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Abstract
Background: The identification of a consensus RNA motif often consists in finding a conserved
secondary structure with minimum free energy in an ensemble of aligned sequences. However, an
alignment is often difficult to obtain without prior structural information. Thus the need for tools
to automate this process.

Results: We present an algorithm called Seed to identify all the conserved RNA secondary
structure motifs in a set of unaligned sequences. The search space is defined as the set of all the
secondary structure motifs inducible from a seed sequence. A general-to-specific search allows
finding all the motifs that are conserved. Suffix arrays are used to enumerate efficiently all the
biological palindromes as well as for the matching of RNA secondary structure expressions.

We assessed the ability of this approach to uncover known structures using four datasets. The
enumeration of the motifs relies only on the secondary structure definition and conservation only,
therefore allowing for the independent evaluation of scoring schemes. Twelve simple objective
functions based on free energy were evaluated for their potential to discriminate native folds from
the rest.

Conclusion: Our evaluation shows that 1) support and exclusion constraints are sufficient to
make an exhaustive search of the secondary structure space feasible. 2) The search space induced
from a seed sequence contains known motifs. 3) Simple objective functions, consisting of a
combination of the free energy of matching sequences, can generally identify motifs with high
positive predictive value and sensitivity to known motifs.

Background
The history of molecular biology is punctuated by a series
of discoveries demonstrating the surprising breadth of
biological roles of RNAs. The repertoire of known non-
protein coding RNAs (ncRNAs) has grown rapidly [1]. The
housekeeping roles of RNAs, such as those of tRNA, rRNA,
RNaseP, snRNA and snoRNA, were discovered early.
While in the recent years, it became clear that RNAs also

have important regulatory functions. Examples include
microRNAs, which regulate the expression of protein
genes by targeting a complementary region of their
mRNAs. MicroRNAs constitute one of the most abundant
classes of regulatory molecules, and are key to many
developmental processes [2]. Several discoveries collec-
tively demonstrate that untranslated messenger RNAs can
sense the level of metabolites, and modulate the expres-
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sion of the genes accordingly. Those RNAs are referred to
as RNA sensors and riboswitches, see [3,4] for a review.
Post-transcriptional regulation of gene expression often
involves secondary structure elements located in the
untranslated regions of mRNAs [5]. Through all those dis-
coveries, a new understanding of gene expression regula-
tion is emerging.

Much work has been done on predicting RNA structure
rather than predicting RNA consensus motifs. The most
popular approach to structure prediction is perhaps the
minimum free energy approach pioneered by Zuker [6-8].
Simply, the free energy of an RNA molecule is modeled as
a sum of independent contributions of cycles (so called
nearest neighbour model [9]). Melting experiments are
performed to determine the free energy parameters for
small structures. Since the free energy can be decomposed
into a sum of independent contributions, it can be solved
exactly and efficiently when formulated as a dynamic pro-
gramming problem [6]. Steady progress has been made,
mainly through the determination of more complete and
accurate sets of free energy parameters [8], and the per-
formance of this approach is well known [10]. However,
there are several reasons why free energy minimisation
methods can fail.

• The lowest free energy conformation may not coincide
with the native conformation. This can be due to experi-
mental errors in determining the free energy parameters,
errors due to the extrapolation of the parameters, or sim-
ply because there are numerous lowest free energy confor-
mations, and it can be difficult to distinguish the native
conformation from the others;

• Certain classes of RNA have more than one active struc-
ture. This is the case for several RNA regulatory elements
termed riboswitches [3,4,11];

• The nearest neighbour model does not take into account
the contributions of the cellular environment: proteins,
other RNAs, metabolites and solvent. Such contributions
may be particularly important for modeling regulatory
elements present in the untranslated regions of mRNAs;

• Similarly, RNAs are often modified after their transcrip-
tion, the modifications can play an important role while
folding;

• Higher-order structures, including pseudo-knotted
structures, are often not considered. For some RNAs, the
lowest free energy conformation obtained when neglect-
ing pseudo-knots will be different from that of the native
conformation. However, taking into account pseudo-
knots severely increases the time and space complexity of
the algorithms. Finally, there is also a lack of experimental

data that can be used to deduce the free energy parame-
ters.

The accuracy of RNA secondary structure prediction can
often be increased if a multiple sequence alignment is
used as input; these sequences are assumed to share a
common secondary structure. For example, Hofacker et al.
have incorporated an additional term into the total energy
function for taking into account covariations [12]. This
approach has been implemented in the program RNAali-
fold. The authors have shown that the number of required
input sequences is less than that of traditional covaria-
tions analyses, yet the results are superior to the imple-
mentations based on a single input sequence. Often, an
alignment is not readily available. It could be that the sim-
ilarity of the available sequences is too low to construct a
multiple sequence alignment; consequently, knowledge
about the secondary structure would be required to con-
struct a reliable alignment. Alternatively, the common
motif perhaps only represents a small portion of each
sequence; and it can be discontinuous.

David Sankoff has developed recurrence equations to
simultaneously fold and align RNA sequences [13] (to be
more precise, the work also proposes the reconstruction of
the ancestral sequence on a phylogenetic tree, a "tour de
force"). In principle, the method could be used to align
RNA sequences with low similarity. In practice, its time
and space complexity limits its application. Dynalign is an
implementation of this algorithm for two sequences [14].
It differs from the original proposal in that there are no
substitution costs present in the recurrence equation.
Masoumi and Turcotte recently extended this work for
three input sequences [15,16]. This work has shown that
1) the average positive predictive value (PPV) is improved
when using three input sequences rather than two, 2)
there are fewer low PPV predictions and 3) the sensitivity
is only slightly affected. Together, these two research
projects suggest that using several input sequences can sig-
nificantly improve the PPV of secondary structure predic-
tion methods. However, the prohibitive time and space
complexity of these algorithms limits their application to
sequences that are a few hundreds nucleotides long, and
approximately the same length. Indeed, the time com-
plexity of the algorithm for three input sequences is

(|S1|3M6), where |S1| is the length of the shortest input

sequence and M is the maximum distance between
aligned nucleotides.

As a result, the identification of RNA motifs requires
extensive human examination. This paper presents a new
software system that allows searching exhaustively the


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space of RNA sequence and structure motifs, therefore
assisting the identification and characterisation of consen-
sus structures. Since the algorithm is exhaustive and inde-
pendent of any scoring scheme, it is ideally suited to study
the ability of objective functions to identify native folds.

Results and discussion
Search space
For a given input sequence, the number of valid RNA sec-
ondary structures is extremely large; exponential with
respect to its length [17]. In order to make the search space
more tractable, we adopt a data-driven approach. A seed
sequence serves to induce a search space that is exhaus-
tively explored for finding motifs that also match a signif-
icant fraction of all the input sequences. The search space
is traversed from the most general to the most specific
motif. Whenever a motif is found that is not supported
(does not match the required minimum number of input
sequences) the motif, and its descendants, are pruned
from the search space. Herein, a motif is defined as a col-
lection of one or more stems, where each base pair is
either generic (Watson-Crick or Wobble pair) or specified

(e.g. G:C). No other criteria than support and the validity
of the structures are used to prune the search space.

