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Abstract
Background: Gene regulation and metabolic reactions are two primary activities of life. Although
many works have been dedicated to study each system, the coupling between them is less well
understood. To bridge this gap, we propose a joint model of gene regulation and metabolic
reactions.

Results: We integrate regulatory and metabolic networks by adding links specifying the feedback
control from the substrates of metabolic reactions to enzyme gene expressions. We adopt two
alternative approaches to build those links: inferring the links between metabolites and
transcription factors to fit the data or explicitly encoding the general hypotheses of feedback
control as links between metabolites and enzyme expressions. A perturbation data is explained by
paths in the joint network if the predicted response along the paths is consistent with the observed
response. The consistency requirement for explaining the perturbation data imposes constraints
on the attributes in the network such as the functions of links and the activities of paths. We build
a probabilistic graphical model over the attributes to specify these constraints, and apply an
inference algorithm to identify the attribute values which optimally explain the data. The inferred
models allow us to 1) identify the feedback links between metabolites and regulators and their
functions, 2) identify the active paths responsible for relaying perturbation effects, 3)
computationally test the general hypotheses pertaining to the feedback control of enzyme
expressions, 4) evaluate the advantage of an integrated model over separate systems.

Conclusion: The modeling results provide insight about the mechanisms of the coupling between
the two systems and possible "design rules" pertaining to enzyme gene regulation. The model can
be used to investigate the less well-probed systems and generate consistent hypotheses and
predictions for further validation.

Background
Gene regulation and metabolic reactions are two primary
activities of life. Despite vast amount of works have been
dedicated to study each system, the coupling between the
two systems is relatively less probed. It is therefore neces-

sary to shift focus from individual systems to their integra-
tion.

The coupling between metabolic reactions and gene regu-
lation is supported by abundant direct and indirect evi-
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dence. Some assays indicate substrates of metabolic
reactions influence the activities of transcription factors or
signal transduction pathways (e.g., [1-4]). More studies
show metabolic enzymes are differentially expressed
under different nutrient conditions or enzyme knock-outs
(e.g., [5-9]). These studies suggest 1) metabolic reactions
are controlled by enzyme quantities besides concentra-
tions of substrates and allosteric regulation of enzymes, 2)
enzyme gene expressions are indirectly regulated by
metabolites. Both implications are sensible from an evo-
lutionary perspective. Despite its slowness, gene regula-
tion yields a persistent response which can shift the cell
from one metabolic "mode" to another. It is also easier to
control due to the modularity of gene regulation and the
separation between functional (exons) and regulatory
(promoters) elements in the genome. The influence of
metabolites on enzyme gene regulation is a necessary
arrangement to make the systems (both metabolic and
regulatory) responsive to environmental changes and
maintain the homeostasis of metabolism.

Previous methods of modeling the joint processes of gene
regulation and metabolic reactions fall into three general
categories. The first approach explicitly establishes the
links between specific metabolites and transcription fac-
tors and models the influence between metabolites and
gene expression. Examples include imposing binary con-
straints from gene expression data on metabolic fluxes
[10,11], explaining mRNA and protein expression data
under different carbon sources with cascades of protein
interactions [12], and incorporating (metabolite, regula-
tor) links and functions in a Boolean network [13]. While
this approach can model the mutual influence between
metabolites and transcription factors, existing works tend
to focus on either direction. [10,11] emphasize the con-
straints of enzyme expression levels on metabolic fluxes,
and [12,13] focus on the effect of metabolites on gene
expression. Moreover, although these models in principle
can learn the interactions between metabolites and tran-
scription factors, most current works extract these links
from previous studies and treat them as given. The second
approach integrates the two systems by proposing high-
level hypotheses regarding the regulation of metabolic
enzymes and validates these hypotheses by experimental
data. Common hypotheses include efficient allocation of
resources to optimize growth [14], combination of flexi-
bility of flux modes and efficiency for biomass growth
[15], and co-regulation of enzymes along metabolic path-
ways [16,17]. While these hypotheses provide insight
about the design rules of the regulatory and metabolic sys-
tems, they also lack the information about the underlying
mechanisms. The third approach builds a dynamic system
of metabolic reactions and gene regulation. Examples
include models of galactose switch [18], pheromone
response pathways [19], and general metabolic reactions

[20]. While dynamic systems can in principle capture the
complex system behavior, they also suffer from the lack of
data and unknown kinetic parameter values.

In this work we propose a joint model of gene regulation
and metabolic reactions that combine the merits of the
first two approaches and compensate their shortcomings.
Our model aims for answering the following questions.
First, we want to demonstrate whether the coupling
between the two systems is essential to explain different
types of perturbation data. Second, the identities and
functions of the feedback links between metabolites and
regulators are often unknown. We want to find those
missing links from the perturbation data. Third, we want
to identify the mechanisms responsible for perturbation
responses. By abstractizing these mechanisms as paths in
the joint network of gene regulation and metabolic reac-
tions, this question is translated into finding the "active
paths" which explain the perturbation responses. Fourth,
in addition to individual (metabolite, regulator) links we
are also interested in the "design rules" regarding the
architecture and functions of the feedback regulation of
metabolic enzymes. We want to test whether certain
hypotheses pertaining to feedback regulation can better
explain the experimental data. The general concept of our
model is illustrated in Figure 1(a). The networks of gene
regulation (links between transcription factors and regu-
lated genes) and metabolic reactions (associations of reac-
tants and enzymes of each reaction) are joined by edges
from metabolites to transcription factors or enzyme
genes. We consider the data of gene expression or meta-
bolic fluxes by altering genes (gene knock-outs or over-
expression) or metabolites (nutrient limitation or sup-
ply). A perturbation data is explained by a set of paths
connecting the perturbation source (metabolites, genes)
to the response (gene expression, metabolic flux) if the
predicted responses along those paths coincide with the
actual response. The consistency requirement for explain-
ing perturbation data imposes constraints on the
attributes in the joint network such as the functions
(signs) of (metabolite, regulator) edges. For example, to
explain the up regulation of gene 2 by supplying metabo-
lite 1 in Figure 1(a) the aggregate function of the red path
must be positive.

We encode these constraints as a probabilistic graphical
model – factor graph – over the network attributes, and
apply a graphical model learning algorithm to identify the
attribute values which optimally fit the data. To build a
joint network we use two methods to establish links
between metabolites and genes. The first method searches
among all (metabolite, regulator) pairs and incrementally
augments the joint network with the links which maxi-
mize the number of explained perturbation responses.
The second method explicitly adds links according to sev-
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eral general hypotheses pertaining to the functions of
metabolic pathways and enzymes. The modeling frame-
work is illustrated in Figure 1(b). The inputs of the model

are the joint network and the perturbation data. Once the
joint network is built, we incur the learning algorithm to
infer the active paths and functions of the feedback links.

