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Abstract

Background: We present a general approach to perform association analyses in pedigrees of
arbitrary size and structure, which also allows for a mixture of pedigree members and independent
individuals to be analyzed together, to test genetic markers and qualitative or quantitative traits.
Our software, PedGenie, uses Monte Carlo significance testing to provide a valid test for related
individuals that can be applied to any test statistic, including transmission disequilibrium statistics.
Single locus at a time, composite genotype tests, and haplotype analyses may all be performed. We
illustrate the validity and functionality of PedGenie using simulated and real data sets. For the real
data set, we evaluated the role of two tagging-single nucleotide polymorphisms (tSNPs) in the DNA
repair gene, NBS/, and their association with female breast cancer in 462 cases and 572 controls
selected to be BRCAI/2 mutation negative from |39 high-risk Utah breast cancer families.

Results: The results from PedGenie were shown to be valid both for accurate p-value calculations
and consideration of pedigree structure in the simulated data set. A nominally significant association
with breast cancer was observed with the NBS| tSNP rs709816 for carriage of the rare allele (OR
=1.61,95% Cl = 1.10-2.35, p = 0.019).

Conclusion: PedGenie is a flexible and valid statistical tool that is intuitively simple to understand,
makes efficient use of all the data available from pedigrees without requiring trimming, and is
flexible to the types of tests to which it can be applied. Further, our analyses of real data indicate
NBS| may play a role in the genetic etiology of heritable breast cancer.

Background

Family-based tests of allelic association have received
much attention recently due in part to their robustness
against a bias that may arise in population data. Popula-
tion based association studies may be hindered by genetic
stratification that exists even within relatively homogene-
ous populations [1,2], resulting in spurious associations
that markedly increase with sample size [3,4]. Family-
based association studies that focus on the preferential
transmission from parents to affected offspring are robust

to the effects of population stratification, admixture, and
non-random mating [5,6] and hence avoid the bias of
population stratification. Additional advantages of fam-
ily-based designs include error checking of genotype data,
the capacity to detect parent-of-origin effects, and the
improved efficiency and cost effectiveness of being able to
perform association studies on cases previously ascer-
tained for linkage studies [7].
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Use of family data for allelic association testing includes
the additional challenge of accounting for correlations
between related individuals. Without correction for the
genetic dependence of related individuals, an underesti-
mate of the variance of a desired statistic and an increase
in type I error will result [8]. A number of family-based
association tests that appropriately account for correla-
tions between related individuals have been developed,
many of which are extensions of the transmission disequi-
librium test (TDT) (See review of family based methods
[9]). The TDT was originally proposed as a test for linkage
disequilibrium in family trios, consisting of two parents
(at least one heterozygous) and an affected offspring [10].
The TDT has been extended to allow for the use of siblings
instead of parents, multiallelic markers, and extensions to
quantitative traits and covariates (see review [11]). Most
TDT based tests, however, are limited, as they focus on
only small nuclear families and/or a particular genotype
configuration to be valid tests.

Extensions of traditional case-control association and
transmission disequilibrium tests to multi-generational
pedigrees also exist [12-22]. However, many of these
methods restrict analyses to either dichotomous depend-
ent variables[12,13,20,22] or quantitative traits
[14,16,21,23]. For those methods that analyze quantita-
tive traits, some require the trait to be normally distrib-
uted [14,16,23]. Others limit the size of a pedigree that
can be studied because they require calculation of inher-
ited by descent (IBD) parameters [14,16,20]; although the
pedigree size for which IBD can be determined is increas-
ing [24], pedigree size, for particularly large extended ped-
igrees or genealogical resources, still remains a limiting
factor. Other methods decompose large pedigrees into
nuclear families [4,12,13,15,19]; if these methods are
applied to a small sample of large pedigrees, this will lead
to a substantial loss of information and power, and may
risk inflation of false positive results.

A number of large and sometimes complex genealogy-
based populations are being ascertained to study complex
traits, including the Hutterites, the Pima Indians, Sardinia
isolates, as well as studies in Iceland and Utah. Utilizing
all cases in a pedigree or genealogy for an association
study rather than just one case or nuclear family per pedi-
gree (if one adopts an 'independence’ protocol) increases
power by increasing the effective sample size [8]. Ideally,
analyses utilizing all available information on pedigree
structure are most informative and efficient.

We previously proposed a method that could perform
valid simple case-control association analyses on
extended pedigrees of arbitrary size and structure using an
empirical approach [8]. Here, we present an expanded
more versatile software tool, PedGenie that incorporates a
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number of common association and transmission dise-
quilibrium statistics for qualitative and quantitative data.
PedGenie accounts for correlations between related indi-
viduals, based on the original pedigree structure. A Monte
Carlo approach is employed to generate an empirical null
distribution from which significance for a statistic of inter-
est can be determined. Pedigrees of arbitrary size or struc-
ture, from singletons (single, independent individuals) to
entire genealogies with loops can all be analyzed simulta-
neously. Furthermore, our method is able to analyze
multi-locus data either as composite genotypes (multiple
insult hypothesis, where phase is not considered) and
haplotypes (where phase is important), assuming that the
correct haplotypes have been assigned to pedigree mem-
bers. We illustrate the validity and utility of PedGenie
through its application to simulated data as well as test the
association between two tagging-SNPs in the DNA repair
gene, NBS1, and breast cancer.

