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Abstract

Background: There has been an explosion in the number of single nucleotide polymorphisms
(SNPs) within public databases. In this study we focused on non-synonymous protein coding single
nucleotide polymorphisms (nsSNPs), some associated with disease and others which are thought
to be neutral. We describe the distribution of both types of nsSNPs using structural and sequence
based features and assess the relative value of these attributes as predictors of function using
machine learning methods. We also address the common problem of balance within machine
learning methods and show the effect of imbalance on nsSNP function prediction. We show that
nsSNP function prediction can be significantly improved by 100% undersampling of the majority
class. The learnt rules were then applied to make predictions of function on all nsSNPs within
Ensembl.

Results: The measure of prediction success is greatly affected by the level of imbalance in the
training dataset. We found the balanced dataset that included all attributes produced the best
prediction. The performance as measured by the Matthews correlation coefficient (MCC) varied
between 0.49 and 0.25 depending on the imbalance. As previously observed, the degree of
sequence conservation at the nsSNP position is the single most useful attribute. In addition to
conservation, structural predictions made using a balanced dataset can be of value.

Conclusion: The predictions for all nsSNPs within Ensembl, based on a balanced dataset using all
attributes, are available as a DAS annotation. Instructions for adding the track to Ensembl are at
http://www.brightstudy.ac.uk/das help.html

Background been the subject of many recent studies and a large
Single base changes in protein coding regions of DNA  amount of data now exists in public repositories such as
which lead to changes in amino acids have the potential =~ dbSNP [1], HGVBASE [2] and SWISSPROT [3]. Some nsS-
to effect protein structure and function. These non-synon- ~ NPs are related to a disease condition but others are not
ymous single nucleotide polymorphisms (nsSNPs) have  associated with any change in phenotype and are regarded
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as neutral. Several studies have attempted to predict the
functional consequences of a nsSNP, namely whether it is
disease related or neutral, based on attributes of the poly-
morphism. Some attributes depend only on the sequence
information, for example the types of residue found at the
SNP location. Structural attributes such as solvent accessi-
bility can be chosen if the protein sequence containing the
nsSNP has a known 3D structure or is highly similar to a
protein sequence of known structure. As structural
genomics projects gain momentum an increasingly large
amount of protein 3D structural information is becoming
available. Mapping nsSNPs onto the corresponding 3D
structures or onto the structures of proteins which are
highly similar at the sequence level immediately gives a
structural context to the SNP and there are databases con-
taining such models [4]. Previous studies have sought to
identify rules by which a nsSNP could be predicted to be
deleterious (affect protein function) or neutral. These
have included the development of empirical rules [5,6],
the use of probabalistic methods [7] and machine learn-
ing [8,9]. The datasets used have included data on known
nsSNPs (Wang and Moult [5], Saunders and Baker [8],
Ramenski et al [6], Bao and Cui [10]) and mutation data
of bacteriophage T4 lysozyme and E coli lac repressor
(Chasman and Adams [7], Krishnan and Westhead [9]).
Databases of coding nsSNPs have been developed by
Karchin et al [11], Cavallo and Martin [12]. Some of the
rules that have emerged from these approaches suggest
that the majority of disease associated nsSNPs affect pro-
tein stability [5], that they are located in surface pockets of
protein structures [13] and that conservation of the resi-
due across species is an important predictive attribute [8].
Recently Bao and Cui [10] using a large collection of nsS-
NPs from SWISSPROT observed that structural informa-
tion is useful when little information can be obtained
from homologous sequences.

In this study we considered all nsSNPs described in the
SWISSPROT VARIANT web pages that could be mapped
onto the Ensembl database [14], allowing us to apply
Ensembl annotations to these variants. This gave a set of
16,352 nsSNPs (out of a potential 18,812) of which
10,419 were associated with disease. 4217 were labelled
as being neutral and 1716 were unclassified. These disease

Table I: Summary of Training Dataset
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and neutral nsSNPs were contained within 893 and 1256
proteins respectively.

We surveyed the association of a number of sequence and
structural attributes of nsSNPs to see if previous trends of
disease and neutrality are preserved in light of the much
larger datasets now available and we also included the
attribute of whether the nsSNP occurs in a protein binding
site [15].

One of the problems with using the available collection of
natural nsSNPs is the large difference in the number of
disease associated and neutral examples. To address this
problem of class imbalance we also assessed the effect of
resampling and weighting on the prediction performance.