The modeling concept and frameworkFigure 1
The modeling concept and framework. (a) A feedback link from metabolite 1 to regulator 1 is established (black dash 
arc). Two perturbation responses are explained by the model. The up regulation of gene 2 by supplying metabolite 1 is 
explained by the path marked by red arrows (metabolite 1 → regulator 1 → gene 2). The decrease of flux 3 by deleting 
enzyme (gene) 1 is explained by the path marked by green arrows (enzyme 1 → flux 1 → metabolite 2 → flux 2 → metabolite 
3 → flux 3). Edges (metabolite 1, regulator 1) and (regulator 1, gene2) must be both positive or both negative in order to 
explain the first response. (b) The framework of the joint model. A factor graph model is constructed from metabolic and reg-
ulatory networks and perturbation data. A learning algorithm is applied to find the identities and functions of feedback links and 
active paths. These information are used to predict each perturbation response. By comparing with the observed data, each 
response is explained or contradicted with the prediction.
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The outputs of the model are these inferred attribute val-
ues. Once the attribute values are inferred, we can evaluate
the explanatory power of the model by counting the
number of perturbation responses explained by and con-
tradicted with the model. We can also validate the predic-
tive power of the model by using cross validation or
simulation tests. Our model applies the following simpli-
fying assumptions. First, the links from metabolites to
transcription factors or enzymes are often indirect and
functional. Typically, the change of metabolic conditions
is sensed by a receptor protein and propagated to tran-
scription factors via a signal transduction pathway. We do
not attempt to reconstruct this mechanism due to insuffi-
cient data of signal transduction. Second, the model con-
centrates on four mechanisms 1) metabolites modulate
the activities of transcription factors 2) the activities and
quantities of transcription factors affect enzyme gene
expression 3) enzyme gene expression affects the flux of
the reaction it catalyzes 4) the concentration of a reactant
affects the reaction flux and its products. A path in the
joint network represents a combination of these mecha-
nisms. For example, the red path in Figure 1(a) contains
mechanisms (1) and (2), while the green path contains
mechanisms (3) and (4). Third, for simplification we
ignore several important mechanisms such as allosteric

regulation of enzyme conformation, nutrient uptake, the
functions of coenzymes (e.g., NADH, NADPH) and small
metabolites (e.g., H2O, CO2, ATP, ADP, cAMP). Fourth,
we only consider a special case of the combinatorial
effects of multiple transcription factors or enzymes: each
factor or enzyme acts independently and the change of
each factor or enzyme suffices to alter gene expression or
metabolic reactions.

Results
We first describe a joint network of gene regulation and
metabolic reactions and the datasets used in this work. We
then define the terminology pertaining to paths in the
joint network and outline the constraint-based probabil-
istic graphical model over model attributes. We applied
two approaches to construct the joint models of meta-
bolic reactions and gene regulation and used them to
explain the perturbation responses. The first approach
learns the feedback links between metabolites and regula-
tors which best explain the data. We investigated the
change of explanatory power with respect to path length
and active paths connecting perturbation sources and
responses in this joint model. The second approach
encodes four general hypotheses pertaining to enzyme
gene regulation in the joint model. To further validate the
predictive power and the consistency of the model learn-
ing algorithm, we did two validation tests. We performed
three cross validation tests on the perturbation data to
ensure the inferred model could accurately predict the
responses in the test data. We also simulated perturbation
responses from the models with hypothetical feedback
links and verified that the model learning algorithm could
retrieve these feedback links from simulated data.

A joint network of gene regulation and metabolic reactions
We constructed the joint network of gene regulation and
metabolic reactions of Escherichia coli. The regulatory part
of the network contains the nodes of regulators (transcrip-
tion factors), operons and genes. Regulators link to oper-
ons they bind and operons link to their member genes.
The metabolic part of the network contains the nodes of
metabolites, fluxes of reactions, and enzymes. Metabolites
at both sides of a reaction connect to the flux of this reac-
tion with bidirectional edges. Enzymes catalyzing a reac-
tion connects to its flux with unidirectional edges. The
regulatory and metabolic parts are coupled by two types
of directed edges: edges linking genes to enzymes indicat-
ing the mapping between enzyme gene identities and
functions, edges linking metabolites to regulators indicat-
ing the feedback control of metabolites on regulator activ-
ities.

Many metabolic reactions are either irreversible or have a
"preferred direction" under the normal growth condition.
We therefore annotate the preferred directions of reac-

Constraints on network attributesFigure 2
Constraints on network attributes. Constraints on net-
work attributes from three perturbation responses. 
Response 1: deleting regulator r1 up-regulates enzyme e2. 
Constraint: edge sign s2 = -. Response 2: reducing metabolite 
m1 down-regulates enzyme e2. Constraint: s1·s2 = +. 
Response 3: reducing metabolite m1 decreases flux f2. Con-
straint: path 1 (magenta) and path 2 (cyan) are active, s1·s2 = 
+. Path 3 (brown) is inactive because its predicted response 
contradicts with the observed response.
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Types of explained responses (a) inferred links (b) general hypothesesFigure 3
Types of explained responses (a) inferred links (b) general hypotheses. The significant perturbation responses 
explained by each model are categorized into three types: expression changes explained by paths containing both regulatory 
and metabolic links (dark blue), flux changes explained by pure metabolic paths (green), flux changes explained by paths con-
taining both regulatory and metabolic links (brown). The model of inferred links contains two feedback links (glucose, ArcA), 
(acetyl-CoA, ArcA).

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

maximum path length

# 
ex

pl
ai

ne
d 

re
sp

on
se

s

expression, mixed
flux, metabolic
flux, mixed

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

maximum path length

# 
ex

pl
ai

ne
d 

re
sp

on
se

s

expression, mixed
flux, metabolic
flux, mixed



BMC Bioinformatics 2006, 7:332 http://www.biomedcentral.com/1471-2105/7/332
tions and specify their "input" (substrate) and "output"
(product) metabolites. For instance, in reaction glucose +
ATP F glucose-6-phosphate + ADP, glucose is the input
and glucose-6-phosphate is the output.

For E. coli, the substrates and enzymes of metabolic reac-
tions, the operons of many genes, the bindings of tran-
scription factors on some operon promoters, and the
functions of these transcription factors were downloaded
from the EcoCyc database [21]. We used these informa-
tion to construct metabolic and regulatory networks. As a
proof-of-concept demonstration we focused on genes and
reactions involved in the central carbon metabolism. We
included the metabolic pathways of glycolysis, tricarboxy-
lic acid (TCA) cycle, pentose phosphorylation, Entner-
Doudoroff, acetate utilization, and several other reactions
connecting these reactions. We also included the enzymes
catalyzing each reaction in these pathways, operons con-
taining these enzymes, and the transcription factors which
are known to control these operons according to Ecocyc.
There are 49 metabolic reactions, 46 metabolites, 75
enzymes, 20 transcription factors and 126 other genes in
this subset. The joint network is shown in Figures 4, 5, 6,
7. The list of these participants is provided in Additional
File 16.

Datasets
Perturbation data of E. coli from 5 sources were used: the
gene expression datasets under acetate supply [6], glucose
and amino acid limiting conditions [8], and pyruvate
kinase knockout [9]; the metabolic flux datasets under
pyruvate kinase knockout [22], phosphoglucose isomer-
ase and glucose-6-phosphate dehydrogenase knockouts
[23]. Metabolic flux data capture the rates of metabolite
production in certain reactions. An informative review of
metabolic flux measurements can be found in [24]. Table
1 summarizes the properties of these data. Notice rows 4
and 6 are two experiments from the same reference.

We quantized expression and flux data into three levels.
For expression data the ratios between the perturbation
and reference conditions were reported. We quantized an
expression response as significantly up or down regulated
if it changes more than two folds in either direction. The
only exception is the expression data of pykF knock-out
[9]: 1.2 fold or higher for up regulation and 0.9 fold or
lower as down regulation. For flux data the percentage of
fluxes relative to glucose uptake was reported. We quan-
tized a flux response as significantly increase or decrease if
the change ≥ ± 15% of glucose uptake relative to the refer-
ence condition. These quantization criteria were primarily
based on the discussions in the references of the data
sources. For instance, in [6] the authors consistently used
2-fold changes to determine differential expression; in [9]
zwf was reported up-regulated in pykF knock-out, while

the expression ratio of zwf was about 1.2. Ideally quanti-
zation should be based on statistical analysis of the con-
trol experimental data. Since the control data and
statistical analysis were not provided in these sources, we
could only use these subjective criteria. The problem of
identifying noisy fluctuations as significant changes is less
severe as we limited to the subset of genes and reactions
highly relevant to the perturbed processes.