Algorithm
There can be several sources of noise. Firstly, the assump-
tion that the input sequences are sharing a common struc-
ture has to be true for the majority of the input sequences.
Herein, all the input sequences selected contain exactly
one copy of the consensus structure. However, in general
the possibility that certain sequences have been errone-
ously included in the input cannot be excluded. Secondly,
the input perhaps consists of more than one fold family.
Thirdly, some of the sequences could adopt a less con-
served structure, which to be found would require relax-
ing the parameters of the algorithm up to a point where it
becomes impractical. Hence, a user-defined level of noise
is tolerated. The support is defined as the fraction of the
input sequences containing a given motif; in the experi-
ments presented here, we set the support to 70%. The
main steps of the algorithm are as follows.

1. Select a seed sequence;

2. Construct the most specific motif;

3. General-to-specific search of the motif space;

4. Report the motifs.

By default, the first sequence (index 0) is used as the seed
sequence. The software system provides an option to
select a specific sequence as the seed sequence. Valid val-
ues are integers in the range 0 ... k - 1, where k is the
number of input sequences. Selecting the shortest
sequence should reduce the size of the search space, and
consequently the execution time.

Most specific motif
The search space is induced from a seed sequence that has
been selected in the first step of the algorithm. The
method is described using suffix trees, however, the
implementation uses suffix arrays, see Methods for further
implementation details. For the exposition of the basic
algorithm below, let S be the seed sequence and SR be the
reverse complement of S.

1. Construct a generalised suffix tree for S and SR;

2. For every starting position i = 1 ... n in S;

2.1. For every starting position j in S, such that i + C<j≤i +
L;

2.1.1. Find the lowest common ancestor of i and j', where
j' = |S| - j + 1 is the corresponding index in SR;

Sequence instantiation processFigure 1
Sequence instantiation process. Schematic illustration of 
the sequence instantiation process. Open circles correspond 
to generic base pairs, N:N', while the filled circles represent 
specific base pair, A:U, U:A, C:G, G:C, G:U and U:G.
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2.1.2. If the length of the complementary region is larger
than some user-defined value then save this stem.

where C and L are user-defined constraints specifying the
minimum and maximum distance between the 5' end and
the 3' end of a stem. The basic algorithm is extended in
two ways. First, up to e mismatches per stem are allowed.
This involves adding an inner loop, executed e times. This
increases the time complexity by a factor e. The second
extension allows for up to m wobble base pairs (G:U);
which are handled in a similar way as mismatches. The
location of each stem is recorded to be used in the later
stages of the algorithms. By using suffix arrays and range
minimum query, the stems are enumerated in (n +
emLn) time. Similar ideas have been proposed by Gusfield
[18], for suffix trees only.

General-to-specific search
The search algorithm consists of three distinct phases: ini-
tialisation, instantiation and composition. During the
first phase, the algorithm initialises a queue of open nodes
to contain structural motifs (see below). The motifs have
been derived from the selected seed sequence. Only the
motifs that have a minimum support, i.e. that also match
other sequences from the input set, are part of the queue.
Structural motifs have no base pair instantiated.

In the second phase, all the possible sequence instantia-
tions for every motif of the open queue are considered.
Systematically and exhaustively, all the base pairs of every
stem motif in the open queue are replaced by the actual
base pair that occurs in the seed sequence. This informa-
tion is readily available since the location of every stem
within the seed sequence has been saved. Each newly cre-
ated instance is matched against the remaining sequences.
Only the motifs that have a minimum level of support are
added at the rear of the queue. Figure 1 illustrates this
process for a single stem. Progressively, all the possible

instantiations are validated. This is done systematically so
that the same instantiation is never considered twice. This
behaviour is controlled using the parameter
max_fixed_pos. Setting max_fixed_pos to 0 eliminates
sequence motifs from the search space. At the end of the
second phase, the open queue contains a mixture of struc-
tural, partially and fully instantiated motifs, all consisting
of a single stem segment. Finally, the third phase consists
of creating multi-stems motifs by selecting and compos-
ing two motifs at a time from the open queue. The com-
position of two motifs is dictated by their occurrence
within the seed sequence. Given two motifs, there are two
possible relationships. One motif follows the other or one
motif is nested within the other. The seed sequence is used
to determine which relationship to use and to calculate
the distances. This process creates helices with bulges and
interior loops as well as multi-branch structures. Motifs
that are structurally invalid (because they overlap in the
sequence space) or that do not have the required mini-
mum support are discarded. The open queue now con-
tains a mixture of single and multi-stems motifs, that are
structural, partially or fully instantiated.

Example of the execution of Seed
The algorithm consists of three main steps: the selection
of the seed sequence, the construction of the most specific
motif, and the general-to-specific search of the motif
space. To illustrate the execution of Seed, we use the tRNA
dataset. In the first step, the software system selects a seed



Second step of the Seed algorithmFigure 3
Second step of the Seed algorithm. Schematic illustra-
tion of the execution of the second step of the algorithm. (a) 
Construction of all the stems inducible from the seed 
sequence. (b) Instantiation process of a structural motif.

GCGACCGGGGCTGGCTTGGTAATGGTACTCCCCTGTCACGGGAGAGAATGTGGGTTCAAATCCCATCGGTCGCGCCA
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(((.....................................................................)))
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
((((((((.........................................................))))))))
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(((.............................................)))

...

NNNNNNNNNNNNNNNNN
(((...........)))

NNNNNNNNNNN
(((.....)))

(a) Construction of all the stems inducible from the seed sequence.

GCGACCGGGGCTGGCTTGGTAATGGTACTCCCCCGCCACGGGAGAGAATGTGGGTTCAAATCCCATCGGTCGCGCCA
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(((..............................)))
NNGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNN
(((..............................)))
NCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGN
(((..............................)))
GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNC
(((..............................)))
GCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGC
(((..............................)))

...

(b) Instantiation process of a structural motif.

First step of the Seed algorithmFigure 2
First step of the Seed algorithm. Schematic illustration 
of the execution of the first step of the algorithm. In this 
example there are seven input sequences and RD0260 has 
been selected to be the seed sequence.

