@,

BiolVled Central

BIVIC Bioinformatics

Methodology article

Simulation of microarray data with realistic characteristics
Matti Nykter*, Tommi Aho, Miika Ahdesmaiki, Pekka Ruusuvuori,
Antti Lehmussola and Olli Yli-Harja

Address: Institute of Signal Processing, Tampere University of Technology, Tampere, Finland

Email: Matti Nykter* - matti.nykter@tut.fi; Tommi Aho - tommi.aho@tut.fi; Miika Ahdesmaiki - miika.ahdesmaki@tut.fi;
Pekka Ruusuvuori - pekka.ruusuvuori@tut.fi; Antti Lehmussola - antti.lehmussola@tut.fi; Olli Yli-Harja - olli.yliharja@tut.fi

* Corresponding author

Received: 15 November 2005
Accepted: |8 July 2006

Published: 18 July 2006
BMC Bioinformatics 2006, 7:349  doi:10.1186/1471-2105-7-349
This article is available from: http://www.biomedcentral.com/1471-2105/7/349

© 2006 Nykter et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Microarray technologies have become common tools in biological research. As a
result, a need for effective computational methods for data analysis has emerged. Numerous
different algorithms have been proposed for analyzing the data. However, an objective evaluation
of the proposed algorithms is not possible due to the lack of biological ground truth information.
To overcome this fundamental problem, the use of simulated microarray data for algorithm
validation has been proposed.

Results: We present a microarray simulation model which can be used to validate different kinds
of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps
that affect the quality of real microarray data. These steps include the simulation of biological
ground truth data, applying biological and measurement technology specific error models, and
finally simulating the microarray slide manufacturing and hybridization. After all these steps are
taken into account, the simulated data has realistic biological and statistical characteristics. The
applicability of the proposed model is demonstrated by several examples.

Conclusion: The proposed microarray simulation model is modular and can be used in different
kinds of applications. It includes several error models that have been proposed earlier and it can
be used with different types of input data. The model can be used to simulate both spotted two-
channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable
tool for example in validation of data analysis algorithms.

Background

The emergence of several high throughput measurement
technologies provides new possibilities to study biologi-
cal organisms at the system level. New technologies pro-
duce such large amounts of data that can no longer be
analyzed by hand. This has made computational tech-
niques an inseparable part of data analysis. Although new
computational methods are continuously proposed for
data analysis, their performance can not be objectively

evaluated. This remains as a fundamental problem in
method development. Typically validation of data analy-
sis methods is based on clinically determined labels of
biological samples. If the computational method pro-
duces results which are consistent with the predetermined
labels, then the method is considered to work reliably.
This approach, however, relies entirely on a priori infor-
mation about the data. Furthermore, the clinical classifi-
cation of samples is not always unambiguous [1,2].
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A more objective approach to validate the data analysis
methods is to use data whose characteristics and ground
truth are known [3,4]. Unfortunately, in real life problems
this kind of data usually does not exist. Thus, to obtain
data with known ground truth, one needs to produce the
data by simulation. If simulated data is used to evaluate
the performance of the analysis methods, can it be guar-
anteed that the same performance is obtained with real
data also? To get meaningful results, the simulated data
and the real biological data have to have similar biological
and statistical characteristics.

A problem in the validation of data analysis algorithms
using simulated data is that there is always an underlying
mathematical model that is used to simulate the data.
Thus, when different computational methods are com-
pared, this approach favors the ones that implement the
same assumptions as the data generation process does.
While this is a fundamental problem, it can be circum-
vented by evaluating the methods using simulated data
produced by different kinds of models. When the results
are combined, the bias due to the model assumptions can
be avoided.

Numerous studies have focused on mathematical mode-
ling of biological and measurement errors, including both
stochastic noise and systemic bias [5-11]. These studies
have improved the analysis methods by utilizing the
knowledge about the data properties [7]. This knowledge
can be utilized in the generation of simulated data as well.

The error model itself is not enough for the simulation of
biologically and statistically accurate data. Before an error
model can be applied, the ground truth biological signal
needs to be obtained. Depending on the application, a
biological signal can be obtained for example by sampling
a proper distribution or by modeling and simulating the
biological system using differential equation models [12].

Once the biological ground truth signal has been gener-
ated and the error model has been applied, simulated data
is still not comparable to real measurement data. Real
data is always extracted from a measurement system. In
the case of gene expression microarrays, image processing
algorithms are used to read the spot values from the
scanned slide image. The applied grid alignment, segmen-
tation and data extraction algorithms have a significant
effect to the obtained data [13].

