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Abstract

Background: Proteomic data obtained from mass spectrometry have attracted great interest for
the detection of early-stage cancer. However, as mass spectrometry data are high-dimensional,
identification of biomarkers is a key problem.

Results: This paper proposes the use of "common" peaks in data as biomarkers. Analysis is
conducted as follows: data preprocessing, identification of biomarkers, and application of AdaBoost
to construct a classification function. Informative "common" peaks are selected by AdaBoost.
AsymBoost is also examined to balance false negatives and false positives. The effectiveness of the
approach is demonstrated using an ovarian cancer dataset.

Conclusion: Continuous covariates and discrete covariates can be used in the present approach.
The difference between the result for the continuous covariates and that for the discrete covariates
was investigated in detail. In the example considered here, both covariates provide a good
prediction, but it seems that they provide different kinds of information. We can obtain more
information on the structure of the data by integrating both results.

Background

Mass spectrometry is being used to generate protein pro-
files from human serum, and proteomic data obtained
from mass spectrometry have attracted great interest for
the detection of early-stage cancer (for example, [1-3]).
Recent advancements in proteomics come from the devel-
opment of protein mass spectrometry. Matrix-assisted
laser desorption and ionization (MALDI) and surface
enhanced laser desorption/ionization (SELDI) mass spec-
trometry provide high-resolution measurements. Mass
spectrometry data are ideally continuous data. Some
method is required to deal with high-dimensional but
small sample-size data, similar to microarray data. An
effective methodology for identifying biomarkers in high-
dimensional data is thus an important problem.

Ovarian Dataset 8-7-02, available from the National Can-
cer Institute, was analyzed in this paper. This dataset is
raw data and consists of 91 controls and 162 ovarian can-
cer patients. The mass spectrometry data for an individual
is illustrated in Fig. 1. The horizontal axis indicates the m/
z-value and the vertical axis the intensity of ion. A charac-
teristic of the data is that a number of peaks can be
observed. Each peak represents a singly charged positive
ion originating from a protein in the sample. Peaks
present in the mass spectrometry data may be usable as
biomarkers to judge whether an individual is affected or
not.

Some methodologies have been proposed for the identifi-
cation of biomarkers from ideally continuous mass spec-
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Figure |
Typical example of proteomic data.

trometry data. One approach is to use peaks in the data to
identify biomarkers. Yasui et al.[4] and Tibshirani et al.[5]
adopted this approach. Another approach is based on bin-
ning of data. Yu et al.[6] and Geurts et al.[7] analyzed
mass spectrometry data after binning the data. The meth-
odology presented in this paper adopts the former
approach, since peaks in mass spectrometry data are con-
sidered to represent biological information. Our idea is
that "common" peaks within the sample might contain
useful information. This means that a peak seen for only
one subject may be noise, whereas a peak exhibited by
many subjects might be useful. In this study, an ovarian
cancer dataset was analyzed as follows: (1) preprocessing,
(2) peak detection, (3) identification of biomarkers, (4)
classification. AdaBoost was used to construct a classifica-
tion function. AsymBoost was also examined for balanc-
ing the false negatives and the false positives. The
effectiveness of the approach is evaluated using validation
data.

The proposed approach is closely related to that of Yasui
et al.[4]. In [4], biomarkers were specified through classi-
fication by AdaBoost. The present approach differs in that
"common" peaks are extracted before classification to
specify biomarkers. By specifying biomarkers before clas-
sification, the dimension of covariates becomes smaller in
classification. We think that it is better if the number of
covariates is small in classification. Whereas Yasui et al.[4]
used discrete covariates, both continuous covariates and
discrete covariates can be used in the present approach,
according to the situations. Furthermore, we recommend
that the results obtained using discrete covariates should
be compared with those obtained using continuous cov-
ariates. In the example considered here, more information
on the structure of the data can be obtained through the
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use of both covariates, i.e., different kinds of informative
features can be obtained by the use of both covariates.

Results and discussion

Dataset

The range of m/z-value in the dataset is approximately [0,
20000]. However, the frequency of the peaks is too high
in the interval [0,1500] and in some cases it is difficult to
derive information from peaks in the interval [0,1500].
Therefore, the dataset is analyzed only in the interval
[1500, 20000], as in [4].

As is often the case in statistical learning [8], the dataset is
divided into two sets; a training dataset that consists of 73
controls and 130 ovarian cancer patients and a test dataset
that consists of 18 controls and 32 ovarian cancer
patients. The number of the training and test datasets are
denoted by N and n, respectively (N = 203 and n = 50).
The method proposed in this paper is trained using the
training dataset, and the performance of the trained
scheme is checked using the test dataset.