Results

Distribution of attributes across the normal and disease
associated nsSNPs

Non structural features

Our dataset contains 10,419 disease associated nsSNPs
and 4217 nsSNPs labelled as polymorphisms. The distri-
bution of sequence derived attributes suggests: tryp-
tophan (W), tyrosine (Y) and cysteine (C) in the wild and
mutated residues increases the chance of the nsSNP being
disease related. This has previously been noted for tryp-
tophan and cysteine by Vitkup et al. [16]. The likelihood
of the nsSNP being deleterious increases as the volume,
mass and hydrophobicity difference between the wild and
mutated residue increases. There appeared to be very little
bias in the physicochemical properties individually
towards the status of the nsSNP. As previously observed, a
nsSNP is much more likely to be deleterious with increas-
ing PSIC |6] conservation score difference [8].

SWISSPROT features table

In Table 2 we show the most discriminatory terms from
the SWISSPROT features table, namely those where over
90% of the corresponding nsSNPs are disease related. The
annotation of a nsSNP in the SWISSPROT feature table is
not a good discriminator between disease and polymor-
phic status. In our dataset those feature table terms which
are predominantly associated with disease related nsSNPs
have very low counts making it difficult to generalize

Disease Polymorphism Total
Number of nsSNPS 10,419 4217 14,636
Number of nsSNPS within 3212 609 3821
proteins with structural homologs
Number of Proteins with nsSNPs 893 1256 2149
Number of Proteins with nsSNPs 299 295 594

having structural homologs
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Table 2: The number of disease and polymorphism nsSNPs within SWISSPROT feature table sites containing > 90% disease nsSNPs.

Site Disease Polymorphisms Percentage (odds ratio) of nsSNPs
within these sites that are disease

ACT_SITE 25 | 96.15 (10.12)

BINDING 13 0 100 (-)

DNA_BIND 352 20 94.62 (7.12)

METAL 38 0 100 (-)

MOD_RES 34 3 91.89 (4.59)

MUTAGEN 11 10 91.74 (4.49)

NP_BIND 108 8 93.1 (5.46)

about their utility in predicting whether a given nsSNP is
disease related.

KEGG pathways

Our analysis of nsSNPs that map to KEGG pathways [17]
revealed that the odds ratio (P) of deleterious to polymor-
phism nsSNPs (see methods for definition) is highest for
the following 4 pathways: phenylalanine, ty-rosine and
tryptophan biosynthesis(15.6), methionine metabo-
lism(15.16), carbon fixation (12.56), nucleotide sugars
metabolism (12.33). Assignment to a KEGG map was not
used as an attribute for machine learning prediction as
this result may simply reflect that these are commonly
studied pathways and the pathway was considered to be a
property of the protein as opposed to the nsSNP.

Gene Ontology

The odds ratio is highest for the following GO [18] biolog-
ical processes: anti-inflammatory response
(G0O:0030236), peroxisome organization and biogenesis
(GO:0007031), and peroxisomal membrane transport
(GO:0015919). The GO cell location categories having
the highest odds ratio are peroxisomal membrane
(GO:0005778), integral to peroxisomal membrane
(G0O:0005779) and collagen type VII (GO:0005590) cate-
gories. The molecular function categories containing the
highest odds ratio are phenylalanine 4-monooxygenase
activity(GO:0004505),  alpha-galactosidase  activity
(GO:0004557) and  pyruvate  kinase  activity
(GO:0004743). GO categories were not used as machine
learning attributes as they were considered to be proper-
ties of the protein as opposed to the nsSNP.

Interactions

A total of 1944 SWISSPROT nsSNPs mapped to proteins
that have entries in BIND [15]. A significant number of
disease nsSNPs are within interacting regions (x2 = 32.85,
p =0.001) within BIND. Table 3 shows 71.7% (odds ratio
1.29) of positions containing one or more nsSNPs that
map to interacting regions are associated with disease
(736 sites) as opposed to 28.3% (290 sites) which contain
polymorphism nsSNPs.

Structural features

A total of 3821 nsSNPs could be mapped to a homolo-
gous protein of known structure. We found that of the
nsSNPs that could be mapped to structure, disease nsSNPs
tend to be buried and neutral nsSNPs tend to be exposed.
There is also a propensity towards disease for nsSNPs
occurring in beta sheets as previously noted [19] and a
trend towards neutrality with increased accessibility.