>RD0260 (*)
GCGACCGGGGCTGGCTTGGTAATGGTACTCCCCTGTCACGGGAGAGAATGTGGGTTCAAATCCCATCGGTCGCGCCA
>RD0500
GCCCGGGTGGTGTAGTGGCCCATCATACGACCCTGTCACGGTCGTGACGCGGGTTCAAATCCCGCCTCGGGCGCCA
>RD1140
GGCCCCATAGCGAAGTTGGTTATCGCGCCTCCCTGTCACGGAGGAGATCACGGGTTCGAGTCCCGTTGGGGTCGCCA
>RD2640
GGGATTGTAGTTCAATTGGTCAGAGCACCGCCCTGTCAAGGCGGAAGATGCGGGTTCGAGCCCCGTCAGTCCCGCCA
>RE2140
GCCCCCATCGTCTAGAGGCCTAGGACACCTCCCTTTCACGGAGGCGACAGGGATTCGAATTCCCTTGGGGGTACCA
>RE6781
TCCGTCGTAGTCTAGGTGGTTAGGATACTCGGCTCTCACCCGAGAGACCCGGGTTCGAGTCCCGGCGACGGAACCA
>RF6320
GTCGCAATGGTGTAGTTGGGAGCATGACAGACTGAAGATCTGTTGGTCATCGGTTCGATCCCGGTTTGTGACACCA
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sequence. The default is to select the first sequence (index
0), see Figure 2. The selected sequence is used for con-
structing a set of building blocks that will be combined in
the third step of the algorithm to produce complex motifs.
First, all the complementary regions are enumerated, see
Figure 3(a). Next, each complementary region is used to
create specific motifs containing one or more base pairs
with known identity, see Figure 3(b). Each time a new
motif is created, Seed matches it against the remaining (k
- 1) sequences. A motif is saved, and will be used to create
more complex motifs, only if its support is sufficient.
Finally, the third step of the algorithm is the general-to-
specific search of the motif space. Elements of the open
queue are combined with motifs created in the second
step. Elements are combined using information from the
seed sequence. These elements can be nested or adjacent
in the seed sequence, see Figures 4(a) and 4(b). Again, a
motif is saved, and will be used to create more complex
motifs, only if its support is sufficient.

Secondary structure expression matcher
For all three phases of the search algorithm, the newly cre-
ated motifs are matched against all the input sequences, in
order to determine their level of support.

Since the motifs are repeatedly matched against a fixed set
of sequences, it is advantageous to pre-process the input
sequences to speed-up the matching operations. We intro-
duce an algorithm for matching secondary structure
expressions. The basic idea is to "thread" a secondary
structure expression onto the suffix tree (suffix array) of
the input sequences. This means simultaneously travers-
ing the expression, from its 5' end, and the suffix tree,
starting from its root.

The main steps of this algorithm are as follows. First, build
a suffix tree for each input sequence (or build a general-
ised suffix tree). Then, match the characters of the second-
ary structure expression along the unique path in the
suffix tree until either 1) the end of the secondary struc-
ture expression is reached, 2) the end of a branch is
reached, 3) a mismatch is found, or 4) the secondary
structure expression contains a joker (don't care symbol,
any base type should be allowed).

In the former case, every leaf of the subtree below the last
match represents the starting location of an occurrence.
For cases 2 and 3, this is a failure and the algorithm must
restart from the last branch point (see below), if there are
no more branch points, this means the expression does
not occur in the input sequence.

Case 4, there are three situations to consider: the joker
occurs in a loop region, the joker occurs in the 5' end
region of a stem, or it occurs in the 3' end region of a stem.

First, let us assume that the matching character was found
along an edge of the tree but it was not the last letter of the
label of that edge (the case of the last letter of an edge will
be dealt with separately). The first situation is easy to han-
dle; the next character along this path is accepted. Second
situation, a joker has been found in a 5' end region of a
stem. The algorithm accepts the next symbol along the
current path, and pushes that symbol onto a stack. Next
and third situation, a joker is encountered in a 3' end
region of a stem, the top of the stack contains the base that
occurred at the 5' position of the pair, if the next character
along the current path inside the tree is its complement
then the top element of the stack is discarded and the
algorithm continues, otherwise this is a failure and the
algorithm restarts from an earlier branch point, or stops,
indicating a failure. Whenever the algorithm backtracks to
this point, it pushes back the discarded element onto the
stack. When the end of a secondary structure expression is
reached (case 1) the stack must also be empty, otherwise,
the expression is not valid.

Finally, whenever a joker is found and the previous match
occurred at the end of a label, the algorithm has now
reached an internal node of the suffix tree. All the outgo-
ing edges of this internal node represent all the different
ways to continue matching the expression. The algorithm
is therefore applied recursively for all the outgoing edges.
The system stack serves to memorise all these branch
points.

The algorithm can answer two specific questions: 1) does
this secondary structure expression occur in this input
string? 2) how many occurrences of this expression are
there? For the decision question, the algorithm stops

Third step of the Seed algorithmFigure 4
Third step of the Seed algorithm. Schematic illustration 
of the execution of the third step of the algorithm. (a) Com-
position using nested motifs. (b) Composition using adjacent 
motifs.

GCGACCGGGGCTGGCTTGGTAATGGTACTCCCCTGTCACGGGAGAGAATGTGGGTTCAAATCCCATCGGTCGCGCCA
GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNC
(((.......................................)))

+
NNNTNNNNNNNNGNNN
(((((......)))))

=
GNNNNNNNTNNNNNNNNGNNNNNNNNNNNNNNNNNNNNNNNNNNC
(((..(((((......))))).....................)))

(a) Composition using nested motifs.

GCGACCGGGGCTGGCTTGGTAATGGTACTCCCCTGTCACGGGAGAGAATGTGGGTTCAAATCCCATCGGTCGCGCCA
CNTNNNNNGNG
(((.....)))

+
GNNTNNNNGNNC
((((....))))

=
CNTNNNNNGNGNNNGNNTNNNNGNNC
(((.....)))...((((....))))

(b) Composition using adjacent motifs.
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whenever the end of the secondary structure expression is
found. For the latter question, all the remaining branch
points must be explored, and all the leaves of the subtree
below the node where the last character of the expression
was matched must be visited in order to count the number
of occurrences, or simply to report them.

Evaluation
Seed is a framework for finding conserved RNA motifs in
a set of unaligned sequences. As such, it allows for the
independent study of functions for ranking the motifs a
posteriori.

Information content has often been used in the context of
sequence pattern discovery. Accordingly, we include a
function, TInfo, consisting of the sum of the information
content contributions from unpaired and paired regions.
Shannon uncertainty (H) is calculated for each loop posi-
tion and is subtracted from the maximum uncertainty
possible, to give the information content (in bits). H = -
∑Pilog2 Pi summed over each base pair (i = A, U/T, G, C),
where the observed nucleotide frequencies of each base i
from the input sequences is used to estimate Pi. A nucle-
otide in a stem is base paired to its partner, which
increases the information content relative to an unpaired
nucleotide in a loop. The resulting loop and stem infor-
mation contents are added to calculate the total informa-
tion content.

Work on simultaneous alignment and structure predic-
tion of RNA sequences [14-16] suggests that a (linear)
combination of the free energy of multiple input
sequences, when folded onto a common structure, can
help circumvent limitations of the nearest neighbour
model, and effectively identify native structures. We con-
sider here several simple functions combining the free
energy of all or some of the matches of a given motif.
These functions are: TLeft, NTLeft, TFirst, NTFirst, TSum,
NTSum, TBest, NTBest, TWorst, NTWorst, TAvg and NTAvg.