There are numerous possible applications for a simulation
model that can simulate realistic biological measurement
data. The most obvious application is the validation and
improvement of data analysis algorithms [3,4,14]. In
addition, different data extraction algorithms can effec-
tively be tested under different noise conditions. If the
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biological ground truth model is accurate enough one
might even be able to simulate entire microarray experi-
ments. If this could be done before performing expensive
laboratory experiments, the proposed hypotheses could
be tested with simulated data. This could help in finding
problems in the design of the experiment and, thus,
potentially save significant amount of time and money.

While all the steps of the simulation process have been
extensively studied separately [6,7,15-18], not much work
has been done to combine all the steps. We propose a
model that combines these steps and can be used to pro-
duce microarray data with realistic biological and statisti-
cal characteristics. The proposed model is modular and it
can be easily extended to include new error models and
even new measurement technologies. The current imple-
mentation supports the simulation of spotted two-chan-
nel microarrays and oligonucleotide based single-channel
microarrays. We have implemented the model in Matlab
environment [see additional file 1]. The simulation model
is also available for download at our companion web page
[19].

Biologically meaningful input data can be obtained from
various sources. We introduce some possibilities how this
data can be obtained. We then review several previously
published error models which model biological and
measurement technology specific errors, and which can
be used to add realistic statistical properties to the simu-
lated data. The result data is used as a basis for simulating
the production of the microarray slides. After that, we dis-
cuss about the final step in obtaining realistic measure-
ment data: the extraction of the gene expressions from the
slide. Finally we demonstrate the applications of the pro-
posed model by examples.

Generation of the ground truth data

Depending on the application, the requirements for the
ground truth data may vary. A typical microarray experi-
ment includes comparison of different classes of samples,
measuring a response to a perturbation, or measuring
time series behavior. Validation of the data analysis meth-
ods developed for each of these applications sets different
requirements for the ground truth data.

The simplest approach to generate the ground truth data
is to sample data randomly from a specific distribution.
First the distribution and its parameters can be estimated
from real measurements. Next the ground truth data can
be obtained by sampling a simulated ideal distribution
with estimated parameters [7,15]. This approach can be
adequate for several applications. The detection of differ-
entially expressed genes is often based on the comparison
of statistical properties of microarray data from two differ-
ent samples, for example from two different cancer types.
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Therefore, the ground truth data suitable for validating
data analysis methods can be obtained simply by sam-
pling two distributions with different parameters.

If purpose of the data analysis is to study the behavior of
the system in more detail, for example to study responses
to perturbations, then biologically more detailed data can
be generated. Because microarray technology measures
gene expressions, the natural source for biological data
would be a model of a genetic regulatory network (GRN).
Unfortunately, GRNs are not generally known well
enough so that they could be utilized in data simulation
[20].

However, in some cases parts of the networks are known
and even simulation models that include parts of the
genetic regulatory mechanisms have been proposed
[12,17]. These kinds of models would be ideal for the gen-
eration of ground truth data. If a model is accurate
enough, even hypotheses about the behavior of the real
system could be tested before a real microarray experi-
ment is done.

Generation of data with biologically meaningful charac-
teristics does not require the modeling of real GRNs [18].
Instead one can use networks with random topology. If
the interactions between network components are mod-
eled properly, for example by utilizing interaction infor-
mation from real GRNs, one could produce data with
realistic characteristics [20].

Once the network model has been obtained and mathe-
matical models for interactions have been formulated, the
expression values of the genes in the network need to be
simulated. There are several publicly available software
packages that can be used to accomplish this task [21,22].

Yet another application for microarray data is network
inference, that is, learning the network structure and the
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interaction rules between the network components from
time series or perturbation measurements.

In network inference, the modeling of control mecha-
nisms of a network plays an essential role. Therefore, it is
not necessary that all the interactions correspond to the
ones of a real network and thus, even coarse scale models
can be used. For example, it is shown that very simple
models, even random Boolean networks, can capture
some of the essential characteristics of real GRNs [23,24].
Thus it may be sufficient to use for example a Boolean net-
work as a ground truth in network inference studies [25].

Real measurement data can also be used as ground truth
data. This is the case, for example, if we want to study how
our data analysis algorithm performs under different
types and amounts of noise. By adding noise to real meas-
urement data we can effectively test if the performance of
our data analysis algorithms degrades as the amount of
noise increases. This can give us valuable insight into the
robustness of the algorithms.

Microarray simulation model

In this section, a model for microarray measurements is
presented. The model can use input data from numerous
different sources. In practice, there is no limitation on
what kind of simulator or software is used to generate the
ground truth data.

