meas-
ured. Simulated genes are classified as "CIMP-predicting"
and "Other" (see Methods) according to how well the
simulated values correspond to CIMP status. In order to
reduce unnecessary noise, if P percent of genes were sam-
pled we ensured that P percent of each of the "CIMP-pre-
dicting" and "Other" classes of genes was sampled. In the
bottom row of Table 2 we show how accurate the classifi-
cation is if just the CIMP-predicting genes are measured.
We report the mean misclassification rate over 50 simu-
lated data sets for each scenario, along with the standard
error of the mean.

In all cases we see that the single threshold model out-per-
forms the other two approaches. This illustrates our intu-
ition that the model that respects the form of our
measurements, while keeping the number of parameters
to a minimum, will perform best. The Bernoulli-lognor-
mal and k-means approaches are similar for the data sets
having fewer numbers of genes. As the number of genes
grows beyond 70, the k-means clustering performs better.
This illustrates the issue of over-fitting we discussed ear-

lier. Even though k-means mis-specifies the distribution
of our data measurements, the fact that the model requires
fewer parameters results in a more efficient fit, with a
lower misclassification rate. We also note that in order to
classify the samples with a high degree of accuracy it is suf-
ficient to have a set of 36 or so genes. However, in such a
scenario we still perform more poorly than a situation in
which we have the 15 most informative (i.e., CIMP)
genes.

In the above scenario, we simulated data where the corre-
lation among genes was completely explained by the clus-
ter to which they belonged, and, within cluster, the genes
were completely independent. In reality it is likely that
certain subsets of genes have correlated methylation val-
ues within cluster as well, so we now explore how such
additional correlation might affect the performance of our
analysis methods. Table 3 presents results for these mod-
els showing how the misclassification rate varies depend-
ing on the within-group correlation for the two gene
clusters. The primary effect to note is that the ability to
successfully cluster the data is a decreasing function of the
correlation present within that data. This is intuitively sen-
sible. Two correlated genes carry less information than
two independent genes since the information in the first
gene can be used to predict the information in the second
gene. As the correlation between genes increases, the
amount of extra information imparted by the other genes
decreases. Thus performance degrades as correlation
increases. It is also interesting to note that the single
threshold model now performs similarly to the Bernoulli-
lognormal model. It seems that the advantage originally
seen by the single threshold model disappears when the
correlation among genes within gene cluster is mis-speci-
fied. This time k-means clustering performs worse than
the Bernoulli-lognormal model. The model-misspecifica-
tion in the k-means model (with fewer parameters) is
greater, resulting in the highest misclassification rate.

Discussion
In this paper we have extended current mixture models for
cluster analysis to include a detection threshold for data

Table 2: Misclassification rates (standard error) by the number of genes selected (48 samples)

Misclassification rate (SE)

Percentage of genes selected No. of CIMP genes No. of non-CIMP genes Bernoulli- lognormal Single threshold k-means

100% 15 76 0.018 (0.020) 0.006 (0.009) 0.010 (0.002)
80% 12 61 0.030 (0.004) 0.009 (0.002) 0.020 (0.004)
60% 9 46 0.067 (0.007) 0.022 (0.003) 0.070 (0.013)
40% 6 30 0.147 (0.013) 0.073 (0.009) 0.140 (0.014)
20% 3 15 0.265 (0.012) 0.177 (0.013) 0.283 (0.016)

CIMP-predicting genes only (N = 15) 0.035 (0.004) 0.020 (0.004) 0.037 (0.005)
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having an excess of zeros. Our motivation for doing this
was to better reflect the underlying biological properties
of the data and measurement experiment. By doing so we
hoped to improve the performance of our analyses. Anal-
yses such as those we present here might have several bio-
logically significant aims. Firstly, while one might know,
or suspect, that a given set of genes might be related to a
specific cancer type, it does not necessarily follow that
those genes carry enough information to provide a relia-
ble diagnostic/discriminant function. Our analysis makes
it clear that this is not true for the genes we study in the
case of lung cancer for example. Secondly, one might use
an analysis such as this to determine the importance of
particular genes when differentiating between tissue
types. For example, one might conduct analyses in which
the gene is included/excluded and compare performance.

We tested our methods by application to DNA methyla-
tion data from two studies, one of lung cancer and
another of colorectal cancer. Results from one data set, for
lung cancer, were uniformly poor due to the low number
of genes for which methylation was measured. However,
on the other data we saw that extending our models does
indeed improve clustering performance compared to
methods, such as k-means, that do not explicitly respect
the supposed biological realities of the situation (and,
thereby, the likely properties of the data).