Each motif matches at least min_support × k sequences,
and up to k sequences, by construction. Certain motifs
will occur more than once in a given sequence. Thus, there
are several ways to calculate the free energy score for a
given motif and set of matches. Furthermore, the second-
ary structure expression matcher, which we developed for
this work, traverses the suffix array of the input sequences,
rather than the input sequences themselves. Conse-
quently, the matches are reported in lexicographic order.
The execution time can be slightly reduced by taking into
account the free energy of the first reported match, rather
than finding the best or leftmost one.

For a given motif, TLeft is the sum of the free energy of its
leftmost occurrence in each sequence. TFirst has a slightly
different definition. TFirst is the sum of the free energy of
the first occurrence reported by the matcher in each
sequence. This function was considered since it can
slightly reduce the execution time. TSum is the sum of the
free energy of all the occurrences in all the matching
sequences. TBest is the sum of the lowest free energy
match in each sequence. TAvg is the sum of the average
free energy of all the matches per sequence. TWorst is the
sum of the highest free energy match from each sequence.
Finally, normalised variants of these scores are obtained
by dividing each score by the number of matched
sequences or total number of matches for TSum; the
resulting scores are noted with the letter N followed by the
name of the base score.

We used two criteria to compare the scoring functions. We
measured the correlation coefficient for each function
against the Matthews Correlation Coefficient (MCC, see
Methods for a definition of these performance measures).
Clearly, a perfectly correlated function would allow select-
ing the consensus structure with the best MCC. However,
since the primary objective of the scoring functions is to
order the consensus structures from best to worst, rather
than modeling the free energy, we also used the ranking-
based evaluation measures recently proposed by Rosset et

Table 1: Runtime statistics. Details of the execution of Seed for all the 6 experiments showing the total number of motifs discovered 
(Motifs), the total number of structurally distinct motifs (Distinct), the number of matches made (Matches), the space and time taken 
for each run. The run time is composed of 1) construction of tree, 2) motif generation (search space) and 3) general to specific search 
of search space. Length shows the minimum and maximum length of the sequences in the corresponding dataset. Suffix of 01 and 02 
indicate a different setup used on the same dataset. Finally, Sequences shows the number of sequences present in the dataset. These 
experiments were carried out on a Sun Fire V20z computer, 2 processor server, AMD Opteron 248 (2.2 GHz), 8 Gigabytes, Solaris 9, 
a single processor was used.

Id Sequences Length Motifs Distinct Matches Space Time

HSL3 01 28 51–1,955 65 2 2,016 1.83 Mbytes < 1 s
IRE 01 14 58–2,188 32 29 42,462 0.39 Mbytes 5 s
HSL3 02 28 51–1,955 357 232 1,945,328 1.37 Mbytes 5 m 21 s
IRE 02 14 58–2,188 110 102 167,076 0.46 Mbytes 25 s
tRNA 7 76–77 5,518 2,010 3,407,012 9.40 Mbytes 6 m 11 s
5S 7 117–120 364,505 24,645 152,741,463 0.52 Gbytes 7 h 40 m
Page 6 of 15
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al. [19]. The ranking statistics describe the relationship
between scoring functions and the MCC performance
measure. Each consensus structure is sorted in increasing
order of energy scores (decreasing for information con-
tent) and assigned unique ranks. For each pair of motif
making an incorrect ordering of MCC, the weighted differ-
ence of their ranks is calculated. This is then transformed
into the range [-1,1].

Table 3 presents the results for all six experiments. The

weighted ( ) rankings are very similar for all the objec-

tive functions studied;  varies from -1 to 1, where a -1

score signifies an anti-correlation while +1 means a per-
fect positive correlation. It is interesting to note that the

objective function having the highest  value is NTFirst.

This function is the fastest to compute since the matcher
stops after locating the first occurrence of the motif in
each input sequence. The first occurrence is also the one
that comes first in lexicographic order. Thus, these occur-
rences are perhaps more similar in terms of sequence. This
is consistent with the observation that a linear combina-
tion of the free energy of matches and the information
content outperforms either of these two scores alone (data
not shown). The other objective functions are biased
toward finding the leftmost, largest number of occur-
rences, best or worst free energy matches. The bias of
NTFirst is perhaps more difficult to rationalise. However,

since NTFirst is fast to compute and has the highest 

value, it has been used for the analysis of the results for all
six experiments.

Experiments
We present the results of six experiments: HSL3 01, IRE
01, HSL3 02, IRE 02, tRNA and 5S. See Table 1 for the sta-

tistics, and Methods section for the description of the
datasets used. The first four tests were designed to evaluate
the suitability of this approach to identify automatically
conserved stem-loop structures. While the last two sets
were created to study the performance of the method on
more complex secondary structures.

The first dataset consists of 28 3' UTR histone mRNAs that
are known to contain a six base stem and four base loop
structure. This stem-loop structure plays several roles,
including enhancing the translation of histone mRNAs
[20].

In the first experiment, HSL3 01, strict parameters were
used to verify the presence of native folds in the search
space. More precisely, we searched for a consensus struc-
ture containing exactly one stem segment made of at least
six base pairs. The maximum distance for any two nucle-
otides involved in a base pair was set to 30. With these
options, Seed finds two distinct structural motifs. Since all
the base pair instantiations are also considered, the total
number of motifs is 65, see Table 1. All but four have a
Matthews correlation coefficient score of 100%, i.e. both
PPV and sensitivity are 100%.

The relationship between the information content (TInfo)
and the performance index for this experiment is charac-
teristic of the other experiments as well. Motifs with a high
information content also have good PPV and sensitivity,
see Figure 5. However, there are low information content
motifs that have high PPV and sensitivity. The highest cor-
relation is observed for NTLeft, see Table 2. For all twelve
functions, the "best" scoring motif also has the best PPV
and sensitivity. The average number of matches per motif
per sequence varies from 1 to 5, with an average of 1.2
matches per sequence.

ρ̂

ρ̂

ρ̂

ρ̂

Table 2: Correlation results. For each column, the numbers represent the correlation coefficient with the average Matthews 
Correlation Coefficient. Bold values correspond to the highest correlation with MCC.