Preprocessing

Proteomic data obtained from mass spectrometry are
often inaccurate in some senses. For example, the mass/
charge axis shift is a big problem in many cases [9,10].
Therefore preprocessing of the data is very important. Pre-
processing methods have recently been proposed by
Wong et al.[9] and Jeffries [10].

In this paper, preprocessing of the dataset is performed
using SpecAlign [9] as follows: (i) subtract baseline, (ii)
generate spectrum average, (iii) spectra alignment (peak
matching method). It should be noted that it is difficult to
align spectra perfectly even if some alignment algorithm is
used. In the section of Identification of biomarkers, this
problem is reconsidered.

Peak detection

The peak detection rule of Yasui et al.[4] is adopted here.
An m/z point is regarded as a peak if it takes the maximum
value in the k-nearest neighborhood. If k is small, a point
is easily recognized as a peak. An appropriate k can be
selected by examining some ks as done in Yasui et al.[4].
We empirically set k = 10. In this study, a slightly small &
is used, since only the "common" peak is considered as a
biomarker.

Identification of biomarkers

Suppose that some individuals have a peak at a certain m/
z-value, m*. It is then expected that there exists a protein
related with the ion corresponding to m*. Therefore, m*
may be a biomarker that can be used to judge whether an
individual is affected or not. But a peak exhibited by only
one subject may just be noise. The peaks "commonly"
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exhibited by many subjects are thus candidates of biomar-
kers. However, there remains the problem that the m/z-
values are not perfectly aligned in general, so that the
above idea cannot be applied directly. By overcoming this
problem of imperfect alignment, the method for identify-
ing such "common peaks" is derived in the following.

First, an "average of peaks" is constructed by averaging
Gaussian kernels with centers at peaks, as illustrated in
Fig. 2. The "average of peaks" is then expressed as

IR _(x_Pi,j)2
M= 22 | W

where p; ;is the m/z-value of the i-th observation and the j-
th peak and o (p;;) shows the "width" of the peak. In this
study, o (p;;) = 0.001 x p; ;. In general, a very small ois not
desirable because the same peaks could not be "added"
properly, but a very large o is not also desirable because a
peak affects other peaks. The value of o could be decided
based on the accuracy of the mass/charge axis. In this
study, 20 (p;;)/p;; = 0.002. This corresponds to about +
0.2% error of the mass/charge value of each peak point. In
this dataset, a small change of o did not affect the result.
Secondly, a biomarker is identified by finding the peak
greater than hy, in the "average of peaks," where h is a
parameter controlling how "common" peaks can be
regarded as biomarkers (Fig. 2 (e)). With hy, = 0.1, 146
biomarkers were obtained by the procedure described in
the previous section (Fig. 3 (c)). The features of the
approach are as follows:

¢ In general, peaks cannot be aligned perfectly even if
some alignment algorithm is applied, as stated in the sec-
tion of Preprocessing. In the "average of peaks," even if
peaks are not aligned perfectly, they can be added because
they have "width" o (p;;) (Figs. 2 (d) and 2 (e)).

® Another possible approach is to use the average of inten-
sities (Fig. 2 (b)). However, we think that the "average of
peaks" is more effective in mass spectrometry data (Fig. 2
(e)). "Common" peaks with small intensities can be
found easily in Fig. 3 (b), whereas it is difficult to find
such "small common" peaks in Fig. 3 (a). Furthermore,
the difference between controls and ovarian cancer
patients can be seen more clearly in the "average of peaks"
than in the average of intensities (Fig. 4).

There are many ways to reduce the number of biomarkers
determined by the above procedure. One way is to select
biomarkers that are effective in classification. In this
study, however, we simply used the biomarkers obtained
by the above procedure.
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Figure 2

(2) Intensities. (b) Average of intensities. (c) Peaks. (d) Gaus-
sian kernels with centers at peaks. (e) "Average of peaks"
with h,, = 0.3.
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Figure 3

(2) Average of intesities. Intensities are averaged after nor-
malization to [0, I]. (b) "Average of peaks." (c) Selected
biomarkers with h,, = 0.1. In (c), crosses denote biomarkers.

(2) Average of intensities for control and ovarian cancer
patient datasets. (b) "Average of peaks" for control and ovar-
ian cancer patient datasets.

The covariates are extracted from the data as discrete vari-

ables and/or continuous variables. Let m,, m,, U be the m/

z-values of the biomarkers. The discrete covariate is

obtained by searching for a peak within a window of the

biomarker, i.e.,

. {l, there exists a peak within a window [(1- p)m;,(1+ p)m;],
j

0, otherwise.

The continuous covariate is the maximum value of the
intensity within the window.

x;= the maximum value of the intensity within [(1 - p)m;
(1+ p)m].
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In this study, p = 0.002.