The proposed simulation model is modular and the con-
figuration is very flexible. The structure of the model is
presented in Figure 1. Each module is independent of the
others, and can easily be replaced. This, for example,
makes it possible to easily change the error model for the
biological noise.

In the following we will discuss the most important char-
acteristics of each module. Model parameters are listed in
Tables 1, 2, 3, 4, 5. A more detailed documentation about

Slide
manufacturing

Y
File Biological R Slide Slide Image
input noise “| hybridization scanning reading
Figure |
Microarray simulation model. Block diagram of the microarray simulation model.
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Table I: List of noise parameters. Noise parameters available in the microarray simulation model.

kernel Kernel used to model the population effect.
copies Number of times the population effect is applied.
errormodel

Error model to be used; each error model has its own parameters, see Table 5.

Table 2: List of slide parameters. Overview of the slide simulation parameters. More detailed documentation of the parameters is

available on the companion web page [19].

Type of the slide (single or two channel).

S e

SZ; Model used for the spot: circle, Gaussian, hyperbolic.

Spix Maximum width/height of the area for the spot in pixels.

Smovprob Probability for a spot to drift (move) from designated location. This parameter models random movement. See parameter B_,,,. for
systematic drift.

Simov Maximum allowed movement bias from designated location, movement in x-axis S, and y-axis S are drawn from uniform distribution U
('Smov’ Smov)'

Su Mean radius of the simulated spot. Spot radius is drawn from N (Sﬂ, So_z ) distribution.

SGZ Allowed variation (variance) of the spot size.

P If set, print tip leaves a mark to the spot.

Py Probability for print tip mark to be visible in a spot.

P, Maximum height of the print tip mark, print tip height is drawn from U (0, P,) distribution.

P, Maximum width of the print tip mark, print tip width is drawn from U (0, P,) distribution.

P, Maximum of how much print tip mark is allowed to drift from spot center. Movement in x-axis P, and y-axis P, are drawn from U (-P,,
P).

Cpmb Probability for a spot to suffer from a chord cut.

um Maximum number of chord cuts from a spot.
Ceut Maximum depth of the chord cut, cut depth is drawn from U (0, C_,).
Nyjides Number of slides to be generated.
ime Time points when slides are made. This is relevant only for time series data.

N channels Number of channels (different dyes) on the slide.

Nspms Total number of spots on the slide.

Nhe,gm Number of rows of spots on the slide.

Nyigeh Number of columns of spots on the slide.

B Subarray layout on the slide i.e. number of (subarray)rows and (subarray)columns.

Bspace Space between individual subarrays on the slide.

Bime Parameter used to control the subarray curving (i.e. systematic drift in spot printing).

Brnaxc Maximum distance the bin is allowed to curve, curvature parameter is drawn from U (0, B,,,)-

Bspots Number of spots in each subarray.

Bheight Number of rows in subarrays.

B,igth Number of columns in subarrays.

the effect and usage of each parameter can be found on
our companion web page [19].

File input

Input data to the model is read using a file input module.
This module converts the data to the internal format of
the simulation model. Input data can be gene expression
values or expression ratios. For example data from
Affymetrix .cel files or simulated expression values can be
used. In addition to data itself, the user should specify
spot locations on the slide and their identifiers, such as
probe names. Requirements for the input data are listed in
Table 6. More detailed information about the format of
the input data are given on the companion web page [19].

Biological and measurement noise

The most important part in the simulation of realistic
microarray data is the modeling of biological and meas-
urement technology specific errors because they define
the statistical characteristics of the simulated data. Biolog-
ical errors are typically considered to include the internal
stochastic noise of the cells and error sources related to
sample preparation [16,26]. This type of intrinsic noise is
present in all measurements, regardless of the measure-
ment technology. Measurement errors, on the other hand,
include error sources that are directly related to the meas-
urement technology and its limitations, for example bias
due to the used dyes. The properties of this kind of extrin-
sic noise depend on the measurement technology [5]. In
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Table 3: List of hybridization parameters. Overview of the hybridization effect parameters.

HGZ Multiplicative Gaussian hybridization noise variance. Hybridization noise is drawn from N (O, Ho_z ).
Herrors If set, hybridization errors are included in simulation.

benoise Percent of the intensity values covered by the background noise.

bgvar Background noise variance, relative to background noise mean determined using Hygpg;s..

bgsrad Gradient (noise pattern) for background noise.

oscratch Number of scratches on the slide.
Hoiengen Maximum length of the scratch, scratch length is drawn from U (0, Hjengs)-
Hgyideh Width of the scratch.

odir Number of air bubbles visible on the slide.