Score HSL3 01 HSL3 02 IRE 01 IRE 02 tRNA 5S Average

TInfo 0.337 0.849 0.681 0.723 0.663 0.519 0.629
TAvg -0.868 -0.964 -0.857 -0.626 -0.792 -0.680 -0.798
TBest -0.385 -0.960 -0.869 -0.608 -0.829 -0.755 -0.734
TFirst -0.465 -0.970 -0.891 -0.673 -0.827 -0.743 -0.762
TLeft -0.529 -0.970 -0.869 -0.638 -0.831 -0.744 -0.764
TSum -0.483 -0.950 -0.840 -0.656 -0.785 -0.764 -0.746
TWorst -0.561 -0.973 -0.880 -0.661 -0.825 -0.735 -0.773
NTAvg -0.450 -0.973 -0.836 -0.644 -0.797 -0.679 -0.730
NTBest -0.879 -0.966 -0.857 -0.610 -0.830 -0.754 -0.816
NTFirst -0.776 -0.974 -0.887 -0.682 -0.830 -0.743 -0.815
NTLeft -0.959 -0.976 -0.860 -0.647 -0.834 -0.744 -0.837
NTSum -0.865 -0.948 -0.841 -0.663 -0.784 -0.757 -0.810
NTWorst -0.740 -0.978 -0.880 -0.685 -0.828 -0.734 -0.808
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The second dataset consists of 14 5' UTR sequences that
are known to contain an IRE motif. In this experiment
(IRE 01), we searched for a structure consisting of one or
two segments of at least three base pairs each; notice that
one or two stem-loop structures could be formed with
these options. The maximum distance for the nucleotides
of a base pair was set to 30. A total of 32 motifs were
found, see Table 1, three of which have 100% PPV and
more than 90% sensitivity. The number of matches per
sequence varies from 1.1 to 3.9, with an average number
of 1.9 matches per sequence. TFirst is the scoring function

with the best correlation to MCC. Figure 6 illustrates the
separation of native folds from the rest achieved using
NTFirst for this experiment.

Next, we reran the first two experiments with less restric-
tive parameters, suitable for finding stem-loop structures
in general. In particular, no restrictions were imposed for
the maximum number of segments that could be used to
form a motif, except that the maximum distance for the
elements of a pair should be 30 nucleotides. A total of 357
motifs were found for the HSL3 dataset, see HSL3 02 in
Table 1. Nearly one third of the conserved motifs have a
PPV of 100%. NTWorst has the best correlation to MCC;
all the correlation scores are -0.95 or better. For this exper-
iment, the free energy scores are particularly effective for
separating the high PPV/sensitivity motifs from the rest,
see Figure 7.

Similarly, the IRE experiment (IRE 02) was carried out
relaxing the parameters. No restrictions were imposed on
the maximum number of segments, the minimum size of
the segments was three base pairs, and the maximum dis-
tance between the elements of a base pair was set to 30. A
total of 110 motifs were found, see Table 1. Of the scoring
schemes based on free energy, NTWorst has the best corre-
lation to MCC. However, the magnitude of the correlation
for the TInfo score is higher than that of NTWorst. The
structural motifs with the highest MCC score rank first
using NTFirst, see Figure 8.

We also studied structures that are more complex. The
next dataset consists of 7 tRNA sequences representing
diverse levels of difficulties for MFOLD, see Table 4. In
order to discover multiple stem structures, we placed no
restrictions on the maximum distance between elements

Performance diagrams for the HSL3 01 experimentFigure 5
Performance diagrams for the HSL3 01 experiment. 
TInfo (top), NTFirst (bottom) scores against the PPV, sensitiv-
ity and Matthews Correlation Coefficient for the HSL3 data-
set. Each data point represents the predicted rank (according 
to TInfo and NTFirst respectively) and average performance 
index (PPV, sensitivity or MCC) for a consensus structure. 
For better visualisation, random noise was introduced so 
that the data points do not overlap.
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Table 3: Rank statistics. Ranking statistics  for the objective functions for all six experiments. MCC has been used as the response 

variable. Bold values indicate the highest value of ranking statistics.

Score HSL3 01 HSL3 02 IRE 01 IRE 02 tRNA 5S Average

TInfo 0.99392 0.75403 0.74010 0.50895 0.68576 0.46454 0.69122
TAvg 1.0 0.91768 0.93878 0.70182 0.84418 0.66779 0.84504
TBest 0.95940 0.92308 0.94978 0.71150 0.87339 0.74767 0.86080
TFirst 0.97946 0.89990 0.93072 0.77785 0.87396 0.73486 0.86613
TLeft 0.95940 0.91821 0.88710 0.72931 0.87673 0.73630 0.85118
TSum 0.96206 0.86379 0.89809 0.74273 0.85686 0.76647 0.84833
TWorst 0.99790 0.90865 0.89919 0.72699 0.87211 0.72388 0.85479
NTInfo 0.97487 0.56468 0.58651 0.32658 0.60901 0.45417 0.58597
NTAvg 0.97692 0.92258 0.92595 0.71508 0.84540 0.66690 0.84214
NTBest 1.0 0.92592 0.93878 0.71489 0.87308 0.74639 0.86651
NTFirst 0.99939 0.90302 0.92375 0.78037 0.87416 0.73371 0.86907
NTLeft 1.0 0.92229 0.88453 0.75067 0.87686 0.73515 0.86158
NTSum 0.99843 0.90842 0.94318 0.74071 0.87643 0.73789 0.86751
NTWorst 0.99825 0.91239 0.85887 0.75025 0.87272 0.72281 0.85255

ρ̂
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of a base pair. Also, the length of the unpaired regions in
matched sequences was allowed to vary by one nucleotide
for added flexibility. The size of the output was reduced by
reporting only the motifs consisting of three or more seg-
ments (complementary regions). A total of 5,518 motifs
were found. NTLeft gave the highest correlation to MCC (-
0.834). The tRNA structures have been used as a bench-
mark for the development of minimum free energy meth-
ods. Perhaps the free energy models are particularly
proficient for this class of RNAs. Indeed, it is interesting to
observe the high degree of correlation of NTFirst to MCC,
particularly for the left tail of the distribution, see Figure
9, 10. The motif with the highest NTFirst score has 16 base
pairs, 100% PPV, 76.2% sensitivity. It matches 5 of the 7
input sequences. Figure 11 shows the lowest free energy
motifs.

The last experiment was carried out on 7 5S ribosomal
RNA sequences. The sequences represent diverse levels of
difficulty for MFOLD, see Table 5. The same options as
above (tRNA experiment) were used. A total of 364,505
consensus motifs were found representing 24,645 distinct
structures. The maximum sensitivity achieved is much
lower than for the previous experiments. TSum has the
highest correlation to MCC. Better correlation scores are
observed when focusing on motifs consisting of 15 or
more base pairs. The correlation scores between TSum
and AvgPPV, AvgSensitivity and AvgMCC are -0.783, -
0.838 and -0.823, respectively. The PPV of the "best"
motif according to NTFirst is high, on average 85%. How-
ever, there are many motifs with high PPV, 100%, for the
intermediate NTFirst values.

For comparison, we ran RNAProfile (version 2.2) on the
same four datasets. This is a recently developed algorithm

for finding conserved secondary structure motifs in una-
ligned RNA sequences [21]. Several experiments were ran,
varying in small increments the region parameters (mini-
mum l, and maximum L). The number of hairpins (H)
sought was also specified. The combinations of (parame-
ters) values producing the best performance were used for
comparison (HSL3: H = 1, l = 16, L = 30; IRE: H = 1, l =
20, L = 40; tRNA: H = 3, l = 60, L = 78; 5S: H = 2, l = 90, L
= 120). The number of profiles kept at each step was 100.
The number of profiles reported were HSL3 = 100, IRE =
86, tRNA = 45 and 5S = 71.