There is a general point to be made here. We, and others,
have demonstrated that methylation can be used to cate-
gorize data. However, in this paper we have also shown
that the performance of any given analysis method is
likely to depend upon how well the assumptions of that
method reflect the properties of the data being analyzed.
Differing technologies will lead to data with differing
properties, and should therefore be analyzed differently.
This will likely be true of alternative platforms for measur-
ing the same biological property (e.g. methylation), as
well as for platforms that measure other features (e.g.
expression arrays). Given this, it is prudent to give some
thought to what the properties of the data are likely to be,
and to which analysis method might therefore be able to
best capture those properties. In this paper we have dem-

onstrated that the method we introduce here, which spe-
cifically respects the mixed-model feature of the data,
performs better than existing methods on data with that
same property. We do not claim that our method will per-
form well on all data sets, regardless of their likely fea-
tures, but rather we stress that most power is gained by
choosing a method that captures the key properties of the
data. Unfortunately, it is impossible to give generalities
here, but we hope to have demonstrated that some
thought is necessary before applying any particular analy-
sis tool to any (or all!) given data.

Methods
We assume that the methylation data, Ygs, for gene g on
sample s has the following characteristics. With some
probability pgs we have Ygs = 0; otherwise, Ygs follows some
continuous distribution function Fgs, with mean μgs and
variance σ2. In its full generality, such a model allows for
different values of μgs, pgs and Fgs for all samples and genes.
We assume we have data measured for NG genes on NS
samples. For each method we propose below we assume
that for each cluster the mean methylation value μgs is con-
stant for each gene. So, for cluster c, we assume μgs = μg(c)
for all subjects s in c.

Model 1. Bernoulli-lognormal model
In this model we assume that, for each gene, in each sam-
ple, there is a probability pgs that the experiment returns a
methylation value of zero (i.e., Ygs = 0). Otherwise, (with
probability 1-pgs) the gene returns a value drawn from a
continuous distribution Fgs (assumed to be normal on a
log-scale) with mean μgs and variance assumed to be 1
(after an appropriate re-scaling). We assume that pgs is
constant for each given gene within each cluster of sam-
ples. i.e., in cluster c (say), we have pgs = pg (c) for all s in c
(i.e., the zero probability can vary for each gene and for
each cluster, but, for a given gene, is constant for all sam-
ples within a given cluster). For a two cluster model, the
number of parameters in this setting is 4NG (since pgs var-
ies across clusters).

Table 3: Misclassification rates for different pair wise correlations within the two gene clusters (48 samples/91 genes)

Misclassification rate (SE)

Pair wise correlation Bernoulli- lognormal Single threshold k-means

0.01 0.024 (0.004) 0.013 (0.004) 0.024 (0.004)
0.05 0.076 (0.008) 0.062 (0.006) 0.119 (0.012)
0.1 0.155 (0.012) 0.169 (0.015) 0.220 (0.015)
0.2 0.229 (0.013) 0.235 (0.012) 0.342 (0.012)
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Model 2. Single threshold model
In this model we assume that genes return a methylation
of zero because their true methylation value falls below a
given detection threshold. Thus, we assume that Ygs is a
function of a true, unobserved methylation value Zgs, and
that, on a log-scale, Ygs = Zgs if Zgs ≥ τgs, and Ygs = ln(0) = -∞
otherwise. Thus, pgs is parameterized in terms of a value τgs
which corresponds to a threshold below which methyla-
tion cannot be detected. Since we believe that the trunca-
tion point depends largely upon the biochemical
properties of a given probe, we set τgs = τg for all s (i.e.,
there is a single detection threshold for each gene and this
threshold is constant across clusters). Using the notation
from model 1, it follows that pgs = pg for all s. The zero
probability still varies for each gene but does not vary with
sample cluster, in contrast to model 1. In a two cluster
context, the number of parameters in this model is 3NG,
rather than the 4NG parameters in model 1.

Estimation
We employ a Markov chain Monte Carlo clustering algo-
rithm, analogous to k-means clustering, to fit the models
given above. We implement a Metropolis-Hastings algo-
rithm [19,20] which results in a posterior distribution for
the cluster allocation of the samples (and the related
parameter space), rather than the single 'best' clustering
that results from most cluster analysis methods. We clus-
ter samples into 2 groups in an attempt to differentiate
'normal' from 'abnormal' DNA methylation profiles.