Paths in the joint network
A key concept of this work is to explain perturbation
responses with paths in the joint network. In this section
we clarify several terms regarding paths and give them
mechanistic interpretations. A metabolic pathway denotes a
series of metabolic reactions with known biochemical
functions, e.g., glycolysis or TCA cycle. It is recognized by
biochemists and reported in the databases such as EcoCyc.
In contrast, a path denotes a sequence of consecutive edges
in the joint network. It is determined by network topology
and may not carry real biological meanings. However, we
can give each path a causal, mechanistic interpretation in
terms of gene regulation and metabolic reactions. For
instance, the red path in Figure 1(a) denotes the gene reg-
ulatory alteration via the feedback link between metabo-
lite 1 and regulator 1. The green path in Figure 1(a)
denotes the cascade of kinetic shifts along reactions 1–3
by changing metabolite 1. The paths containing only
(enzyme, flux), (metabolite, flux) and (flux, metabolite)
edges represent the kinetic shifts of reaction fluxes and
metabolites due to the changes of metabolites or enzyme
levels. We call such paths metabolic paths. The paths con-
taining only (regulator, operon) and (operon, gene) edges
represent the causal events of transcription regulation. We
call these paths regulatory paths. We are interested in the
causal events which involve both metabolic shifts and
gene regulation. A path containing both regulatory and
metabolic edges and the (metabolite, regulator) feedback
links is called a mixed path. A perturbation response (or data)
denotes a tuple of the perturbation (the change of genes
or metabolites), an affected gene or flux, and the direction
of the response (up or down regulation, increasing or
decreasing flux) with respect to a reference condition. A
valid path represents a plausible mechanism that can pos-
sibly explain a perturbation effect. These paths are
obtained by filtering all the paths connecting each pertur-
bation source and response according to node types and
network topology. The filtering criteria are described in
the Methods. A valid path explains a perturbation data if its
predicted response coincides with the actual response. A
valid path contradicts with a perturbation data if its pre-
dicted response disagrees with the actual response. A valid
path is active if its underlying mechanism is responsible
for the perturbation effect. Concrete definitions of valid
paths, predicted responses, explanation and active paths
will be given below.
Page 6 of 23
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:332 http://www.biomedcentral.com/1471-2105/7/332

Page 7 of 23
(page number not for citation purposes)

Active paths explaining glucose limitation, expression data, model of inferred linksFigure 4
Active paths explaining glucose limitation, expression data, model of inferred links. Metabolites (triangles) connect 
to the fluxes (squares) of the reactions they participate in. Arrows are from the reactants of a reaction to its flux and from the 
flux of a reaction to its products. The preferred direction of each reaction is specified in EcoCyc. Enzymes (circles) connect to 
the fluxes they catalyze. Regulators (octagons) connect to operons (diamonds) they regulate, and operons connect to their 
member genes (circles). Metabolites connect to regulators via the feedback links. Perturbation sources and responses are 
colored by red (increase) or green (decrease). Enlarged colored nodes denote perturbation sources (glucose in this figure), 
colored nodes slightly larger than uncolored ones denote the significant responses explained by the model, and small colored 
nodes denote the unexplained responses. Solid edges are positive (activating), and dash edges are negative (inhibitory). Active 
paths are marked by blue edges connecting source to responses. For instance, the path glucose → ArcA → aceBAK 
(operon) → aceA explains the up regulation of aceA in glucose limitation.
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Active paths explaining acetate supply, expression data, model of inferred linksFigure 5
Active paths explaining acetate supply, expression data, model of inferred links. Legends are the same as Figure 4.
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Active paths explaining pgi knock-out, flux data, model of inferred linksFigure 6
Active paths explaining pgi knock-out, flux data, model of inferred links. Legends are the same as Figure 4.
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Active paths explaining pykA/pykF double knock-out, flux data, model of inferred linksFigure 7
Active paths explaining pykA/pykF double knock-out, flux data, model of inferred links. Legends are the same as 
Figure 4.
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Paths are useful for explaining perturbation responses. A
perturbation data contains both direct and indirect effects.
The active paths provide consistent hypotheses about the
direct and indirect mechanisms for perturbation
responses. However, it is easy to create many arbitrarily
long paths to fit the perturbation data. To restrict the
expressive power of the model we limit the maximum
path length and investigate the change of inference results
with respect to the path length limit.

Attributes of the joint network
We assign the following attributes to the joint network:
the presence or absence of each edge, the function (sign)
of each edge, and the activity of each valid path. Some of
these attributes are already known. For example, the sign
of an (enzyme, flux) edge is always positive because the
enzyme catalyzes the reaction; the signs of many (regula-
tor, operon) edges are reported in EcoCyc. Other
attributes are not given thus have to be inferred from data.
We are interested in the following unknown attributes:
the presence/absence and functions of (metabolite, regu-
lator) edges, and the activities of valid paths. A complete
specification of the values of all attributes in the network
is called a model configuration. It represents a hypothesis
about the functions of interactions and causal mecha-
nisms to explain the perturbation data.

A probabilistic graphical model over network attributes
A perturbation response can be caused by cascades of reg-
ulatory changes and metabolic shifts represented by paths
in the joint network. To explain a perturbation response
with a valid path the predicted response along the path
must be consistent with the observed response. The pre-
dicted response along a path is determined by the func-
tional direction of the perturbation (increase or decrease),
the functions (signs) of (regulator, operon) and (metabo-
lite, regulator) edges, and the causal directions of the reac-
tions (whether the direction of the corresponding flux is
identical to or opposite of the "preferred direction" of the
reaction). The concrete rules of prediction are described in
Methods.

The consistency requirement for explaining a perturba-
tion response imposes constraints on the attributes along
the path. Figure 2 illustrates these constraints with a toy
example. This small network is constrained by three per-
turbation responses. First, deleting regulator r1 up-regu-
lates enzyme e2. The edge sign e2 is negative in order to
explain this response. Second, reducing metabolite m1
down-regulates e2. To explain this response the product of
s1 and s2 is positive. Third, reducing m1 also reduces flux f2.
m1 and f2 are connected by three paths. The predicted
responses along paths 1 (magenta) and 2 (cyan) are com-
patible with the observed response, but the predicted
response along path 3 (brown) is the opposite of the
observed response. Thus only paths 1 and 2 are active.

The power of integrating constraints is evident even in this
toy example. Each local constraint may not suffice to
uniquely determine attribute values, but multiple pertur-
bation responses pertaining to overlapped paths may pro-
vide sufficient constraints. By combining constraints 1
and 2, we uniquely infer that s1 and s2 are both negative.
In addition, the responses from one data may reinforce
the confidence about path activities for other data. The
down-regulation of e2 in m1 reduction strongly suggests
that path 1 is responsible for explaining the reduction of
f2 in m1 reduction.

We want to find the attribute values which satisfy all con-
straints from the perturbation data. This problem is NP-
hard and may not be solvable. We relax these hard con-
straints and express them as a probabilistic graphical
model – a factor graph model [25] – over the network
attributes. The network attributes are treated as discrete
random variables and each local constraint is relaxed as a
non-negative real-valued function – a "potential func-
tion". The product of all potential functions – the unnor-
malized joint likelihood function – represents all the
constraints from the data. The difficult constraint satisfac-
tion problem is hence relaxed as a tractable graphical
model inference problem. The optimal configurations
which maximize the joint likelihood function can be cal-

Table 1: Perturbation data used in this work

Source Response Reference

acetate ↑ expression Oh et al., 2000
glucose ↓ vs amino acid ↓ expression Hua et al., 2004

pykF ↓ expression Siddiquee et al., 2004
Pgi ↓ flux Hua et al., 2003

pykA ↓ pykF ↓ flux Emmerling et al., 2002
zwf ↓ flux Hua et al., 2003
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culated using standard inference algorithms such as the
max-product algorithm [25]. Details about constructing
the factor graph model from local constraints and the
inference algorithm are described in Methods.