Interactions

A total of 3028 SWISSPROT nsSNPs mapped to proteins
that have structures or structural homologs in MMDB-
BIND [15]. Table 3 shows 86% (odds ratio 1.29) of posi-
tions containing one or more nsSNPs that map to
interacting residues are associated with disease (294 sites)
but also that 82% (odds ratio 0.97) of positions contain-
ing one or more nsSNPs that map to non-interacting resi-
dues are associated with disease. The difference between
interacting sites containing disease nsSNPs and non-inter-
acting sites containing disease nsSNPs is not significant
(x2=3.17).

All attributes excluding the KEGG pathway and GO
attributes were used in further machine learning analysis.

Machine Learning

Single attribute analysis

The 1R algorithm identified the best single attribute in
terms of predicting disease status [20]. The attributes were
ranked in terms of effectiveness as a predictor and were
also ranked in terms of the information gain that they pro-
vide (Tables 4 and 5). The PSIC conservation score was
identified as the best classifier in a balanced dataset
achieving 72% correctly classified instances with the rules
that defined a nsSNP as being disease status with a conser-
vation score difference > 0.89 and neutral with a conser-
vation score difference < = 0.89. These Cclassifiers
compared favourably with the conservation score rules
identified by Sunyaev et al in their study [6] whereby a
PSIC score difference < = 0.5 was classified as benign, 1.5
to 2.0 possibly damaging and > = 2.0 probably damaging.
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Table 3: Distribution of positions containing disease and neutral nsSNPs within BIND and MMDBBIND. Some sites may contain

multiple nsSNPs

Interacting sites (num) [odds ratio]

Non-interacting sites (num) [odds ratio]

Disease (BIND) 71.7%(736) [1.29]

Polymorphism (BIND) 28.3%(290)
Disease (MMDBBIND) 86.0%(294) [1.29]
Polymorphism (MMDBBIND) 14.0%(48)

58.6%(431) [0.72]
41.4%(304)
82.0%(1818) [0.97]
18.0%(398)

Attribute set analysis

The J48 decision tree algorithm [20] was used to evaluate
the predictive performance of the following subsets of
attributes: (1)All variables. (2)Structural variables.
(3)Non structurally dependant variables. (4)Non struc-
turally dependant variables excluding the conservation
score (PSIC). (5)Conservation score alone.

Effect of Imbalance

Attribute sets (1) and (2) contained 3821 nsSNPs when
imbalanced and 1218 when balanced (see methods).
Both sets included structural variables. Datasets (3), (4)
and (5) contained 14,636 nsSNPs when imbalanced and
8434 when balanced. They contained more nsSNPs than
sets (1) and (2) because they were not dependant on
structure.

The Matthews Correlation Coeffecient (MCC) increased
with increasing balance within each of the sets of
attributes. There was a difference in the MCC score
between 0% balanced and 100% balanced of 0.24 for
dataset (1), 0.29 for (2), 0.08 for (3), 0.07 for (4) and 0.15
for (5). The performance of the weighted sets lay between
the level of 25% and 50% balancing for each attribute set
(Figure 1).

Table 4: Top 10 rank of attributes using IR with 10 fold cross
validation and bucket size 14

IR Rank Attribute
72.82 conservation score (PSIC)
67.49 norm relative accessibility
63.46 MMDBBIND
62.64 mass change
62.56 relative accessibility
62.23 exposure
61.41 PAM score
60.67 mutation residue
60.34 volume change
59.19 wild type residue

The 100% balanced dataset (1) achieved a MCC of 0.49.
When weighted and imbalanced the MCC was 0.3 and
0.25 respectively for this same set. The balanced dataset
(3) was equal second in the rankings with 75% balanced
(1), performing better than dataset (2). The conservation
score alone achieved a similar MCC score when consid-
ered separately (MCC 0.43) as it did when it was included
in dataset (3) (MCC 0.44) when 100% balanced. When
the conservation score is excluded there is a drop of 0.16
in the MCC of the 100% balanced dataset (3). When set
(2) is balanced it performs better than (4) but when it is
not 100% balanced it has a lower MCC. Dataset (3) actu-
ally performs better than the dataset (1) when the datasets
are < = 50% balanced or weighted. The imbalanced data-
set (2) achieved the lowest MCC score.