AdaBoost

The present objective is to find the important features of a
peak pattern associated with a disease on the basis of peak
identification on proteomic data. We introduce AdaBoost
for the extraction of informative patterns in the feature
space based on examples consisting of N pairs of the fea-
ture vector and the label. In this context, the feature vector
is obtained from peak intensities over the detected m/z-
values for a subject, and the label expresses the disease sta-
tus of the subject. For pattern classification, one of two
cases are employed, that is, in which the feature vector is
composed of discrete or continuous values, as discussed
in the preceding section.

Ensemble learning has been studied in machine learning.
AdaBoost [11] is one of the most efficient learning meth-
ods in ensemble learning. As explained below, AdaBoost
provides a classification function by a linear combination
of weak learners. The AdaBoost algorithm can be regarded
as a sequential minimization algorithm for the exponen-
tial loss function.

Let x be a feature vector and y a binary label with values +1
and -1. A classification function f(x) is then used to predict
the label y. If f(x) is positive (or negative), then the label
is predicted as +1 (or -1). Suppose that a class of classifi-
cation functions ¥ = {f} is provided. In AdaBoost, a clas-
sification function fin ¥ is called a weak learner. A new
classification function F is constructed by taking a linear

combination of classification functions in F , i.e.,

T
E(x; B) = Y. B fi(x),

t=1
where = (f,, U, B;) is a weight vectorand f,e F fort=
1, U, T. The sign of F(x; f) provides a label prediction of
y. This is a rule of majority vote by T classification func-
tions f,(x), U, fy(x) with weights £,, U, B Consider a
problem in which weights f,, U, B and classification
functions f;(x), U,f(x) are optimally combined based on
N given examples of (x;, ¥;), U, (xx, ¥n)- AdaBoost aims to

solve the problem by minimizing the exponential loss
defined by

N
Y expl—yi{ Bufi(x;) + -+ Brfr(x:)}]. (2)

i=1
AdaBoost does not jointly provide the optimal solution,
but offers a sophisticated learning algorithm with sequen-
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tial structure involving two stages of optimization in
which the best weak learner f,(x) is selected in the first
stage and the best scalar weight f, is determined in the sec-
ond stage at the t-step.

In this study, decision stumps were used as weak learners.
A decision stump is a naive classification function in
which, for a subject with a feature vector x of peak inten-
sities, the label is predicted by observing whether a certain
peak intensity is larger than a predetermined value or not.
Accordingly, the set of weak learners is relatively large, but
all of the weak learners are literally weak, since they
respond only to a peak pattern. The set of the decision
stumps is denoted by

{dj(x) =sign(x;-b) | j=1,U,J, -0 <b <o }.

AdaBoost efficiently integrates the set of weak learners by
sequential minimization of the exponential loss. As a
result, the learning process of AdaBoost can be traced, and
the final classification function can be reexpressed as the
sum of the peak pattern functions Fj(x)'s, where

Fi(x) = 2 B, sign (xj = b)),
{tlfi=d;}

in which the sum of coefficients g, is referred to as the
score §;[12]. In this way, the score S; expresses the degree
of importance for the j-th peak in terms of contribution to
integrating a final classification function in the process of
learning algorithm.

Figure 5 (a) shows the test error of the classification result
by AdaBoost with the discrete covariates. The test error is
calculated by the test dataset with n = 50 observations sep-
arated from the training dataset. Figure 5 (b) shows the
false negative and false positive results. The results
obtained by AdaBoost with the continuous covariates are
shown in Fig. 6. These figures show typical behaviors of
AdaBoost. In Figs. 5 (b) and 6 (b), the false negatives are
much larger than the false positives. Table 1 shows the test
error of AdaBoost, where the iteration number T is
decided by 10-fold cross validation.

In Table 1, the test error with discrete covariates and that
with continuous covariates are the same.

The score S; is calculated to consider the difference

between the obtained prediction functions. Each §; gives
the influence of the j-th covariate for the obtained classifi-
cation function. Tables 2 and 3 show the ten highest val-
ues among S;'s in the discrete and continuous cases,
respectively. From Tables 2 and 3, the prediction func-
tions obtained using the discrete and continuous variables

are different. The result obtained using continuous covari-
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Figure 5

Results obtained by AdaBoost with continuous covariates. (a)
Training error and test error (b) False negative and false pos-
itive.
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Figure 6

Results obtained by AdaBoost with continuous covariates. (a)
Training error and test error (b) False negative and false pos-
itive.

ates appears to be based on a difference in the intensity
under the condition that the peak exists, but the result
obtained using discrete covariates is likely to be based on
a rougher difference whether the peak exists at the m/z-
value. In this dataset, there may be many peaks that affect
classification, but each individual peak will not have suf-
ficient information to perfectly distinguish cancer patients
from controls. In such a situation, the continuous covari-
ates with high score and the discrete covariates with high
score are different, but a classification function with high
predictive performance will be obtained by combining
information from many peaks by either continuous cov-
ariates or discrete covariates.