Learning feedback links between metabolites and 
regulators
The feedback links between metabolites and regulators are
not reported in the EcoCyc database thus need to be spec-
ified. We first applied a simple algorithm to reconstruct
these feedback links from perturbation data. It searches
among all (metabolite, regulator) pairs and incrementally
augments the joint network with the links which maxi-
mize the number of explained perturbation responses
minus the number of contradicted responses. Intuitively,
a link is chosen if it creates "shortcuts" connecting many
perturbation data with valid paths. Different sets of links
are retrieved at different path length limits, and at a fixed
path length limit there can be multiple link sets which
have equal explanatory power. We call these link sets
degenerate link sets since they are equally good to fit the
existing data. Table 2 shows the inferred feedback link sets
with the corresponding maximum path length, the
explanatory power of the models (# explained responses
– # contradicted responses), and their statistical signifi-
cance using a permutation test. Two interesting properties
arise from Table 2. The explanatory power of the model
first increases with increasing maximum path length then
decreases when the maximum path length exceeds 8.
Allowing longer paths connects more perturbation
responses but also generates more spurious paths. The
model's explanatory power is a balance between these two
factors. In addition, the metabolites of the degenerate link

sets are close in the metabolic network. For instance,
either (glucose, ArcA) or (glucose-6-phosphate, ArcA)
appears in many inferred edge sets. Since the existing data
do not have sufficient resolution to delineate these links,
they tend to explain the same set of perturbation
responses. Most optimal link sets in Table 2 comprise two
links. The first link connects an upstream metabolite of
glycolysis (glucose, glucose-6-phosphate, fructose-6-
phosphate) to ArcA, a global repressor of glucose metabo-
lism enzymes [26]. The second link connects a down-
stream metabolite of glycolysis (pyruvate, acetyl-CoA) to
ArcA. These links explain the the expression data of glu-
cose limitation and acetate supply because they connect
glucose and acetate to differentially expressed genes. They
also create short paths connecting deleted enzymes (pgi,
pykA, pykF, zwf) and metabolic fluxes and provide alter-
native explanation for flux changes.

ArcA and ArcB form a two-component regulatory system
for respiratory control [26]. In the deficiency of oxygen,
ArcB phosphorylates ArcA, which inhibits the expression
of enzymes for aerobic respiration. Apparently ArcA is
affected by oxygen but not the metabolites in the central
carbon metabolism. However, other links between
metabolites and regulators yield inferior explanatory
power than those two putative links. For example, a stand-
ard mechanism for catabolite repression of enzyme genes
is through the CRP-cAMP transcription factor complex
[5]. Some genes differentially expressed in glucose limita-
tion – such as fumA, fumC, aceA, aceK, and NADH dehy-
drogenase members – are not bound by CRP but by ArcA.
The link (glucose, CRP) thus cannot explain these expres-
sion responses. Previous studies also confirm the effect of

Table 2: (metabolite, regulator) sets inferred from the model.

length set net explained pval

1 1 1.0
2 1 1.0
3 (glucose, ArcA) (acetate, ArcA) 34 < 10-5

4 (g6p, ArcA) (acetyl-CoA, ArcA) 38 < 10-5

4 (g6p, ArcA) (acetylphosphate, ArcA) 38 < 10-5

4 (g6p, ArcA) (acetate, ArcA) 38 < 10-5

4 (g6p, ArcA) (pyrophosphate, ArcA) 38 < 10-5

5 (g6p, ArcA) (pyruvate, ArcA) 65 < 10-5

6 (g6p, ArcA) (pyruvate, ArcA) 66 < 10-5

6 (g6p, ArcA) (acetyl-CoA, ArcA) 66 < 10-5

6 (g6p, ArcA) (malate, ArcA) 66 < 10-5

6 (g6p, ArcA) (2k3d6pg, ArcA) 66 < 10-5

7 (g6p, ArcA) (pyruvate, ArcA) (pepyruvate, FruR) 74 < 10-5

8 (f6p, ArcA) (pepyruvate, ArcA) (2pg, FruR) 78 < 10-5

9 (f6p, ArcA) (pepyruvate, ArcA) (6pg, FruR) 72 < 10-5

The explanatory power (net explained) is (# explained responses – # contradicted responses). The p-value of the explanatory power is calculated 
by randomly permuting the perturbation responses over genes or fluxes. No feedback links are added to the network when the maximum path 
length ≤ 2, since short paths containing feedback links can not explain the data. Abbreviation of metabolites: g6p: glucose-6-phosphate, pepyruvate: 
phosphoenolpyruvate, f6p: fructose-6-phosphate, 6pg: 6-phospho-gluconate, 2pg: 2-phosphoglycerate, 2k3d6pg: 2-keto-3-deoxy-6-phospho-
gluconate.
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acetate and pyruvate on ArcB and ArcA activities [27].
Curiously, acetate and pyruvate are reported to activate
ArcA, hence repress the aerobic genes. This prediction con-
tradicts with the expression data of acetate supply, sug-
gesting other regulators are involved or ArcA is affected by
conditions accompanied glucose or acetate supply.

To further investigate the properties of inferred models,
we focused on a joint network comprising representative
links from these two degenerate sets: (glucose, ArcA) and
(acetyl-CoA, ArcA). We examined the change of explana-
tory power of the model with respect to maximum path
length and the types of perturbation responses explained
by the model. Finally, we investigated the active paths
explaining the perturbation data.

The first two rows of Table 3(a) show the net number of
explained significant perturbation effects (# explained – #
contradicted) and their permutation p-values versus the
maximum path length. The explanatory power of the
model first increases with the maximum path length then
stabilizes when the maximum path length exceeds 6. This
property is again a balance between the improved connec-
tivity of models with longer paths and the likely contra-
dictions caused by spurious paths.

Figure 3(a) categorizes the significant perturbation effects
explained by the models according to two criteria: the type
of responses (flux or gene expression) and the type of
paths explaining the effects (pure regulatory, pure meta-
bolic, mixed). A central question concerning a joint
model of metabolic and regulatory networks is whether
the joint model can explain the data considerably better
than the individual networks alone. Figure 3(a) and the
last two rows of Table 3(a) justify the advantage of the
joint model. When the maximum path length is 6, 46 sig-
nificant responses are explained by mixed paths, whereas
only 22 responses are explained by pure metabolic paths.

The explanatory power of mixed paths is statistically sig-
nificant: the permutation p-value of the number of
explained responses < 10-5. Furthermore, the advantage of
mixed paths sustains for the maximum path length from
3 to 9: the permutation p-value ≤ 1.1 × 10-3 for path length
3 and < 10-5 for path length 4–9. All the expression data
are explained by mixed paths. Flux data are primarily
explained by metabolic paths when the path length < 6,
but some of them are explained by mixed paths when the
maximum path length ≥ 6. In principle, all the flux
responses in the dataset can be explained by pure meta-
bolic paths if the paths are long enough. However,
(metabolite, regulator) links establish "shortcuts" con-
necting sources and responses via regulatory links. These
shortcuts bypass the lengthy cascade of metabolic reac-
tions. The results in Figure 3(a) and Table 3(a) are sum-
marized in the supplementary file [see Additional file 13].

To understand the mechanistic interpretations of our
models, we further analyzed the active paths responsible
for explaining the data from each perturbation experi-
ment. To save space we only present the analysis of 4 per-
turbation experiments. The active paths explaining each of
the 6 perturbation experiments are shown in the supple-
mentary files [see Additional files 1, 2, 3, 4, 5, 6]. All the
network graphs are drawn by Cytoscape [28].