On the HSL3 data set, both algorithms identified motifs
with 100% PPV and sensitivity. In case of IRE, the per-
formance of both systems were comparable. Specifically,
the PPV/sensitivity of the structures predicted by RNAPro-
file ranged from 71.4–100/62.5–100%, excluding one
prediction which had no true positives. The motif pre-
dicted by Seed matched 10 out of 13 sequences with PPV/
sensitivity ranging from 100–100/80–100%. In case of
complex structures, tRNA and 5S, Seed outperformed
RNAProfile in terms of PPV. For the tRNA data set, the
PPV/sensitivity range for RNAProfile and Seed were found
to be 25–100/23.8–90.5% and 100–100/76.2–76.2%,
respectively. RNAProfile failed to predict the overall Y
shape of the 5S RNAs. The minimum and maximum PPV/
sensitivity of motifs predicted by RNAProfile was found to
be 0–79.3/0–60.5% whereas by Seed it is 77.3–86.4/
44.7–50%.

For all six experiments, the diagrams, correlation coeffi-
cients and ranking statistics support the use of free energy
for ranking consensus motifs. Top-ranked motifs gener-
ally correspond to high PPV/sensitivity motifs while bot-
tom-ranked motifs correspond to low PPV/sensitivity

Table 4: The tRNA dataset. Base pairs from the top-ranked (NTFirst) motif were used as structural constraints for MFOLD. The table 
presents the PPV and sensitivity for the application of MFOLD alone as well as the combined approach onto the tRNA dataset. The 
number in between parentheses represents the number of sub-optimal structures reported with similar performance measures.

Id Method % PPV % Sensitivity

RD0260 MFOLD (2) 28.6–29.2 28.6–33.3
MFOLD (1) 66.7 57.1
MFOLD (1) 57.1 57.1
Seed NTFirst + MFOLD 100.0 100.0

RD1140 MFOLD (1) 100.0 100.0
Seed NTFirst + MFOLD 100.0 100.0

RD2640 MFOLD (1) 63.6 66.7
MFOLD (2) 18.2 19.0
Seed NTFirst + MFOLD 100.0 100.0

RE2140 MFOLD (1) 87.0 95.2
MFOLD (1) 69.6 76.2
Seed NTFirst + MFOLD 91.3 100.0

RE6781 MFOLD (4) 28.0–31.8 33.3
Seed NTFirst + MFOLD 100.0 100.0
Page 9 of 15
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motifs. The diagrams suggest that motifs with positive free
energy can be eliminated from the search space.

Conclusion
We developed a combinatorial algorithm for the detection
of consensus RNA secondary structure motifs in a set of
unaligned sequences. Our algorithm compares favourably
to existing tools, such as RNAProfile. Its ability to scale
and predict more complex structures looks promising. To
our knowledge, this is the first algorithm that directly
attempts to exhaustively explore the space of sequence
and structure motifs using suffix arrays.

One of our research objectives has been to determine if
support and exclusion constraints are sufficient to make
an exhaustive search feasible. The six experiments pre-
sented here indicate that 1) such search under constraints
is feasible and that 2) the search space contains structures
with high PPV/sensitivity. Indeed, most experiments com-
pleted in minutes using megabytes of memory on a small
computer server. The search space contains motifs with
high PPV, often 100%. For small motifs, such as HSL3 and
IRE, the sensitivity is also high, often 100%.

We also evaluated several simple functions for ranking the
motifs. For single stem structures, HSL3 and IRE datasets,
motifs with high information content were also found to
have high PPV and sensitivity. However, the performance
of TInfo decreases as the complexity of the motifs sought
increases. Overall, the free energy based ranking functions

Table 5: The 5S rRNA dataset. Base pairs from the top-ranked (NTFirst) motif were used as structural constraints for MFOLD. The 
table presents the PPV and sensitivity for the application of MFOLD alone as well as the combined approach onto the 5S rRNA 
dataset. Two setups were used for the combined approach. First, the top-ranked motif, according to NTFirst, was used. Second, a high 
PPV motif was selected to illustrate the expected benefit for the combined approach. Numbers in between parentheses indicate the 
number of sub-optimal structures reported with similar performance measures.

Id Method % PPV % Sensitivity

V00336 MFOLD (2) 25.0 25.6–26.3
Seed NTFirst + MFOLD 81.1 75.0
Seed Best PPV + MFOLD 62.5 67.6
Seed Best PPV + MFOLD 92.5 100.0

X02627 MFOLD (1) 30.8 32.4
MFOLD (1) 84.6 89.2
Seed NTFirst + MFOLD 75.7 71.8
Seed Best PPV + MFOLD 89.7 89.7

X04585 MFOLD (1) 23.7 25.0
MFOLD (11) 18.4 20.0–23.3
Seed NTFirst + MFOLD 60.0 55.3
Seed Best PPV + MFOLD 73.7 77.8

AJ251080 MFOLD (1) 65.8 73.5
MFOLD (1) 60.5 65.7
MFOLD (2) 42.1 42.1–43.2
MFOLD (1) 55.3 67.7
Seed NTFirst + MFOLD 66.7 63.2
Seed Best PPV+ MFOLD 71.1 75.0
Seed Best PPV + MFOLD 65.8 67.6

M25591 MFOLD (1) 71.1 77.1
MFOLD (2) 42.1 43.2–44.4
MFOLD (1) 60.5 71.9
Seed NTFirst + MFOLD 70.6 63.2
Seed Best PPV + MFOLD 76.3 78.4

Performance diagrams for the IRE 01 experimentFigure 6
Performance diagrams for the IRE 01 experiment. 
TInfo (top) NTFirst (bottom) scores against the PPV, sensitiv-
ity and Matthews Correlation Coefficient for the IRE dataset.
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performed better, the average weighted ranking ( ) of

NTFirst is 0.87, compared to 0.69 for TInfo.

With the free energy based functions, lowest free energy
scoring motifs have a high PPV/sensitivity while highest
scoring motifs have a low PPV/sensitivity. The functions
display good correlation to PPV and sensitivity; the corre-
lation to sensitivity is generally higher than to PPV. The
ability of all the functions to rank the motifs is good, with

 ranging from 0.84 to 0.87. For 5 out of 6 experiments,

the top ranked motif has the highest Matthews correlation
coefficient.

The use of homologous sequences has been shown to
help circumvent limitations of the nearest neighbour
model and improve the performance of RNA secondary
structure prediction methods [14]. However, the time and
space complexity of these approaches limits their applica-
tion to at most three sequences [15,16]. Furthermore, the
distance constraint M that makes these algorithms practi-
cal prevents them from finding conserved local structures.
Consensus motifs offer an alternative approach taking
advantage of available homologous sequences. Unlike ab
initio methods, consensus approaches can potentially
scale beyond three sequences and have the ability to
uncover locally conserved motifs.