0.5
0.451 ’/
0.41
0.35/
0.3]

0.25+

MCC

0.2
\ 100% balanced

75% balanced
0.15 50% balanced
25% balanced
0.14 0% balanced
\ Weighted

0.05+

Non struct vars Struct vars (2) Psic (5) Non struct vars Allvars (1)

excl PSIC (4) 3)
nsSNP attribute sets

Figure |

Matthews Correlation Coeffecient (MCC) measure
of predictive quality for five attribute subsets. Set | —
All variables (3821 nsSNPs). Set 2 — Structurally dependant
variables (3821 nsSNPs). Set 3 — All non structurally depend-
ant attributes (14.636 nsSNPs). Set 4 — Non structurally
dependant variables excluding the conservation score
(14.636 nsSNPs). Set 5 — The conservation score alone
(14.636 nsSNPs).
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The rules learnt from the machine learning approach were
applied to make predictions on nsSNPs where the nsSNP
status was unknown. All nsSNPs within Ensembl (Build
27_1) were used as the unknown test dataset. The dataset
was trained on the 100% balanced dataset of 609 neutral
and 609 disease nsSNPs using all variables. This resulted
in a predicted classification along with a confidence score
for each of the 'unseen' nsSNPs with Ensembl.

Discussion

The use of a 100% balanced dataset dramatically increases
the Matthews correlation coefficient (MCC) and removes
any bias towards building rules for prediction of the dis-
ease state. Complete undersampling is a better choice
than reweighting in addressing an imbalanced dataset.
When imbalanced, performance using conservation alone
(MCC 0.28) is close to that achieved by Bao and Cui [10]
(MCC 0.305) yet with a balanced dataset the MCC is
greatly improved (MCC 0.43).

We see a larger spread in the MCC when using the smaller
datasets that include structural variables because of the
larger ratio of disease to neutral nsSNPs in these datasets.
This explains why the performance for the dataset of all
variables (as measured by MCC) is good when >50% bal-
anced, yet drops below that of non structurally dependant
variables when the level of balance falls below this figure.
It also explains the similar pattern seen when comparing
structurally dependant variables and non structurally
dependant variables excluding conservation, except that
the cut off lies at the 75% level of balance.

There are a number of caveats with the training dataset.
The dataset may include nsSNPs predicted to be 'disease’
where some of the nsSNPs may only be in linkage disequi-
librium with the phenotype in question and may them-
selves not be causative. This 'pollutes' the training set and
may lead to a higher error rate and lower MCC. Further fil-
tering of the dataset would lead to a smaller but cleaner
training set that would in turn lead to lower error rates
and an increase in the MCC. Further complications could
arise where molecular phenotypic changes that don't
result in a physical phenotype and unstudied or unob-
served phenotypic changes may result in a nsSNP being
classified as neutral that should be classified as disease.
Improvements to the system could also be made if SNPs
could be graded in terms of how damaging they are as
opposed to the boolean states of disease and polymor-
phism that currently classifies them. In time databases
may contain this information.

Conclusion

Reassuringly, previously observed trends can be seen in
this study of a large number of nsSNPs. Disease nsSNPs
tend to affect protein stability [5], are buried [13] and dis-

http://www.biomedcentral.com/1471-2105/7/217

ruption of a conserved residue is an important predictive
attribute [8]. We extend previous work by addressing the
problems of imbalance and redundancy within the
attributes for a large selection of natural nsSNPs and then
go on to make predictions on all Ensembl nsSNPs. Bao
and Cui [10] and Saunders and Baker [8] showed that in
the absence of a conservation score, structural attributes
are valuable predictors. Here we affirm using machine
learning methods that the sequence conservation measure
is the most powerful single predictor and we are able to
show that a high level of accuracy is achieved using the
conservation score alone. We are also able to show that
structural attributes in combination with the conservation
score improves prediction accuracy but also that there are
other non structurally dependant attributes that can
reduce the error rate further and are valuable in the
absence of a conservation score. The performance of all
attribute subsets however, is very much dependant on
how the datasets are configured. The maximum predic-
tion accuracy can be achieved by combining all attributes
of the nsSNP within a balanced dataset.