Figure 4 shows the paths explaining the gene expression
responses under glucose limitation relative to amino acid
limitation. Glucose is the input of the central carbon
metabolism. A few enzymes along glycolysis are down-
regulated, and enzymes of the TCA cycle and NADH dehy-
drogenase (nuoA-nuoK) are up-regulated. Most other
genes (white circles in Figure 4) are unmeasured rather
than unchanged. The up-regulation of TCA enzymes and
NADH dehydrogenase components is explained by mixed
paths containing (glucose, ArcA) and from ArcA to corre-
sponding operons. Mechanistically, these paths suggest

Table 3: Explanatory power and significance of models (a) inferred links (b) general hypotheses

length 1 2 3 4 5 6 7 8 9

total explained-contradict 1 1 27 38 44 67 70 70 72
pval 1.0 1.0 < 1.0·10-5 < 1.0·10-5 < 1.0·10-5 < 1.0·10-5 < 10-5 < 10-5 < 10-5

mixed explained-contradict 1 1 21 27 27 45 41 41 41
pval 1.0 1.0 1.1·10-3 < 1.0·10-5 < 1.0·10-5 < 1.0·10-5 < 10-5 < 10-5 < 10-5

length 1 2 3 4 5 6 7 8 9

total explained-contradict 1 1 28 40 49 58 63 75 75
pval 1.0 1.0 < 1.0·10-5 1.0·< 10-5 < 1.0·10-5 < 1.0·10-5 < 10-5 < 10-5 < 10-5

mixed explained-contradict 1 1 21 29 32 36 34 44 44
pval 1.0 1.0 2.5·10-3 1.34·10-3 9.1·10-4 1.6·10-4 1.9·10-4 < 10-5 < 10-5
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glucose limitation inhibits ArcA and activates the genes
repressed by ArcA. We can thus infer the sign of (glucose,
ArcA) is positive.

Figure 5 shows the paths explaining the gene expression
responses by supplying cells with acetate as the carbon
source. Acetate participates in the central carbon metabo-
lism by converting into acetyl-CoA, the end product of
glycolysis and a reactant in the TCA cycle. Most enzymes
along the TCA cycle are up-regulated under acetate supply.
These responses are explained by paths containing the
feedback link (acetyl-CoA, ArcA). Mechanistically, these
paths suggest acetate supply increases the level of acetyl-
CoA, which inhibits ArcA and activates genes repressed by
ArcA. We can also uniquely infer the sign of (acetyl-CoA,
ArcA) is negative.

Figure 6 shows the paths explaining the flux responses of
deleting pgi, the enzyme catalyzing the second step of gly-
colysis (EC # 5.3.1.9). Fluxes along glycolysis and the TCA
cycle are reduced, and fluxes along pentose phosphoryla-
tion are increased. The flux changes along glycolysis and
pentose phosphorylation can be explained by pure meta-
bolic paths. Deleting pgi blocks the initial step of glycoly-
sis, which in turn reduces the downstream fluxes of
glycolysis and increases the fluxes of pentose phosphor-
ylation which shares the input (glucose-6-phosphate)
with glycolysis. The responses of fluxes along the TCA
cycle may also be explained by pure but longer metabolic
paths. Our model uses shorter, mixed paths containing
the feedback link (glucose, ArcA) to explain these interac-
tions. Deleting pgi accumulates the initial metabolites of
glycolysis (glucose or glucose-6-phosphate), which ena-
bles ArcA, represses enzymes in the TCA cycle, and reduces
the fluxes of their catalyzed reactions. The predicted
changes along these mixed paths are identical to the pre-
dicted changes along pure metabolic paths. Pure meta-
bolic paths are not used by the model because they exceed
the path length limit. For example, the metabolic path
connecting pgi and flux 4.2.1.2 contains 18 reactions.

Figure 7 shows the paths explaining the flux responses of
deleting pykA and pykF, isozymes catalyzing the last step
of glycolysis (EC # 2.7.1.40). The effect of blocking this
reaction is propagated both upstream and downstream.
According to the prediction rules, both upstream and
downstream fluxes will decrease. The increase of fluxes
along pentose phosphorylation can be explained by paths
traversing the common input of glycolysis and pentose
phosphorylation (glucose-6-phosphate) or the common
output of both pathways (pyruvate). The model uses the
latter because its path length is within the upper limit. A
few fluxes along the TCA cycle are explained by either
(acetyl-CoA, ArcA) link or shorter metabolic paths.

Encoding general hypotheses about metabolic enzyme 
regulation
Besides individual links between metabolites and regula-
tors, it is also of interest to know whether enzyme expres-
sions and functions are related by abstract "design rules"
or general hypotheses. These rules bypass the incomplete
transcription factor binding information and may reveal
the general relations between the functions and regulatory
architecture of metabolic pathways. Ideally the general
hypotheses should be learned from the data as the
(metabolite, regulator) links. To do this we need a rigor-
ous definition of hypotheses and a systematic way to
search and test these hypotheses. In this preliminary work,
we only proposed four simple hypotheses and tested
them using the same perturbation data. We consider met-
abolic pathways with definite physiological functions and
preferred directions (e.g., glycolysis, pentose phosphor-
ylation).

1. The input metabolites of a metabolic pathway activate
the expression of enzymes catalyzing reactions along the
pathway.

2. The end products of a metabolic pathway inhibit the
expression of enzymes catalyzing reactions along the
pathway.

3. When multiple pathways compete for the same inputs
but have different products, the products of one pathway
inhibit the enzyme expression along the competing path-
way.

4. Glucose represses genes involved in the TCA cycle, elec-
tron transfer, and metabolism of other carbon sources.

Hypotheses 1–3 reflect simplified heuristics for efficient
resource allocation. To avoid wasting enzymes, a meta-
bolic pathway is turned on only when input metabolites
are available, and is turned off when it produces sufficient
products or when a competing pathway is active. Hypoth-
esis 4 is based on a well known phenomenon of glucose
repression [5]. These simple rules by no means suffice to
characterize enzyme gene regulation but are good work-
ing hypotheses to test. A general hypothesis is encoded in
the model by adding links from metabolites to enzyme
genes and designating their functions (edge signs). We
encoded these hypotheses in the joint model and applied
it to the same perturbation data. The first two rows of
Table 3(b) show the net number of explained significant
perturbation responses and its statistical significance ver-
sus the maximum path length. Figure 3(b) shows the
explained significant responses categorized by the types of
responses and paths explaining the effects. Similar to
Table 3(a), the net number of explained responses first
grows with the maximum path length then saturates. The
Page 14 of 23
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:332 http://www.biomedcentral.com/1471-2105/7/332
profile of explained effects is also similar to Figure 3(a).
Expression data are exclusively explained by mixed paths,
flux data are explained only by metabolic paths when the
path length is short. As the path length increases more flux
data are explained by mixed paths. The net numbers of
explained effects are comparable between the two
approaches. The results in Figure 3(b) and Table 3(b) are
also summarized in the supplementary file [see Addi-
tional file 14].

The explanatory power by adding the general hypotheses
to the model is statistically significant across different
maximum path length: the p-value < 10-3 for the maxi-
mum path length from 5 to 9. We also evaluated the
explanatory power contributed by each hypothesis by
comparing the model with a null model lacking each
hypothesis. Figure 8 shows the gain of the explanatory
power contributed by each hypothesis with varying path
length. Clearly, hypothesis 4 (glucose repression) has the
highest contribution to the explanatory power. Hypothe-
sis 1 (the input of a pathway activates its enzymes) also
yields substantial contribution until the maximum path
length reaches 7. A negative contribution means the net
number of explained responses becomes smaller by incor-
porating the hypothesis in the model. As the maximum
path length increases, more paths are created and the
hypothesis is more likely to be violated along some of
these paths. Hypothesis 3 (the product of a pathway
inhibits the enzymes of the competing pathway) has a
small yet non-negative contribution for the maximum
path length ≥ 5. In contrast, hypothesis 2 (the output of a
pathway inhibits its enzymes) has small positive contribu-
tion along short paths but has negative contribution as the
maximum path length exceeds 5. Therefore, adding hypo-
thesis 2 to the model does not improve (or even degrades)
the explanatory power of the model. We also draw the
active paths in the general hypotheses models explaining
each perturbation experiments. To save space we put these
figures in the supplementary files [see Additional files 7,
8, 9, 10, 11, 12].