Consensus motifs can be used to define structural con-
straints that can be given as input to an ab initio method.
To investigate this claim, the base pairs of the best NTFirst
motif were used as input constraints for MFOLD, which
was ran on all the sequences matching that motif. For
tRNA, we observed an increase in PPV/sensitivity from
69.8/70.5 to 98.3/100.0%, see Table 4. For 5S, the PPV/
sensitivity rose from 54.0/58.0 to 70.8/65.7%, see Table 5.
For tRNA and 5S rRNA datasets, the structural constraints
successfully eliminated some of the bad minima that pre-
vented MFOLD from finding high PPV/sensitivity struc-
tures. The combined approach considerably increases the

sensitivity of the prediction compared to predictions by
Seed alone. For such applications, ranking functions
should favour high PPV rather that sensitivity. This is illus-
trated with this last experiment where a high PPV motif
was used for setting structural constraints. For the 5S data-
set, the PPV/sensitivity rose to 81.0/84.2%.

Seed is designed to tolerate outlier sequences. However, if
an outlier sequence is selected as the seed, this approach
will fail to detect a consensus structure. Currently, the user
should run the algorithm with different seed sequences
and check the consistency of the results. Our research is
moving in the direction of adding an outer loop to the
algorithm automating this process.

Other future works on this project include developing
new objective functions, taking into account insertions/
deletions and the number of predicted base pairs, for
example, to improve the discrimination of native folds. In
all our tests, a linear combination of a free energy score
and information content outperforms either of these two
scores alone. This is consistent with the fact that NTFirst
was found to be the best scoring function. Indeed, since
NTFirst selects the motifs that come first in lexicographic
order, those motifs are also expected to have similar
sequences. Once the objective functions have been
improved, they will be used to implement pruning rules
to reduce the execution time.

Seed has the ability to predict consensus secondary struc-
tures and sequence motifs. Scoring functions based on
information content will rank such motifs higher than
those containing structural information only. Also,
generic motifs are more likely to produce multiple
matches for each sequence. The motifs with base pair
identities will eliminate some of the matches. In this
study, we have not evaluated sequence motifs. This is
because 1) the information is not readily available for all
the datasets and 2) Seed currently discovers sequence
motifs for stem regions only. Future direction of this work

ρ̂

ρ̂

Table 6: Parameters settings. Parameters settings for each experiment: stem_min_len is the minimum length of complementary 
regions that are reported in the first step of the algorithm, min_num_stem specifies the minimum number of complementary 
segments each motif should have to be part of the output, max_num_stem is a stopping criteria, the algorithm does not extend motifs 
beyond this threshold, stem_max_separation is the maximum distance between the start and the end positions of a helix, finally, range 
is the number of allowed insertions allowed by the pattern matcher.

Experiment stem_min_len mim_num_stem max_num_stem stem_max_separation range

HSL3 01 6 1 1 30 0
HSL3 02 3 1 - 30 0
IRE 01 3 1 2 30 0
IRE 02 3 1 - 30 0
tRNA 3 3 - - 1
5S 3 3 - - 1
Page 11 of 15
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:244 http://www.biomedcentral.com/1471-2105/7/244
also include automated discovery of sequence patterns in
the loop regions.

The determination of consensus RNA secondary structure
motifs is important for understanding the structure-func-
tion relationship and post-transcriptional regulation, as
well as identifying RNA targets. Seed is a new exploratory
tool that can be added to the set of tools for the analysis
of consensus RNA structures.

Availability and requirements
Seed is written in ISO C and uses extensions of the stand-
ard ISO C99. The calculation of the free energy is per-
formed with the help of RNAlib, which is part of the
Vienna RNA Package, http://www.tbi.univie.ac.at/~ivo/
RNA/.

The software system is distributed freely under the terms
of the GNU General Public License. It can be downloaded
from our web site: http://bio.site.uottawa.ca/software/
seed/.

Methods
Preliminaries
Suffix trees and suffix arrays can be used for the efficient
enumeration of the stems as well as for the matching of
secondary structure expressions.

Suffix trees are a prominent data structure in computa-
tional biology, powering efficient sequence comparison
and repeat finding algorithms that can be applied to
genomic scale data [22,23]. A related data structure, suffix
arrays [24], offers some advantages over suffix trees,
namely reducing the memory requirements and easier to
implement algorithms [25]. Important and recent

achievements now allow use of suffix arrays everywhere
suffix trees were used [25]. Those achievements are: a
direct approach for the linear-time construction of the suf-
fix array [26-28], an algorithm for finding the longest-
common-prefix in linear-time [29], and simulating the
bottom-up [30] and top-down [31] traversal of suffix
trees, also in linear time. We used suffix arrays for the
implementation of Seed but we will use suffix trees herein
for clarity. Reference [25] shows the relationships
between the two data structures.

A suffix tree for a text T = t1 ... tn is a rooted labeled tree
with the following characteristics.

• The edges of the tree are labeled with substrings of the
text;

• Each internal node has at least two children, with the
possible exception of the root of the tree;

• Any two outgoing edges of the same internal node start
with a different letter;

• Every suffix of the text is spelled out on a path from the
root to a leaf, and that leaf is labeled with the start posi-
tion of that suffix.

Several algorithms and implementation techniques have
been proposed for constructing the data structure in lin-
ear-time and space. Applications include pattern match-
ing and repeat finding. A pattern P occurs in a text T if and
only if the suffix tree of T contains a path (from the root
of the tree) that spells P; this follows from the fact that P
occurs in T if and only if P is the prefix of at least one suffix

Performance diagrams for the IRE 02 experimentFigure 8
Performance diagrams for the IRE 02 experiment. 
TInfo (top) and NTFirst (bottom) scores against the PPV, sen-
sitivity and Matthews Correlation Coefficient for the IRE 
dataset.
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Performance diagrams for the HSL3 02 experimentFigure 7
Performance diagrams for the HSL3 02 experiment. 
TInfo (top) and NTFirst (bottom) scores against the PPV, sen-
sitivity and Matthews Correlation Coefficient for the HSL3 
dataset.
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of T. A suffix tree exposes all the internal repeats of a text.
By definition, every internal node, with the possible
exception of the root, has at least two descendants. All the
descendants of an internal node represent suffixes that
share a common prefix, spelled out on the path from the
root to that internal node. All the outgoing edges start
with a different letter and represent all the different exten-
sions of this common prefix. A generalized suffix tree is a
suffix tree that contains all the suffixes of two or more
strings. A generalized suffix tree allows finding substrings
that are common to an ensemble of strings.

The nodes on the path from the root of the tree to a node
i are the ancestors of i. The lowest common ancestor of
nodes i and j is the furthest node from the root of the tree
that is a common ancestor of both i and j. The string
length of the path from the root of the tree to that node is
the longest common extension of the suffixes i and j.