Methods

SNP Dataset

The SWISSPROT VARIANT web pages [4] provide infor-
mation on single amino acid polymorphisms associated
with a given SWISSPROT entry. The variants are labelled
as disease, unclassified or polymorphism. A subset of
these SNPs were used in this study, namely those where
the amino acid polymorphism was found to map onto the
Ensembl human genome protein sequence. A mapped
SNP was kept where the amino acid was the same in both
the SWISSPROT sequence and the Ensembl protein
sequence and the aligned region had an E value < 1e - 10
over a region > 100 amino acids in length. This gave a set
of 16,352 variants which mapped to Ensembl of which
10,419 were related to disease (64%), 4217 (26%) were
labelled as a polymorphism and the rest were unclassified.
Matches to known structure and to structural homologs
were obtained in the following way: each sequence con-
taining a nsSNP was searched against all the sequences in
the protein data bank (PDB) using the PSIBLAST program
[21] with ten iterations. Only hits with an E value of less
than 1e-10 where the amino acids at the position of the
nsSNP were the same were stored. Each of these nsSNP
containing SWISSPROT entries was aligned with the
sequence in a relevant HSSP [22] file (database of homol-
ogy-derived secondary structure of proteins). Where there
were multiple PDB annotations in the SWISSPROT file,
the PDB with the lowest E value was used. A total of 500
nsSNP-containing proteins had structural homologs, of
which 299 proteins contained disease related nsSNPs and
295 contained polymorphic nsSNPs (a protein can con-
tain both disease and polymorphic nsSNPS). The data is
summarised in Table 1.
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Table 5: Top 10 information gain attributes

Info gain (bits) Attribute
0.2 conservation score (PSIC)
0.1 norm relative accessibility
0.09 wild type residue
0.07 relative accessibility
0.06 PAM score
0.06 mass change
0.05 mutation residue
0.05 exposure
0.04 volume change
0.04 hydrophobicity difference

nsSNP Features

As the subset of nsSNP containing proteins with associ-
ated 3D structures is considerably smaller than the set of
all nsSNP containing proteins we considered the set of
structurally dependant features separately from the set of
features that were not dependant on structure. A total of
17 features were used, 11 non structurally dependant and
6 structurally dependant.

Non structural features

The features chosen were largely based on those used by
Krishnan and Westhead [9] and Ramenski et al. [6]: (1)
The residue types of the original and mutated residues. (2)
The physicochemical properties of the original and
mutated residues. (3) Sequence conservation: is the
nsSNP at a conserved position. The sequence was matched
against a protein non redundant database using the
BLAST program and all hits with an E value less than
0.0005 were stored. A multiple alignment was constructed
and sequence variation at the position of the nsSNP was
described by calculating the PSIC (position-specific
counts of independent observations) score [6]. (4) PAM
(accepted point mutations) score shift measured from the
PAM120 matrix [23]. (5) Side chain volume change [24].
(6) Mass change. The molecular weights are those of the
neutral, free amino acids. (7) Hydrophobicity difference
[25]. Four further non structurally dependant attributes
were taken from the SWISSPROT features table, pathway
information, ontology classifications and interacting
regions.

SWISSPROT features table

The SWISSPROT entry feature table may contain informa-
tion about functional sites. A survey was carried out of
functional site terms across all nsSNPs in the SWISSPROT
VARIANT pages. Following Ramensky et al [6], nsSNPs
landing within the following labelled features: ACT_SITE,
BINDING, MOD_RES, SITE, LIPID, METAL, DISULFID,
CROSSLNK, TRANSMEM, SIGNAL, PROPEP were consid-
ered to be termed 'functional' sites for the benefit of the

http://www.biomedcentral.com/1471-2105/7/217

machine learning analysis. For each labelled feature, i, we
calculated the odds ratio P;:

N, ziis /N ;wly
B = ot ot
Nis /N. poly

where Nfﬁs is the number of disease nsSNPs in the feature

i and NZ! is the total number of disease nsSNPS in our

dataset and similarly for polymorphic nsSNPs.

KEGG pathways

In order to observe the distribution of disease and neutral
nsSNPs within pathways we mapped the set of 16,352
nsSNPs to KEGG pathways [17]. For each pathway, i, we

calculated the odds ratio P; where Nfiiis is the number of

disease nsSNPs in pathway i and N is the total number

of disease nsSNPS in our dataset and similarly for poly-
morphic nsSNPs.