. . 2
Ugir Mean for the air bubble radius, drawn from N (1, O iy )-
HO.2_ Allowed variation (variance) for air bubble size radius.
aimr

Hpjeed Percent of spots having dye outside spot area (bleeding).
Hyjeedsize Size of the spot bleed (how many times the spot size).
Hyeeddist How far from the origin the bleeding goes.

Table 4: List of scanner parameters. Overview of the scanner effect parameters.

Rpowe, Scanner power is used for histogram equalization, more power yields brighter image.
R, R
The dynamic range of the scanner. Intensity values are quantized to 2°? interval.
Req If set, histogram equalization is applied.
Ry, Threshold parameter for quantization, values over the threshold are saturated.
RRren Number of channel that is considered as red dye.
Reen Number of channel that is considered as green dye.
Rerrors If set, scanner errors are applied.
Rangle Angle at which the slide is scanned.
Rom Misalignment between red and green channel.

addition to the fact that the simulated ground truth data
is measurement error free, there is another major differ-
ence compared to real microarray data. Microarray data
are usually measurements from cell populations. Thus the
measured values are average expression values of all the
cells in the population while the simulated data essen-
tially presents the behavior of a single cell. Furthermore, it
is difficult to prepare a sample containing only one type
of cells. Therefore, the measured data is typically from a
heterogeneous cell population, for example from a mix-
ture of different types of cells [27]. The simulated data can
be made more realistic by introducing a population effect.
This can be done by using a kernel function to spread the
ideal expression patterns as proposed in [28]. The popula-
tion effect blurs the simulated ground truth data so that all
the details can not be observed. Small variations occurring
only in some cells can not be observed because they are
covered by the large trends of the majority of the cells.

After the population effect has been taken into account,
we can add biological and measurement errors to the sim-
ulated data. There have been numerous studies character-
izing the properties of the error sources [5-11]. While the
formulations of different error models are slightly differ-

ent, the main components in all the models are the same.
All of these models contain components that are depend-
ent and components that are independent of the expres-
sion level. Thus, the errors are considered to be nonlinear
in nature. Biological and measurement errors can be pre-
sented in the compact form

y=f(x)+e (1)

where f is a nonlinear function, depending on the gene
expression level x, e is an error term independent of gene
expression level, and y is the observed expression value.
Function f includes all error sources that are dependent on
the true underlying biological gene expression level x.
Thus, error term e and function f include both stochastic
noise and systemic bias that originate from biological and
measurement technology specific error sources.

To make it possible to estimate the parameters of the error
models from real data, error terms are usually factorized
into a more detailed form. Typically an error model
includes separate terms for gene specific noise, measure-
ment specific noise, array specific noise, biological sample
specific noise, noise independent of all these, and so on

Page 5 of 17

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:349

http://www.biomedcentral.com/1471-2105/7/349

Table 5: List of error models. Error models (EM) and the parameters for each of the implemented error model. Noise free input data
is denoted by x and the noisy output data by y. Index i refers to gene, j to array (chip), and k to biological sample specific noise. Index p
refers to a specific probe within a probe set.

Simple EM:
Model

U

o

SNR EM:
Model

U

SNR

Dror EM [7]:
Model

2
/Jxl- ’ O-x’.

2
Hp Gf
oy B

2
:ug’ Gg

Hartemink EM [9]:
Model

ij

Hierarchical EM [6]:

Model

o;

2
o

b,
Rocke EM [8]:
Model

On

of
2
Hep O
Hein EM [ 1]:

Model

Additive Gaussian noise is added to the data.
Mean of the additive Gaussian noise. Noise is drawn from N (z, o2)
Variance of the additive Gaussian noise.

Additive Gaussian noise is added to the data with given signal-to-noise ratio.
Mean of the additive Gaussian noise.
Signal-to-noise ratio after the noise is added.

y=g*x*x)+f+e

Binding efficiency of each probe x;is drawn from Gaussian distribution N (/Jxl_ , O

Gene specific bias fis drawn from Gaussian distribution N (1 G% )

Gene and chip specific error ¢is drawn from Laplace distribution L (,, ,).

)-

2
Xi

Multiplicative gene and chip specific noise g is drawn from log-normal distribution LN (,ug, G; ).

Inlog scaley =x + p+ &

Chip specific bias p;is drawn from Gaussian distribution N (upj , O'g_ ).
j

Gene and chip specific error &;is drawn from Gaussian distribution N (0, G‘i )

Inlog scaley = X + & X =x+g+c, +r;+ by

y

. . . o 2
Independent random noise ¢is drawn from zero mean Gaussian distribution N (0, O ).