Briefly, a suffix array for a text T = t1 ... tn is an array of inte-
gers that specifies the lexicographic order of the suffixes of
T; each entry of this array is the start position of a suffix of
T. This simple data structure is enhanced by pre-calculat-
ing other indexing structures in order to perform the top-
down and bottom-up traversal, as well as calculating the
longest common prefix.

Data
All the 3' UTR entries containing the keyword histone as
well as an HSL3 feature were extracted from UTRdb
release 19 [32]. A total of 28 sequences was obtained.
Each sequence contains an occurrence of the motif. The
specific location of the motif is known and used in the cal-
culation of the performance measures only. The remain-

ing structure is unknown; see Section Performance
measures for a detailed discussion of the evaluation of the
results. The length of the sequences varies from 51 to
1,955 nucleotides, with an average length of 701 nucle-
otides. The dataset consists of the following entries:
3HSA054868, 3HSA041812, 3HSA027954,
3HSA034695, 3HSA079397, 3HSA082131,
3HSA047510, 3HSA083260, 3HSA083338,
3HSA083659, 3HSA048427, 3HSA049188,
3HSA084501, 3HSA086570, 3HSA086915,
3HSA087013, 3HSA089561, 3HSA058723,
3HSA058724, 3MMU017942, 3MMU040716,
3MMU043604, 3MMU045939, 3MMU046704,
3MMU004991, 3MMU004994, 3MMU004995 and
3DRE005245.

All the mammalian 5' UTR entries containing the keyword
ferritin and a valid IRE motif were extracted from UTRdb
release 19 [32]. A total of 14 sequences was obtained.
Each sequence contains an occurrence of the motif. The
specific location of the motif is known and used in the a
posteriori analysis only. The remaining structure is
unknown; see Section Performance measures for a
detailed discussion of the evaluation of the results. The
length of the sequences varies from 58 to 2,188 nucle-
otides, with an average length of 378 nucleotides. The
dataset consists of the following entries: 5DLE000003,
5HSA021933, 5HSA033035, 5HSA060296,
5HSA072191, 5HSA073036, 5HSA079314,
5MMU018600, 5MMU025452, 5MMU027798,
5MMU032372, 5RNO004780, 5RNO005974 and
5RNO007816.

A tRNA dataset was assembled using a subset of the
sequences from Masoumi and Turcotte [16]. Seven

Performance diagrams for the 5S rRNA experimentFigure 10
Performance diagrams for the 5S rRNA experiment. 
TInfo (top) and NTFirst (bottom) scores against the PPV, sen-
sitivity and Matthews Correlation Coefficient for the 5S data-
set.

Performance diagrams for the tRNA experimentFigure 9
Performance diagrams for the tRNA experiment. 
TInfo (top) and NTFirst (bottom) scores against the PPV, sen-
sitivity and Matthews Correlation Coefficient for the tRNA 
dataset.
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sequences having approximately the same length were
used. These are generally challenging sequences for tradi-
tional approaches, such as MFOLD, see Table 4. The sec-
ondary structure description for the following entries were
extracted from the compilation by Sprinzl et al. [33,34]:
RD0260, RD0500, RD1140, RD2640, RE2140, RE6781
and RF6320.

Similarly, a 5S dataset was assembled using a subset of the
sequences from Masoumi and Turcotte [16]. Seven
sequences having approximately the same length were
used. These are also generally challenging sequences for
traditional approaches, such as MFOLD, see Table 5. The
secondary structure description for the following entries
were extracted from the Comparative RNA Web Site [35-
37]: V00336, X02627, X04585, M24839, X67579,
AJ251080 and M25591.

Performance measures
We call references, the secondary structures that were
obtained from curated databases such as the tRNA compi-

lation by Sprinzl and the Comparative RNA Web Site. We
define as true positives (TP) the base pairs that are occur-
ring in both structures, reference and predicted, false pos-
itives (FP), the base pairs that are occurring in the
predicted structure but not in the reference one, and false
negatives (FN), the base pairs that are occurring in the ref-
erence structure but not in the predicted one. Offsets were
not allowed.

The positive predictive value (PPV) is defined as the frac-
tion of the predicted base pairs that are also present in the
reference structure, TP/(TP + FP). The sensitivity is
defined as the fraction of the base pairs from the reference
structure that are correctly predicted, TP/(TP + FN).
Finally, we also measured the Matthews Correlation
Coefficient, as defined by Gorodkin, Stricklin and Stormo
[38]:

There can be more than one occurrence of a motif in a
given sequence. During the discovery process, the selec-
tion of an occurrence is made by the scoring functions, for
instance, TLeft selects the leftmost occurrence. In the eval-
uation of the results, the PPV of all the occurrences of a
motif in a given sequence are computed. For each
sequence, the occurrence with the highest PPV is selected.
The selected occurrences are used to compute the average
PPV; these are reported in the Experiments section. Simi-
larly, other measures, sensitivity and MCC, are calculated
for the same selected occurrences. In the case of UTRs, the
secondary structure outside of the region containing the
known motif is considered unknown. Any occurrence of a
motif outside of the region of the known motif is scored
zero. When computing the performance indices for
MFOLD, the default parameters were used. If there were
more than one prediction, the prediction with the best
PPV was used.

Parameters
For all the experiments, the minimum support is set to
70%, the minimum total number of base pairs is 5, G:U
base pairs were allowed, no mismatches were allowed,
and no time limit was set. Table 6 shows the parameters
that vary between experiments.
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Lowest free energy motifsFigure 11
Lowest free energy motifs. Dot-bracket notation of the 
predicted (top) and reference (bottom) structures. A dot '.' 
represents an unpaired nucleotide. A base pair is repre-
sented as a pair of opening and closing brackets, '(' and ')'. 
Single letter codes: H = not G, Y = C or T/U, R = A or G, W 
= A or U.

GGCNCTNNNNAGNGCC
((((((....))))))

GGYYYTHHUHARRRCC
((((((....))))))
1 10

(a) HSL3

NNNNNNNNNNNNNNNNNNNNNNN
(((.(((((......))))))))

NNNCNNNNNCAGWGHNNNNNNNN
(((.(((((......))))))))
1 10 20

(b) IRE

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(((((((.((((.........)))).(((((.......))))).....................)))))))

(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))
1 10 20 30 40 50 60 70

(c) tRNA

NNNNGNNNNNNNNGCGNNGNGNNNNNNNNNGNNNNNNNNNNNNNNNCNNNNNNNNNNCNCNNNNNCGC
((((((((.....((((((((........(((.............))).........)))))...)))

((((((((((.....((((((((....(((((((.............))))..)))...)))))).)).(
1 10 20 30 40 50 60 70

NNNNNNNNNNNNGNNNNNNNNCNNNNNNNNNNNNNNNNNNNNCNNNN
............(((....))).................))))))))

((((((..((((((((...))))))))..)))))))...)))))))))).
80 90 100 110 120

(d) 5S
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