Validating inferred models
We performed two computational tests to validate the pre-
dictive power and the consistency of the model learning
algorithm. First we performed three cross validation tests
on the perturbation data to check whether the model
could accurately predict the perturbation responses. Sec-
ond we built hypothetical models of metabolic-regulatory
coupling, simulated perturbation response data according
to these models, and verified whether the learning algo-
rithm could recover the hypothetical models.

Figure 9 demonstrates the accuracy rates of cross-valida-
tion tests by varying the maximum path length in the
model. We split the significant perturbation responses

into training and test sets, inferred the model configura-
tions from the training data, and predicted the responses
in the test data. To reduce the influence from the test data
we used three methods to generate test sets. Leave-one
cross validation treats each (perturbation, response) tuple
as a test set and repeats the procedure for each tuple. 10-
fold cross validation randomly chooses one tenth of the
tuples as a test set and repeats the procedure for 100 trials,
and 5-fold cross validation chooses one fifth of the tuples
instead. The accuracy rates of 10-fold and 5-fold cross val-
idation in Figure 9 are the averages over 100 trials. The
standard deviations are smaller than 0.16 for 10-fold cross
validation and smaller than 0.1 for 5-fold cross valida-
tion.

Figure 9(a) shows the results of models with two inferred
(metabolite, regulator) links (glucose, ArcA) and (acetyl-
CoA, ArcA), and Figure 9(b) shows the results of models
encoded with the general hypotheses of metabolic
enzyme control. Black dotted lines are the accuracy rates
using the entire dataset (1 – training error rate). They are
the upper bounds for the test accuracy rates. For the mod-
els with the two representative links, the test accuracy rate
is close to its upper bound when the maximum path
length ≤ 7.

The test accuracy reaches 60% when the maximum path
length is 7, and drops significantly to about 50% when the
maximum path length is 8. This suggests overfitting
occurs as the maximum path length exceeds 7 due to spu-

Contribution of each general hypothesis to the modelFigure 8
Contribution of each general hypothesis to the 
model. The gain of explaining power by adding each hypo-
thesis into the model. The gain can be negative if adding the 
hypothesis contradicts with more perturbation responses 
than explaining them. Hypothesis 1: blue. Hypothesis 2: cyan. 
Hypothesis 3: yellow. Hypothesis 4: brown.
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rious paths. Figure 9(b) shows the results of models
derived from the general hypotheses. It demonstrates a
similar pattern as Figure 9(a): the accuracy rate is close to
their upper bounds when the maximum path length ≤ 4,
reaches the maximum around 50% when the maximum
path length is 5, and drops significantly as the maximum
path length exceeds 5. The inferior test accuracy rates are
due to the larger number of valid paths created by the gen-
eral hypotheses. Moreover, the test accuracy rates gener-
ated by three different cross validation tests are very close,
indicating they are robust against the choice of test sets.

Besides cross validation, we also verified the consistency
of the model learning algorithm by checking whether the

algorithm could accurately learn the underlying model if
the model hypotheses were correct and sufficient data
were given. We generated a hypothetical model by adding
two random (metabolite, regulator) links and assigning
random signs to these edges. Hypothetical perturbation
experiments were selected by randomly deleting/overex-
pressing genes or increasing/decreasing metabolite levels
in the joint network. Expression and flux responses of
each perturbation were simulated according to the hypo-
thetical model, and significant responses were incorpo-
rated in the hypothetical perturbation data. We then
inferred the missing links and their signs from these data
and compared the inferred links with the hypothetical
model. This procedure was repeated for 200 random
hypothetical models. As shown in Figure 10, the fraction
of random models accurately learned by the learning algo-
rithm increases with the number of experiments. When 5
experiments were provided, about half (47%) of the ran-
dom models were accurately learned by the algorithm.
When 10 experiments were provided, over three quarters
(76%) of the random models were accurately learned.
This "learning curve" suggests that our method can in
principle learn the missing links (and their functions) if
sufficient data are provided.

Discussion
We want to achieve four goals from the inferred models:
1) evaluate the advantage of an integrated model over sep-
arate systems, 2) identify the feedback links between
metabolites and regulators and their functions, 3) compu-
tationally test the general hypotheses pertaining to the
feedback control of enzyme expressions, 4) identify the
active paths responsible for perturbation effects. In this
section we discuss whether these goals are fulfilled from
the results.

The advantage of an integrated model is obvious. As
shown in Table 3, a joint model of regulatory and meta-
bolic networks explains perturbation data significantly
better than the two separate networks. This advantage
arises from the improved connection from perturbation
sources to responses in the joint network. Specifically, it is
essential to establish feedback links from metabolites to
transcription factors or genes in order to explain the differ-
ential expression of genes under different metabolic con-
ditions. Other types of perturbation data may also be
explained by short paths containing both regulatory and
metabolic links. Table 2 indicates multiple sets of feed-
back links yield the same explanatory power. Therefore,
we cannot uniquely identify the feedback links. This is
expected since our perturbation data do not have suffi-
cient resolution to discriminate between multiple link
sets. Nevertheless, we can approximately map the posi-
tions of the metabolites involved in the metabolic net-
work: one link connects an upstream metabolite of

Cross validation accuracy of models with (a) inferred links and (b) general hypothesesFigure 9
Cross validation accuracy of models with (a) inferred 
links and (b) general hypotheses. Black stars are the 
accuracy rates using all perturbation data in the training set. 
Red squares are the accuracy rates of leave-one-out cross 
validation. Magenta circles and blue crosses are the accuracy 
rates of 10-fold and 5-fold cross validation tests.
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glycolysis to ArcA, and the other link connects a down-
stream metabolite of glycolysis to ArcA. These degenerate
link sets can guide us to narrow down the true feedback
links by further experiments.

The two inferred links (glucose, ArcA) and (acetyl-CoA,
ArcA) are not directly supported from previous studies.
The main objection is that ArcA is regulated by oxygen but
not metabolites in the central carbon metabolism [26].
We argue the validity of these links from both modeling
and biological perspectives. Two criteria of justifying a
model are its simplicity and predictive power. These two
links are the most "economical" augmentation to explain
the data because many genes differentially expressed in
glucose limitation and acetate supply are bound by ArcA.
More links are required if we consider the feedback con-
trol through other transcription factors. For instance,
some differentially expressed genes in glucose limitation
are not bound by CRP, a standard regulator for glucose
repression. Furthermore, cross validation tests indicate
the models can accurately predict the perturbation
responses. Biologically, the two links may embody indi-
rect mechanisms. Aerobic respiration is elevated by glu-
cose limitation or acetate supply, whereas ArcA is a main
repressor for aerobic respiration enzymes. The influence
of glucose and acetate on aerobic respiration hence may
indirectly modulates ArcA and affects these enzymes.

As shown in Table 3(b), a model encoded with four sim-
ple hypotheses explains the data significantly better than
the model without these hypotheses. However, we found
the explanatory power contributed by each hypothesis
was quite different. While the hypothesis of glucose
repression (hypothesis 4) accounts for a large number of
perturbation responses, hypotheses 1 and 3 have only
moderate and weak explanatory power. Moreover, hypo-
thesis 2 apparently yields contradictions as the maximum
path length becomes longer. The results imply some of
these hypotheses are not valid and more complex "design
rules" exist. For the extremely robust, tightly regulated sys-
tem of central carbon metabolism, there are probably
more sophisticated design rules governing gene regulation
and metabolic reactions. Therefore, it would be desirable
to apply the tests to the data covering a wide range of met-
abolic pathways.