Gene specific noise g;is drawn from zero mean Gaussian distribution.N (0, O';_ ).
1

Chip specific noise C;is drawn from zero mean Gaussian distribution N (0, 652. )
j

Gene and chip specific noise r;is drawn from zero mean Gaussian distribution N (0, O'Tz__ ).
ij

Gene, chip and biological sample specific noise b is drawn from zero mean Gaussian distribution N (0, G;k ).
ij

y=atxe+s

Multiplicative noise n is drawn from zero mean Gaussian distribution N (0, 07, ).

2

Additive independent noise ¢ is drawn from zero mean Gaussian distribution N (0, O ').

Background noise (bias) « is drawn from Gaussian distribution N (1, Gé ).

PMjp ~ N(Sjip + Hijr szk ) MMy, ~ N (#S, + Hijg szk ), where PM refers to perfect match and MM to mismatch

probe.
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Table 5: List of error models. Error models (EM) and the parameters for each of the implemented error model. Noise free input data
is denoted by x and the noisy output data by y. Index i refers to gene, j to array (chip), and k to biological sample specific noise. Index p

refers to a specific probe within a probe set. (Continued)

True expression signal log(Sy, + 1) is drawn from truncated (realization always > 0) Gaussian distribution TN (x, O-i%e )s

2

% i 2 2
where variance O, is drawn from Gaussian distribution N (a,, bk ) and x is the underlying expression value.

y72% O')% s Ay By Hybridization error term log(Hj,, *+ 1) is drawn from truncated Gaussian distribution TN (4, ank ). Parameter 4 is
drawn from Gaussian distribution N (1, O'/'ZL) and T]jzk is drawn from gamma distribution I'"!(a,, £,).

a, B, ) 2. TR
Variance Tjk, is drawn from gamma distribution I'"!(a,, £,).

1) Fractional binding ¢ can be selected from interval [0, 1].

[6,7]. Some of the components model the intrinsic noise,
that is, errors from biological origin while other compo-
nents represent the extrinsic noise, that is, errors from the
microarray measurement technology. However, usually
both of these error types are modeled together regardless
of their origin.

As there are error sources that are gene, array and biologi-
cal sample specific, there needs to be a way to implement
all these in the model. In addition to these error sources,
there may be technology specific details which have to be
considered. Affymetrix type oligonucleotide arrays con-
tain several probes that are a part of the same probe set
and thus measure the same gene. Furthermore, perfect
match (PM) and mismatch (MM) probes need to be han-
dled independently in the error model [11]. These issues
are taken into account in the simulation model design,
and all these type of errors can easily be included. For
details on how different types of error sources can be
implemented, see the documentation available on the
companion web page.

Our microarray simulation model includes several error
models proposed in the literature [6-11]. Along with the
models, methods for estimating model parameters from
real measurement data have been proposed [7,9,11].
These methods can be used to estimate realistic parame-
ters for the simulation. Some of the implemented error
models are for oligonucleotide and some for cDNA data.

Thus, to get statistically accurate results the right type of
error model needs to be used together with the proper
array type. The error models and their parameters are sum-
marized in Table 5. After the error model and the popula-
tion effect have been applied, the simulated data has
realistic biological and statistical characteristics.

Slide manufacturing

To model a real microarray experiment it is not enough to
simulate the gene expressions and to apply the error
model, but the extraction of the data from slides has to be
considered too [13]. Thus we need to model the micro-
array manufacturing process.

A slide image is simulated using a user specified layout,
that is, how many subarrays there are on the slide and
how many spots or probes are in each row and column.
Slide simulation introduces several error sources that are
often visible in real microarray slide images. These include
variation in the spot position and size. In addition the
marks done by a print tip and deformations in the spot
shape can be produced. For example, one type of defor-
mations are chords that are cut away from the spots. These
error sources are demonstrated in Figure 2. It is also pos-
sible to make the subarray layout imperfect by applying a
non-linear error which makes the subarrays to drift from
their ideal rectangular layout. This is shown in Figure 3.
All the error sources can be controlled probabilistically by
user adjustable parameters (see Table 2).

Table 6: Input data requirements. Requirements for the simulator input data used in microarray simulation.

data Expression values or ratios measured for probes (genes). One value for each time instant per probe is required.
time Time instants when the expression values are obtained.

genes Names of the probes.

spot Location of each probe on the slide (x and y coordinate).

name Name of the dataset.

type Type of the input data i.e. cDNA or oligonucleotide expression or ratios.

scale Scale of the input data, i.e. log or linear scale.
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Slide generation errors. Errors in slide image generation are demonstrated. There is large variation in the spot size. In addi-

tion many spots have unideal shapes.