The above results were obtained with hy, = 0.1. We can use
more (or fewer) covariates by setting a smaller (or larger)

hy,- Tables 4 and 5 show the results for various values of
hy, in the discrete and continuous cases, respectively.
When hy, is large, the test error becomes larger in the dis-
crete case, whereas in the continuous case, the test error
does not vary as much.

In Figs. 5 and 6, the false negatives are much larger than
the false positives, but this is not a desirable result. In
order to suppress false negatives, AsymBoost [13] may be
useful. In AdaBoost, the loss function is given by (2), but
in AsymBoost, the loss function is given by

N
> w; expl—y;{By fi (x;) +-+ Br fr(x:) }], (3)

i=1
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Table I: Test errors, false negatives and false positives. Table 5: Test error when h, varies in continuous case.
test error false negative false positive hy, test error number of variables
discrete 0.06 0.11 0.03 0.0 0.06 232
continuous 0.06 0.11 0.03 0.1 0.06 146
0.2 0.06 128
0.4 0.08 102
0.8 0.12 69
Table 2: Ten highest values of S;in discrete case.
peak(m/z) S
larger false positives, in particular when the number of
3675 1.42 iterations is small.
13651 1.06
7247 .02 Conclusion
;:g; (I)gg We proposed a methodology for identifying biomarkers
8569 0.76 from high-dimensional mass spectrometry data. "Com-
4792 0.65 mon" peaks in the data are regarded as biomarkers. The
16668 0.62
1849 0.6l (a)
4728 0.54 045 ' " alpha=10 ——
X alpha=1 = = =
04 ‘
Table 3: Ten highest values of §;in continuous case. 03
peak(m/z) 5 el
025 i
17095 3.98 .
14798 2.46
7247 1.97
2095 1.68 R R
4029 .62 : Mm ﬂ v
5271 1.56 1
8039 1.38
4 I I 8 I N I 9 150 200 250 300 350 400 450 500
4773 1.07 number of iterations
15044 1.05
(b)
j j alpha:1E} —
alpha=1 = = =
Table 4: Test error when hy, varies in discrete case.
h, test error number of variables
0.0 0.04 232
0.1 0.06 146
0.2 0.08 128
0.4 0.16 102
0.8 0.1 69
where each initial weight w; is set as follows:
1‘50 2;)0 Z;O 3;)0 3;0 4‘00 4‘50 500

w; = {(x, if the i-th patient is cancer, Umber of fterations

1, otherwise. .
Figure 7

It is expected that the false negatives will be suppressed by ~ Results obtained by AsymBoost with discrete covariates
using a large a. In Figs. 7 and 8, the false negatives might ~ when = | and a = 10. (a) False negative, (b) False positive.
be suppressed by using a large « at the expense of the
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Figure 8
Results obtained by AsymBoost with continuous covariates
when o = | and o = 10. (a) False negative, (b) False positive.

number of biomarkers can be changed by varying the
value of h,, which is a threshold value that controls how
"common" peaks can be regarded as biomarkers. By iden-
tifying biomarkers, the number of covariates is reduced,
so that classification is facilitated. We can select discrete or
continuous covariates depending on the situation.

The effectiveness of our approach was demonstrated
through application to an ovarian cancer dataset. It was
shown that a prediction function with high performance
can be obtained by a simple application of AdaBoost.

A simple method was used to analyze data in this study.
In general, however, a more sophisticated method may be
required to extract a covariate at a biomarker. For exam-
ple, when discrete covariates are extracted, we can use
peaks obtained by a stricter rule or we can extract variables

http://www.biomedcentral.com/1471-2105/7/358

effective for classification [5]. When continuous variables
are extracted, we can use the intensity at the m/z-value
nearest to a biomarker, or the average of intensities within
a window including a biomarker.

In this paper, the difference between the result for the con-
tinuous covariates and that for the discrete covariates was
investigated in detail. In the example, the result obtained
using continuous covariates appeared to be based on a
difference in the intensity under the condition that the
peak exists, but the result obtained using discrete covari-
ates was likely to be based on a rougher difference
whether the peak exists at the mj/z-value. In general,
whether discrete covariates are better or continuous cov-
ariates are better depends on data. If the value of the inten-
sity in the data is reliable, it may be better to use
continuous covariates. If not, it may be better to use dis-
crete covariates. We consider that both cases of covariates
should be examined and the results compared and
inspected in detail for practical almost studies. We con-
clude that we can obtain more information on the struc-
ture of the data by integrating both results.
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