Finally we want to verify the inferred active paths explain-
ing the perturbation responses. Pure metabolic paths con-
necting metabolites or enzymes to fluxes merely restate
the kinetic shifts of metabolic reactions. Mixed paths,
however, are difficult to verify directly. We again justify
these paths from both modeling and biological perspec-
tives. From a modeling perspective, we want to restrict the
path length to limit model complexity and reduce overfit-
ting. Therefore, we tend to use "shortcuts" via the feed-
back links to explain the perturbation responses. On the
other hand, the active paths explaining different types of
perturbation data are highly overlapped. For instance, in
Figures 4 and 6 we use paths containing (glucose, ArcA)
and the links from ArcA to TCA enzymes to explain both
the expression data in glucose limitation and flux data in
pgi knock-out. Similarly, in Figures 5 and 7 we use paths
containing (acetyl-CoA, ArcA) and the links from ArcA to
TCA enzymes to explain both the expression data in ace-
tate supply and flux data in pykA/pykF knock-outs. Using
the same set of mechanistic hypotheses to explain differ-
ent data is desirable from a modeling perspective since it
suggests the model is not tuned to a specific data.

Biologically, the inferred active paths provide insight
about the underlying mechanisms. One interesting exam-
ple is the paths explaining the reduction of TCA fluxes
under pgi knock-out (Figure 6). We used the mixed paths
containing (glucose, ArcA) and (ArcA, TCA enzymes) to
explain the flux changes because they are much shorter
than the pure metabolic paths. The longer metabolic
paths are indeed responsible for these flux changes since a
long cascade of kinetic shifts can occur rapidly. However,
we should not exclude the influence of enzyme gene reg-
ulation in flux changes. As shown in Figures 4, 5, 6, 7,
altering metabolic conditions changes both metabolic
fluxes and enzyme levels. Thus flux changes are likely to
be the composite effects of both kinetic readjustment and

Success rate of retrieving missing links from simulated dataFigure 10
Success rate of retrieving missing links from simu-
lated data. In each trial, two random (metabolite, regulator) 
links are added to the joint network, and their functions are 
randomly assigned. The maximum path length is 6. The feed-
back links are counted as accurately learned if they are 
among the degenerate link sets generated by the algorithm. 
The success rate is the fraction of random trials which accu-
rately learn the feedback links from simulated data. The suc-
cess rate increases as the number of perturbation 
experiments increases.
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gene regulation. Intriguingly, our model indicates the
directions of these two effects are consistent. For example,
blocking the second step of glycolysis (pgi knock-out, Fig-
ure 6) has the opposite effect of reducing the input metab-
olite of glycolysis (glucose limitation, Figure 4). The
metabolic fluxes along the TCA cycle are decreased in pgi
knock-out and the enzyme expressions along the TCA
cycle are up-regulated in glucose limitation. Similarly,
blocking the second last step of glycolysis (pykA/pykF
knock-out, Figure 7) has the opposite effect of increasing
the output metabolite of glycolysis (acetate supply, Figure
5). The metabolic fluxes along the TCA cycle are decreased
in pykA/pykF knock-out and the enzyme expressions
along the TCA cycle are up-regulated in acetate supply.
The agreement between enzyme expression changes and
flux readjustment suggests gene regulation exerts another
layer of control enhancing the kinetic shifts of the meta-
bolic network. This design is sensible from an evolution-
ary perspective since gene regulation is likely evolved to
improve the efficiency of an existing system of biochemi-
cal reactions.

The main contribution of this work is model the coupled
processes of gene regulation and metabolism with a sim-
ple, mechanistic abstraction – paths in the joint network.
The analysis on the data of the central carbon metabolism
provides biological insight about the underlying system.
As a proof-of-concept demonstration we do not expect to
have novel discoveries from this very well-studied system.
We plan to apply the model to less well-known systems
such as the metabolism of human, other bacteria or
archea. We are also aware of various limitations of the
model: the discretized model attributes and data, igno-
rance of the dynamics of gene regulation and biochemical
reactions, simplification of the combinatorial regulation
of multiple transcription factors, and so on. We plan to
overcome these limitations in the extended version of the
model.

Conclusion
We propose a unified modeling framework of integrating
the information of gene regulation and metabolic reac-
tions. We hypothesize the perturbation effects are propa-
gated along paths in the joint network and build a factor
graph model specifying the constraints of using these
paths to explain the perturbation data. The learning algo-
rithm identifies the feedback links between metabolites
and transcription factors, their functions and the active
paths explaining the perturbation data. We also explicitly
test four general hypotheses relating the functions and
regulation of enzymes. By applying the model to the
expression and flux data of the central carbon metabo-
lism, we suspect gene regulation provides another layer of
control to enhance the rebalance of reactions toward the
new steady states. We also show the four simple hypothe-

ses have different explanatory power to fit the data and
suggest more sophisticated design rules may govern the
regulation of the central carbon metabolism.

Methods
Valid paths in the joint network
A path in the joint network represents a series of mecha-
nisms of gene regulation or metabolic reactions. Not all
paths can possibly explain the perturbation data. For
example, a path is irrelevant if it does not connect the per-
turbation source and the effect. We define a valid path as
a plausible mechanism that can possibly explain a pertur-
bation effect. Specifically, we require a valid path satisfies
the following conditions:

1. The source of the path is the perturbed gene/metabolite
and destination is the affected gene/flux.

2. The path does not contain repeated nodes.

3. If multiple paths connect a (perturbation, response)
pair, and one path subsumes the other, then discard the
longer path.

4. The path does not contain repeated edges or (metabo-
lite, flux) edges in the opposite directions.

5. The path does not contain the consecutive edges
(metabolite1, flux), (flux, metabolite2) where
metabolite1 and metabolite2 are at the same side of a
reaction.

6. If multiple paths connect a (perturbation, response)
pair and two paths traverse the same reaction along oppo-
site directions, then only keep the paths in one reaction
direction.

7. Avoid using the paths whose intermediate nodes are
perturbed and the responses of downstream nodes are
insignificant.

8. The path length is not longer than an upper limit.

Condition 1 is obvious. Conditions 2 and 3 are parsimo-
nious. Conditions 4, 5, 6 guarantee the perturbation
effects are not propagated along both directions of the
same reaction. Condition 7 follows the assumption that
each gene or flux along a path responds to the perturba-
tion. Condition 8 restricts the explanatory power of the
model. This restriction is necessary since any (perturba-
tion, response) tuple is likely to be connected by arbitrar-
ily long paths in the joint network.
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Predicting a perturbation response along a valid path
We can predict the perturbation response along a valid
path if the direction of perturbation and the edge signs
along the path are given. Here perturbations and
responses are quantized into three levels {-1, 0, +1}
(decrease, no change, increase). We decompose a path
into regulatory subpaths (consecutive (regulator,
operon), (operon, gene) edges), metabolic subpaths (con-
secutive (enzyme, flux), (flux, metabolite), (metabolite,
flux) edges), and the coupling parts ((metabolite, regula-
tor) edges). The aggregate effect along the regulatory sub-
paths and the coupling parts is the product of the
perturbation direction and the signs of (regulator,
operon), (operon, gene), and (metabolite, regulator)
edges. The aggregate effect along a metabolic subpath is
determined by the functional direction (increase or
decrease) of the perturbation and the causal directions
(whether the direction of the corresponding flux is identi-
cal to or opposite of the "preferred direction" of the reac-
tion) of the first and last reactions along the subpath.
Figure 11 illustrates four cases of the aggregate effect along
a metabolic subpath. Decreasing a metabolite m will
decrease the fluxes of the reactions which take m as an
input. The effect may traverse along (path 1 in Figure 11)
or against (path 2 in Figure 11) the preferred directions of
reactions. Decreasing an enzyme e reduces the outputs
and accumulates the inputs of its catalyzing reaction. The
effects of reducing the outputs (path 3 in Figure 11) and
increasing the inputs (path 4 in Figure 11) are propagated
downstream and upstream respectively. In addition,
because a metabolic flux is defined by a reference direc-
tion (the preferred direction of the reaction), one has to
invert the predicted response when the direction of the
last reaction along the path is the opposite of its reference
direction. By combining these rules we can express the
prediction along a metabolic subpath in the following
form. Denote p the functional direction of the perturba-
tion, f the response of the terminal flux (relative to the
preferred direction), d1 the (causal) direction of the first
reaction along the path (relative to the preferred direc-
tion), and dn the causal direction of the last reaction along
the path. The predicted response is

The predicted response along a mixed path is determined
by sequentially predicting the response of each regulatory,
metabolic and coupling subpath and taking the predicted
response of one subpath as the perturbation of the next
subpath.