Slide hybridization

The slide hybridization step simulates the shape of the
hybridized spot on the microarray. Several models for
spot shape have been proposed. As different array tech-
nologies produce different types of spots, there is no sin-
gle spot model that is suitable for all types of arrays. For
example, it is shown that Gaussian distribution can be
successfully fitted over ¢DNA microarray spots [29].
Recent studies have also introduced more detailed spot
models [30]. We have implemented several models for
the spot shape, including Gaussian and polynomial-
hyperbolic spot shapes [30]. Parameters for the spot
shapes can be set by the user. The ideal shape of the spot
is corrupted by multiplicative Gaussian noise, again with
user specified parameter values for the noise. The hybrid-
ized spot is then obtained by multiplying the noisy spot
shape by the corresponding expression value. Spot gener-
ation with the Gaussian spot shape is presented in Figure
4(a-b). In the case of a single channel oligonucleotide
microarray, rectangular spot corrupted by additive Gaus-

sian noise is used. An example of a simulated oligonucle-
otide microarray spot is shown in Figure 4(c).

Like previously in the slide generation phase, the user can
introduce several hybridization errors that are typical for
microarrays. Errors include background noise, spot bleed-
ing, scratches, and air bubbles. These are demonstrated in
Figure 5.

While the most relevant of these errors may depend on the
array type, the simulation model makes it possible to use
the same error sources on both spotted two-channel and
oligonucleotide based single-channel arrays. Introduction
of these types of error sources might be of interest in vali-
dation of grid alignment and segmentation algorithms.

Slide scanning

In real experiments the hybridized slide is digitized by
scanning. As a result a digital RGB image is obtained in
which each color channel corresponds to the intensity
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Drift in spot alignment. Systematic drift due to the unideal printing of the microarray slide can be introduced with used

adjustable parameters.

information from different dyes. While the modern scan-
ners are usually of high quality, they still have an effect on
the obtained data, for example, in the form of the
dynamic range. All scanners have a finite dynamic range,
and thus some measurement values might saturate.

The scanner can also be a source for other type of errors.
Because the slide is read by scanning each dye color sepa-
rately, it might be possible that channels do not align per-
fectly. Furthermore, it is not guaranteed that the slide is
always scanned exactly straight. All these types of errors
are included into the model.

Image reading

The final step in obtaining the realistic simulation data is
to extract the expression values from the image. Because
our simulation model produces images similar to real
microarray slides, one can conveniently use any micro-
array feature extraction software.

We have however included an automatic grid alignment
and image segmentation algorithm into the simulation
model so that the data can be automatically extracted
from images. These default algorithms can be easily
replaced by other extraction algorithms.

Results and discussion

We first demonstrate the use of the proposed microarray
model using simulated gene expression data. The ground
truth biological signals are generated using random net-
work topology with kinetic rate laws that present rates for
transcription processes, and kinetic rate laws for degrada-
tion rates of the gene products [18]. The details about the
data generation can be found on our companion web site.
We use a gene knock out experiment as a case study [31].
The reference data is obtained by simulating the generated
network. Then the test sample is obtained by knocking
out a randomly chosen gene from the network and then
running the same simulation using the network with the
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Simulated spots. Shape of (a) simulated noise free cDNA spot, (b) noisy cDNA spot, and (c) noisy single-channel oligonucle-
otide array spot. Intensity of the spot is determined by the corresponding expression value.

knocked out gene. Simulated gene expression profiles of a
few selected genes that were affected by the knock out are
shown in Figure 6. Next an error model is applied to the
obtained ground truth data. We use the hierarchical error
model to model the biological and the measurement spe-
cific noise [6]. Figure 7 illustrates the simulated gene
expressions profiles after adding the noise.

After the error model is applied, we generate the slide
images. As an example we show two slide images in Figure
8, generated at time instants 10 and 200 minutes corre-
sponding to the time scale in Figures 6 and 7. It can be
observed that in the beginning only one spot shows a dif-
ference in the expression. This corresponds to the gene

oe
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e
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EEE
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Figure 5

Hybridization errors. Hybridization errors are demon-
strated. Spot bleeding, scratches, air bubbles and background
noise are clearly visible.