At any given iteration of our algorithm, samples are allo-
cated into one of two clusters. Each cluster, c, corresponds
to a vector of values (μ1(c),...,μG(c);p1(c),...,pG(c)) which
determines the mean methylation value and zero proba-
bility at each gene for samples within that cluster. We pro-
ceed in a manner analogous to the popular k-means
algorithm. For model 1, we set μg(c) equal to the mean of
all non-zero methylation values for gene g for samples
within that cluster, while pg(c) is set equal to the propor-
tion of samples with non-zero methylation values for
gene c in that cluster. In model 2 we set the truncation
value τg(c), which determines pg(c), equal to the smallest
methylation value observed at gene g for all samples
(regardless of whether they are in that particular cluster);
We define μg(c) = Σsmax(τg(c),Ygs)/Nc, where Nc is the
number of samples currently assigned to cluster c (i.e.,
μg(c) is defined to be the mean of the methylation values
for that gene for all samples in the cluster, treating zero
values as if they were equal to the value τg(c) at which the
distribution is truncated). As such, the fitted value of μg(c)
is not equal to the maximum likelihood estimate (MLE)
since truncated values are in fact less than or equal to
τg(c). However, we felt that the extra computational bur-
den required to calculate the true MLE would not result in
a measurable improvement in performance. Between iter-

ations, changes are proposed to the way in which samples
are clustered. In particular, a single sample is chosen to be
moved to the other cluster. The new state is then
"accepted" with a probability determined by the Hastings
Ratio [19,20] in which case it becomes the current state.
Otherwise the newly proposed state is rejected and the
process returns to its previous state. After a suitable burn-
in period (10000 iterations) we begin to output the sam-
ple clustering at each iteration of the algorithm, and a mis-
classification rate calculated from that clustering. We
report the mean misclassification rate over the next 10000
iterations of the algorithm. Formally, our misclassifica-
tion rate is calculated as follows. Assume the (unob-
served) truth is that our data falls into two groups: A and
B. At any given iteration, our analysis will cluster the data
into two clusters, C and D. We calculate the number of
samples nA that are misclassified if group A corresponds to
cluster C, while group B corresponds to cluster D. We also
calculate the number of samples nB that are misclassified
if group A corresponds to cluster D, etc. We report the mis-
classification rate for that iteration as the minimum of nA
and nB divided by the total number of samples.

Our approach is closely related to that of k-means cluster-
ing, the results of which we also present, but differs in two
respects. Firstly, we explicitly allow for data in which there
is a probability mass at zero. Secondly, we obtain a poste-
rior distribution for all possible clusterings rather than the
single 'best' cluster that results from a k-means algorithm.
By doing so we better allow for the uncertainty due to the
unknown true sample clustering.

Simulation study
We explore the question of when the threshold mixture-
model will provide a lower classification error than the
Bernoulli-lognormal mixture and k-means models. In
order to do this we simulate data analogous to the color-
ectal cancer study discussed above. (All models perform
poorly on data simulated to mimic the lung cancer study
due to the low predictive ability of the small number of
genes for which methylation was measured [unpublished
results, but see Table 2].) In doing so, we model the bio-
logical intuition that the preponderance of methylation
values at zero is likely to be the result of low 'true' meth-
ylation values that are measured as zeros due to the
threshold detection of the corresponding probe. Thus we
simulate data according to a threshold model in which,
on a log-scale, genes have an unobserved 'true' methyla-
tion, m, that is distributed according to a normal distribu-
tion with a given mean and variance. The methylation
value, M, that is recorded is equal to m if m is greater than
a gene-specific threshold value, and is equal to zero other-
wise. In order to make the simulation study agree closely
with the observed colorectal data, we set the mean, stand-
ard deviation and threshold value of the methylation dis-
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tribution for a given gene in such a way that we maintain
summary properties of that data. Toyota et al. [4] pro-
posed that a subset of colorectal cancers having a high fre-
quency of DNA methylation could be identified by a
subset of genes that were methylated in cancer but not
normal tissue. The subset of cancers is said to have the
CpG Island Methylator Phenotype (CIMP). In our data
there are 15 of these "CIMP-predicting" genes.

We calculated statistics for the percentage of samples for
which genes had a non-zero methylation, and the mean of
the (non-zero) methylation values for that gene within
two classes, depending on whether the gene was "CIMP-
predicting" or "Other". Statistics were also broken down
by "CIMP"/"non-CIMP" tumor status. The observed sum-
mary statistic values are shown in Table 4. Interestingly,
even the genes in the "Other" group seem to show a dif-
ferent average DNA methylation level between CIMP and
non-CIMP samples. This suggests that the association of
the genes with CIMP status of the tumor actually lays on a
continuum and is not as simplistic as our grouping into
two sets. Nonetheless, for simplicity we define our simu-
lation study using these two gene classes.

In order to match these data as nearly as possible, we sim-
ulated two classes of genes, corresponding to the "CIMP-
predicting" and "Other" classes. Within each class, genes
were identically distributed from a N(μ,σ2) distribution,
where μ was chosen to match the values given in Table 4;
σ2 and the truncation value p were set in order to match
the percent positive values in Table 4 as closely as possi-
ble. This led us to use σ = 2.75 and τ = 0.2 for all genes.
The resulting percent positive values for the CIMP-predict-
ing genes were 92% and 60% for groups one and two
respectively, whereas for the "Other" genes the figures
were 84% and 71%. Thus we feel our simulated data is
representative of the observed colorectal data.
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