A factor graph model over network attributes
To explain a perturbation data we require at least one path
connecting each perturbation source and the response is
active, and predicted responses along active paths are con-
sistent with the actual response. In addition, the regula-
tory activities along the paths should respect the operon
structure. These requirements impose various constraints
on the network attributes. We relax these hard constraints
and express them as a probabilistic graphical model – a
factor graph model [25] – over the network attributes.
Similar modeling techniques have been applied to the
physical network [29], protein-protein interactions [30],
and gene regulation [31]. We model each attribute as a
discrete random variable and introduce the following
notation: X as the collection of all edge presence/absence
attributes which take values in {0, 1}, S as the collection
of all edge sign attributes which take values in {-1, +1},
and A as the collection of all path activity attributes which
take values in {0, 1}. The (unnormalized) joint likelihood
function of a factor graph is the product of "potential
functions", where each potential function represents a
relaxed constraint derived from data and model assump-
tions.
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We build three types of potential functions in the model.
To explain that a gene or a metabolic flux is altered in a
perturbation, we require there exists valid paths to propa-
gate the perturbation effects and the predicted effects
along these paths are consistent with the observed
response. Specifically, a (perturbation, response) pair is
explained by the model if the following conditions hold:

1. Each perturbed source is connected to the response via
at least one valid path.

2. At least one valid path connecting each source to the
response is active.

3. All edges along active paths are present.

4. The prediction of the perturbation effect along each
active path is consistent with the observed response.

Condition 1 sustains by identifying all valid paths con-
necting each (perturbation, response) pair. The predicted
response along a path is determined by the perturbation
and edge signs along the path. Furthermore, the con-
straints of edge presence and edge signs are relaxed if the
path is not active. For a path π, these conditions are
expressed as the following potential function:

where Xπ and Sπ denote the collection of edge presence
and edge signs along π, aπ the activity of path π, p and d
directions of perturbation and response given by the data,
and pred(p, Sπ) denotes the aforementioned prediction of
perturbation p according to edge signs Sπ. It returns 1 – ε
when π is active, all edges are present, and the predicted
response along π is consistent with the observed response,
or when π is not active. It penalizes the attribute values
where π is active but cannot explain the perturbation
effect. When there are multiple perturbation sources (e.g.,
double knock-outs) or multiple paths connecting a (per-
turbation, response) pair, condition 2 requires each per-
turbation source has at at least one active path connecting
to the response. This requirement translates into the fol-
lowing potential functions pertaining to path activities.
Denote (p, d) a tuple of perturbation p and response d,
A1,..., Ak as the activities of paths connecting each source
1,..., k to the response, and A(p,d) = ∪iAi. The potential
function of path activities is

The joint constraint for explaining a perturbation data (p,
d) is the product of φ(p, d) (A(p, d)) and the φπ (Xπ, Sπ, aπ; p,

d) of each path π in the set of valid paths ∏(p, d) connecting
(p, d):

φ(p, d) (X, S, A) penalizes the attribute values where pre-
dicted responses along some active paths contradict with
the actual response or no path from some source to the
response is active. It therefore encodes conditions 1–4 for
explaining a perturbation data.

In addition to the constraints for explaininng perturba-
tion responses, we also require the paths connecting the
same perturbation and containing the same operon are
either all active or all inactive. This constraint translates
into the following potential function. Denote Aop the col-
lection of path activities with this property.

The joint likelihood function is the product of equation 2
for each path, equation 3 for each perturbation response,
and equation 5 for each set of path activities containing
the same operon:

where D is the set of perturbation tuples (p, d), A(p, d) the
activities of valid paths connecting (p, d), and Aop the activ-
ities of paths subject to the same operon constraint.

Inferring the optimal configurations
We want to find the attribute values of the entire model
(MAP configurations) which maximize the joint likeli-
hood function in equation 6. This is a standard inference
problem in graphical models and can be approximately
solved by recursively applying the max-product algorithm
of factor graphs. Details about the max-product algorithm
and a recursive algorithm for finding the optimal configu-
rations can be found in [25] and [29].

Explaining and predicting perturbation data
To evaluate the explanatory power of the model we com-
pare the predicted responses according to the inferred
MAP configurations to the observed perturbation data.
Given a configuration, for each (perturbation, response)
tuple we identify the active paths connecting the tuple
according to the configuration. We then predict the
response along each active path using the procedure
described above. A (perturbation, response) tuple is
explained by a configuration if the predicted responses
along all active paths are identical to the actual response.
A (perturbation, response) tuple is explained by the
model if it is explained by all MAP configurations inferred
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from the model. In contrast, a (perturbation, response)
tuple is contradicted with the model if the model has a
consistent prediction but the consistent prediction is the
opposite of the observed response. We thereby evaluate
the explanatory power of the model by counting the
number of (perturbation, response) tuples explained by
the model minus the number of (perturbation, response)
tuples contradicted with the model.

The same procedure is also used to evaluate the predictive
power of the model in a cross-validation setting. The MAP
configurations are inferred from the training data and we
check whether the predicted responses along all active
paths in each MAP configuration are consistent with the
test data. Different methods of splitting the training and
test data are described in Results.

We apply permutation tests to further justify the signifi-
cance of the model's explanatory power. The perturbation
responses of genes or fluxes in each experiment are ran-
domly permuted. The numbers of permuted (perturba-
tion, response) tuples consistent or contradicted with
model prediction are counted. The p-value of the model's
explanatory power is the fraction of random trials whose
(# explained tuples – # contradicted tuples) exceed the
empirical value.

Identifying the coupling between metabolic and regulatory 
networks
We propose two methods to identify and test the coupling
between gene regulation and metabolic reactions. The
first approach attempts to learn the feedback links
between metabolites and transcription factors from the
perturbation data. We identify those missing links in
terms of their power to explain the perturbation data.
Define the explanatory power of a set of (metabolite, reg-
ulator) links as the number of explained perturbation
responses minus the number of contradicted perturbation
responses of the joint network model with those links.
Our goal is to find the links which maximize the explana-
tory power. We apply a simple method of incrementally
adding (metabolite, regulator) links which maximize the
gain of the explanatory power. Candidate links are the
pairs between all metabolites and all regulators. At each
iteration we find the link which yields the maximum gain
of the explanatory power. When multiple links possess
equal explanatory power, we branch the search process by
creating multiple joint networks, each with one optimal
link added. Edge addition stops when the gain of the
explanatory power is statistically insignificant according
to the permutation test (p > 10-3).

The second approach explicitly tests abstract "design
rules" pertaining to the transcriptional regulation of
enzymes. A general hypothesis is encoded in the model by

adding links from metabolites to enzyme genes and des-
ignating their functions (edge signs). For example, to
encode hypothesis 4 (glucose repression) we add negative
edges from glucose to enzymes in TCA cycle and genes
involved in electron transfer. A factor graph model is then
built on the augmented joint network to explain the per-
turbation data.

Implementation information
We encoded the programs of model inference, search and
validation in C, and ran the programs on a dual-processor
Linux PC (Intel Pentium 4 CPU, 3 GHz, Red Hat Linux
3.4.4, 1 GB memory). The running time for inferring the
optimal configurations given the fixed links or general
hypotheses varies with the maximum path length. For the
maximum path length equal to 6, the running time is less
than 10 seconds. The running time for searching the opti-
mal links among all (metabolite, regulator) pairs with
maximum path length 6 is about 30 minutes. The running
time for leave-one-out, 5-fold or 10-fold cross validation
with maximum path length 6 is about 30 minutes. The
source codes of these programs and the tabulated forms of
the perturbation data are provided in the supplementary
files [see Additional files 15, 16].
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