that was knocked out. At the later time instant the effect of
the knockout has spread through the network, and many
genes show change in their expression. That is, spot colors
have changed from yellow to red or green. In this example
the amount of biological and measurement errors is in the
minimum in order to point out the spreading effects of
the knock out. Adding more measurement and biological
errors would introduce more changes in the expressions
already at the 10 minutes time instant. To illustrate that
the simulated data has properties similar to real micro-
array data, we show scatter plots of the simulated data. For
this example the ground truth data is drawn from prede-
termined distribution. Common assumption is that the
ground truth expression values are from an exponential
distribution I = Ae* [7,15]. We draw 10000 expression
values from this distribution, with 4 = 1/3000. As we are
interested in evaluating the quality of the data, we do not
introduce any differentially expressed genes, but simulate
a self versus self experiment as explained in [15]. Red and
green intensities I and I are drawn from a normal distri-

bution N (I, aI), where & = 0.1 and I is a realization from
an exponential distribution. Next, the final red and green

intensities I and I are transformed with % =x% +aq,,
where x = {I, I} with parameters a,=1.04, a, = 0.5 for I
and a, = 0.95, a, = -0.2 for .. This is a simplified version
of the ground truth data generation proposed in [15].
Scatter plot of the data is shown in Figure 9(a). To illus-
trate what is the effect of reading the spot values from a
simulated slide image, we simulate a microarray without
adding any biological or measurement errors to the
ground truth data. Only slide manufacturing and hybrid-

Page 10 of 17

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:349

http://www.biomedcentral.com/1471-2105/7/349

40 T T T T T T T T T
20
0 | I R I I I
0 20 40 60 80 100 120 140 160 180
10 T T T T T T T T T
5 -
0 1
0 20
c 40 T
Ke)
?
o 20
S
<
L 0 .
0 20
40 T T T T T T T T T
20
0 ! I T - I I I
0 20 40 60 80 100 120 140 160 180

40 60 80

120 140 160

180

100 200

Time / minutes

Figure 6

Simulated ground truth signals. Gene expression profiles of the selected genes. The effect of the gene knockout to the
expression profiles is clearly observable. Reference signal is shown with solid and test signal with dashed line.

ization errors are introduced. Scatter plot of the noise free
data extracted from a simulated slide image is shown in
Figure 9(b). It can be observed that the extraction of the
data alone introduces some errors.

Finally, we run the simulated ground truth data through a
hierarchical error model [6]. The resulting scatter plot is
shown in Figure 9(c¢). It is difficult to quantify objectively
if the data is really realistic, but the scatter plot shows
characteristics that are observed from real microarray data
[2,32]. For example, the arrow head shape at the left is
observed with real microarray data [32]. Furthermore, the
scatter pattern shows more variation at the small intensity
values, which is the case with real microarray data also
[32]. As another example we will demonstrate the simula-
tion of a single-channel oligonucleotide microarray slide.

As the ground truth data we use yeast data that can be
downloaded from Affymetrix web site [33]. We simulate a
slide image based on the intensity values in the .cel file.
Figure 10 represents a crop of the simulated image and the
corresponding real image from the original .dat file.

As the final application example, we present how the pro-
posed simulation model can be used for comparing spot
segmentation algorithms. Spot segmentation, along with
procedures such as spot addressing and estimation of
background and foreground levels, is one of the successive
steps affecting the estimation of the true signal intensity.
Simultaneous comparison of all the methods affecting the
estimated true signal is a complex problem which would
require more attention in order to be thoroughly studied.
In our current example we estimate the spot and the back-
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Simulated ground truth signals with noise added. Gene expression profiles of the same genes as in Figure 6 with meas-
urement noise added. Small trends (for example lowest sub figure) in the signals are covered by noise. Reference signal is

shown with solid and test signal with dashed line.

ground intensities by calculating the mean of segmented
foreground and background pixels. Thereafter, the expres-
sion value is obtained by subtracting the background
intensities from the foreground intensities. Our compari-
son example includes three different segmentation algo-
rithms: The fixed circle (FC) method [34], the histogram
segmentation (HST) method [35], and the seeded region
growing (SRG) method [36].

We simulate three test images consisting of eight subar-
rays with altogether 1000 spots per image. Each image has
different quality characteristics. The first image is of high
quality, with low variance noise (0.01) and relatively
round and regularly sized spots. The second image has
more noise (variance 0.02) and more irregular spot

shapes and sizes, while the third has even more disturbing
noise which has higher variance (0.03). Furthermore the
spot shapes and sizes include more variation compared to
the other images. Air bubbles, scratches, spot bleeding,
and print tip effects are added into the second and third
image, the third including more such artefacts than the
second image. Figure 11 shows one subarray from each of
the images used in this experiment. Detailed information
about the simulation parameters for these three images is
available on the companion web page.