Gene Ontology

Each nsSNP containing protein sequence belongs to a
number of Gene Ontology (GO) categories [18]. The odds
ratio of neutral and disease nsSNPs were calculated for
each of the GO categories.

Interactions

The BIND [15] database was used to map nsSNPs to inter-
acting regions. A potential interacting region was defined
as a region from amino acid position n to amino acid
position m. These interactions were generally regions
observed experimentally and were not considered struc-
turally dependant annotations as the BIND database
entries have sequence identifiers. The odds ratio P;was cal-

culated where Nj; is the number of sites containing dis-

ease nsSNPs in either an interacting region or non-

interacting region i and N'f. is the total number of sites

containing disease nsSNPS in our dataset that map to
BIND and similarly for polymorphic nsSNPs.

Structural features

The following structural attributes were extracted from the
corresponding HSSP file [22]: (1) Secondary structure
conformation: residue in is isolated beta-bridge (single
pair beta-sheet hydrogen bond formation), 5 turn helix
(pi helix), 3 turn helix (3/10 helix), 4 turn helix (alpha
helix), bend, beta sheet in parallel and/or anti-parallel
sheet conformation (extended strand), hydrogen bonded
turn (3. 4 or 5 turn). (2) Relative solvent accessibility. (3)
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Normalised relative accessibility. (4) Exposure (relative
accessibility as 3 states). (5) Buried charge.

Relative accessibility and normalised relative accessibility
were calculated in the same manner as Chasman and
Adams [7]. The maximum accessible surface area (A2) ref-
erence values are those calculated for residues in a Gly-
Xaa-Gly tripeptide in extended conformation [26]. In
order to group the relative accessibility, it was projected
onto 3 states: buried (here defined as <9% relative acces-
sibility), intermediate (9% <rel. acc. < 36%), exposed (rel.
acc. > 36%) [27]. Buried charge is defined as K.R.D.E.H
wild type amino acid and 'buried' exposure class. [9]

Interactions

The MMDBBIND database [15] was used as a second
source to map nsSNPs to interacting regions. MMDBBIND
contains atomic level details of interactions. These interac-
tions are annotated automatically from MMDB [28]
which is a subset of experimentally determined PDB struc-
tures. This attribute is therefore dependant on structure as
it requires a PDB identifier. MMDBBIND interactions are
a much more precise interaction annotation than the
BIND interactions as the BIND defined regions can some-
times be very large in amino acid length. Again, the odds

ratio P; was calculated where NZiis is the number of sites

containing disease nsSNPs in either an interacting region

or non-interacting region i and N is the total number

of sites containing disease nsSNPS in our dataset that map
to MMDBBIND and similarly for polymorphic nsSNPs.

Machine Learning
All machine learning analysis was performed using the
WEKA package of machine learning algorithms [20].

Single attribute analysis

In order to identify the most effective classifier from all of
the attributes, the 1R classifying algorithm, which uses the
minimume-error attribute for prediction, was used with a
minimum bucket size of 14 and 10 fold cross validation
on the fully balanced dataset containing all variables. The
bucket size of 14 was chosen because bucket sizes below
this value caused overfitting and/or an increase in the
error rate. The attributes were then ranked in terms of their
effectiveness as a predictor using the default ranker search
method with this 1R attribute evaluator and were also
ranked in terms of the information gain that they provide
[20]. Entropy is a measure of information and represents
the amount of information that would still be needed to
classify the nsSNP having used the attribute in question
[29]. The information gain is the information required
after using the attribute as a classifier subtracted from the

http://www.biomedcentral.com/1471-2105/7/217

information required before using the attribute as a classi-
fier.

Attribute set analysis

It is of value to investigate the relative importance of
attributes that require structure and those that can be
obtained by sequence alone. The importance of sequence
conservation has been previously noted [8] so it was also
important to observe whether the other non structurally
dependant attributes could add to prediction quality
achieved with conservation score alone. Hence, we com-
pared predictions for the following sets of selected
attributes:

(1) All variables (3821 nsSNPs). (2) Structurally depend-
ant variables (3821 nsSNPs). (3) All non structurally
dependant attributes (14,636 nsSNPs). (4) Non structur-
ally dependant variables excluding the conservation score
(14,636 nsSNDPs). (5) The conservation score alone
(14,636 nsSNPs).