The results of applying the selected segmentation algo-
rithms on the synthetic test images and calculating the
spot intensities from the segmentation results are shown
in Figure 12 where the estimated spot intensities are plot-
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Figure 8
Simulated spotted microarray slide images. Simulated slide images at time instants (a) 10 and (b) 200 minutes. Several
error sources, like spot size and shape variation and bleeding are included in simulation. On the slide image on the right (b) also

unideal subarray alignment and scratches are introduced.
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Scatter plots of the simulated data. MA-plot is shown for (a) noise free simulated data, (b) noise free data extracted from
slide, and (c) realistic simulated data. Lowess fit is shown over each scatter plot to illustrate the trends in the data. All data
points extracted from slide are scaled to [0, 1] interval, thus the scale of the x-axis is different to the simulated noise free data.

ted against the reference signal. Figure 12(a) shows the
scatter plots for the first image, 12(b) shows the plots for
the second image of slightly degraded quality, and 12(c)
presents the plots for the third, low quality image. After
removing the estimated background, some of the spot
intensities become negative. These negative intensities are
replaced with zeros. To quantify the performance of differ-
ent algorithms, we compute the correlation coefficient for

Figure 10
Example of an Affymetrix microarray simulation. Example of the simulated single-channel oligonucleotide microarray
slide image (crop from top left corner) (a). We have used an Affymetrix .cel file as the ground truth data. Thus the text about
the slide type is observable. Real Affymetrix slide image is shown for comparison (b).

each comparison. The results are given in Table 7. Even
though we mainly focus on simulating images with realis-
tic parameters, some observations on the segmentation
results are presented. The results presented in Table 7 sup-
port intuition; all methods give worse results as the image
quality is degraded. The fixed circle segmentation is likely
to be confused by the irregular shapes and sizes of the
spots in the second image (shown in Figure 11(b)) and

(b)
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Figure 11
Slide image segmentation examples. One subarray from each of the images used to test the segmentation algorithms are
shown. From left to right: (a) high quality slide, (b) noisy slide with artifacts, and (c) disturbing noise and artifacts over the slide.
Increase in noise and degradation of the spot quality is clearly observable.

(b)

http://www.biomedcentral.com/1471-2105/7/349

especially in the third image (shown in Figure 11(c)). The
other methods are corrupted mainly by the noise in the
second and the third image. Despite the high correlation
with the reference expressions, the intensity given by HST
segmentation method suffers from a relatively high bias.
However, the low scattering of intensities given by HST,
compared to that of FC and SRG, explains the high corre-
lation. HST has also less outliers on the lower side of the
scatter plot. Both the bias in HST and scattering in FC and
SRG are clearly visible in Figure 12. The results of the seg-
mentation experiment are well in accordance with the
basic assumptions. Thus, the images produced by the pro-
posed simulation model can be used for testing micro-
array image processing algorithms, and the model
provides useful information about the available methods.

Conclusion

The previously proposed microarray simulation models
have been suitable for specific simulation tasks only. The
model we have proposed is modular and can be used in
different kinds of analyzes. One of the most important

properties of the proposed model is the ability to use
almost any kind of input data. Most models are limited to
specific types of data, typically random data drawn from a
predetermined distribution. Thus, they can not exploit
other data, such as data produced by network simulation.
In addition, the proposed model utilizes several previ-
ously published error models in modeling the biological
and measurement technology dependent variation. Thus,
the model is not dependent of any specific formulation of
noise characteristics, and the performance of the analysis
algorithms can effectively be tested under different noise
assumptions. Our model also supports both spotted two-
channel and oligonucleotide based single-channel micro-
arrays.

We have shown that the proposed model can be used to
simulate microarray data which is valuable for validating
various kind of data analysis algorithms. As an example,
the performance of the microarray segmentation algo-
rithms were compared under different noise conditions.

Table 7: Segmentation results. Correlation coefficients between the estimated spot intensities and the input data. Histogram
segmentation gives the highest correlation with the reference data. All methods give poorer correlations as the image quality is

degraded.
Algorithm Results for image |
FC 0.9952
HST 0.9962
SRG 0.9876

Results for image 2 Results for image 3

09112 0.8452
0.9860 0.9432
0.9602 0.8680
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Figure 12

Results of segmentation example. The spot intensities estimated from the simulated images with the fixed circle (first

row), the histogram segmentation (second row), and the seeded region growing (third row) segmentation algorithms are plot-

ted against the input data (reference). The plots are from the first channel of the test images: (a) intensities for the high quality

image given by the three segmentation algorithms, (b) intensity plots for image with noise and errors, (c) plots for image with

disturbing noise and artefacts.
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