Decision trees have been shown to perform well in a
mixed cross validated training dataset [9]. They also pro-
vide a confidence score and intelligible rules to a predic-
tion. Based on this knowledge we decided to use the J48
decision tree classifier to analyze the assembled sets of
variables. J48 was run with the default set of parameters
and 10 fold cross validation.

Effects of Imbalance

There was a problem of imbalance [30] within the dataset
which introduced skewing towards the avoidance of
errors for the disease status as there are 2.5 times more dis-
ease nsSNPs than neutral. The imbalanced dataset applies
a higher cost to getting a disease prediction wrong, mean-
ing that the rules inferred by the imbalanced dataset are
able to predict disease status but unable to predict neutral
nsSNPs accurately. In fact, in this instance the algorithm
makes more incorrect neutral predictions than correct
ones. The effect of imbalance depends on total set size,
class heterogeneity, data complexity and the classification
technique. To address this problem of imbalance we
applied cost-sensitive classification by either resampling
or reweighting [20]. Resampling can be used to either
increase the number of the minority class (oversample) or
reduce the number in the majority class (undersample)
[31]. Reweighting can be used to apply a cost to an incor-
rectly classified minority class without altering the num-
bers in each class. The cost is directly proportional to the
imbalance. Here we compare results obtained by using
both resampling and reweighting. We undersampled the
disease class as oversampling would make exact copies of
the neutral class, potentially resulting in overfitting of the
data. Undersampling results in the loss of information so
it was decided to randomly undersample at rates of 100%,
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75%, 50%, 25% and 0%. This means that at each rate, 'n%
of the excess members of the majority class were ran-
domly removed' [30], resulting in a balanced dataset
when undersampling at a rate of 100%.

Attribute redundancy

Some attributes may work well in combination leaving
other attributes redundant and maybe even causing a
reduction in prediction quality. The optimised subset of
attributes for each attribute set at each level of imbalance
was obtained using wrapper-based feature selection with
J48 as the learning method with default option settings.
The wrapper-based feature selection method in combina-
tion with the Genetic Search algorithm produced the low-
est error rates [20]. The Genetic Search algorithm was
initialised with a population size of 20 and then 50 gen-
erations were evaluated.

Measure of prediction quality

Matthews correlation coefficient (MCC) is a more appro-
priate measure of prediction performance than the error
rate (E)

_ FP+EN
TP+ TN +FP+ FN

because in a case where all samples are assigned to a
majority class, E may still be low [32]. Matthews correla-
tion coefficient combines both sensitivity and specificity
into one measure and lies in the range -1 to 1 with 1
meaning complete prediction accuracy, 0 meaning every
prediction was randomly assigned. MCC is defined by

(TP.TN —FP.FN)
JIN+EN)(IN +FP)(TP+EN ) (TP +FP)

where TP is true positive, FP is false positive, TN is true
negative and FN is false negative.

MCC =

Availability

The predictions of nsSNP status for all of the Ensembl nsS-
NPs (Build 27_1) made using the 100% balanced dataset
of 609 neutral and 609 disease nsSNPs with all variables
for training, are available to be viewed within Ensembl as
a Distributed Annotation System (DAS) [33] source.
Instructions for adding the annotation track can be found

at http://www.brightstudy.ac.uk/das_help.html.

Appendix

On a suggestion of one of the referees, we have investi-
gated how trees trained on balanced datasets perform on
imbalanced datasets. The decision tree analysis was
repeated except that prior to the cross validation, a ran-
dom 20% of the instances within each attribute set were
removed (retaining the level of imbalance in the original

http://www.biomedcentral.com/1471-2105/7/217

attribute set) for later re-evaluation of the trained model.
The cross validation was then performed at the undersam-
pled levels of 100%, 75%, 50%, 20% and 0% as before,
on the remaining 80% of the atribute set. The trained
model was then re-evaluated on the initially excluded
imbalanced 20%.

The rankings at the differing levels of undersampling was
much the same as the original cross validation, with the
MCC generally increasing with increasing level of balance.
Again, weighting the dataset was generally not as effective
as undersampling. One point to note is that the overall
performance of the smaller attribute sets(the ones that
contain structural attributes) drops slightly in relation to
the attribute sets not dependant on structure. This effect is
probably due to the 20% reduction in size of the trained
tree. This drop in sample size appears to have a greater
effect on the performance of the smaller datasets that are
structurally dependant.
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