Implementation

Our software tool PedGenie, which requires Java 1.5 for
execution, is freely available (see Availability and require-
ments). We begin with a description of its functionality
for inheritance of a biallelic marker, although all analyses
can be performed with multi-allelic markers, followed by
an explanation of how PedGenie handles haplotype data.
Assume that we have a resource of large extended pedi-
grees containing cases with a particular disease. Although
the genealogy of individuals may be known, typically gen-
otype and perhaps phenotype data will be available only
on individuals near the bottom of the pedigree, yet rela-
tionships between individuals are still known. Under the
null hypothesis of no association, the genotype of an
affected individual in the pedigree is independent of their
disease status. Based on this null hypothesis, new geno-
types for individuals in the pedigree may be generated,
which we term a "null genotypic configuration"; both
relationships within the pedigree and the missing data
structure are maintained in the null genotypic configura-
tion. New traits, however, are not generated for individu-
als, thus also maintaining the original phenotypic familial
correlations. Through generating multiple null genotypic
configurations and calculating a statistic of interest for
each, an empirical null distribution can be created for the
statistic and this null distribution can be used to deter-
mine significance of an observed statistic (calculated from
the real genotypic data).

An outline of steps for PedGenie is as follows. First, allele
frequencies for the markers of interest are estimated from
the data. These can be estimated by four different meth-
ods: genotyped founders only, all genotyped individuals,
all founders with statistically inferred genotypes and user-
defined. For the first option, allele frequency estimation is
made using data from genotyped founders only, hence it
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is representative of the general population from which the
study sample was obtained but requires that many of the
founders have genotype data available. The second option
uses all genotyped individuals, ignoring dependence
between relatives, for which the point estimate is unbi-
ased [25]. The third option statistically infers the founder
genotypes using maximum likelihood estimation, and
then calculates allele frequencies from the inferred (or
actual, if observed) genotypes of all the founders [26]. We
recommend statistically inferring founder genotypes if
there are a small to moderate number of relatively large
pedigrees. If there are a large number of relatively small
pedigrees and the number of genotyped founders in the
resource is limited, we recommend the ‘all' option, which
is the current default in PedGenie. The final option allows
a user to enter allele frequencies.

Second, alleles are assigned to the pedigree founders ran-
domly, but in proportion to these allele frequencies, and
a Mendelian gene-drop is performed. That is, the gene-
drop is performed independently of trait information. For
example, alleles A and Bwill be transmitted from a parent
with genotype AB to their children with equal probability.
The resulting null genotype configuration on each pedi-
gree, therefore represents a possible configuration under
the null hypothesis of no association between allele and
disease. Assignment of alleles randomly to pedigree
founders, who are assumed to be independent individuals
in the population of interest, will inherently be in Hardy-
Weinberg equilibrium.

Third, the statistic of interest is calculated using the null
genotype configuration and the true phenotype data,
which we term S;. The §; statistic is from the null distribu-
tion since it was derived from data simulated under the
null hypothesis. Steps 2 and 3 are repeated multiple (N)
times, and the series of null statistics stored. Hence an
empirical null distribution is created for the statistic of
interest, conditional on the particular pedigree and phe-
notype structures contained in the resource.

Finally, the observed statistic, S,, is computed based on
the true genotype and phenotype data using the same sta-
tistic of interest. This observed statistic is then compared
to the empirical null distribution to determine signifi-
cance as follows:

p=211(S;)]/Nfori=1to N

where: I[(S;) = 1if S;> S,

0 otherwise

The specified null hypothesis is rejected if the p-value is
less than or equal to the required level of type I error (o).
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The accuracy of the empirical p-value increases with the
size of the empirical null distribution simulated. An N of
2,000 gives a 95% confidence interval around a = 0.05
with a width of 0.02 under the null hypothesis. It is possi-
ble that the statistic of interest cannot be calculated, such
as when the data are too sparse (e.g., an inability to calcu-
late an odds ratio due to a zero count in a contingency
table). PedGenie provides information on the number of
simulations for which a statistic can be calculated. If the
number of calculated statistics is less than the total
number of simulations (i.e., N), this would suggest sparse
data for that particular analysis and caution is advised
when interpreting the results.

To match the information content of the real data to that
of the simulated data, we limit calculation of the statistic
of interest in the simulated data to only those individuals
with genotype data in the observed sample. In the gene-
drop procedure, genotype information is initially simu-
lated for all members of a pedigree; however, those indi-
viduals for whom observed genotypic data were not
available for a specific locus are reset to missing. In this
way, the missing data structure is captured.

Composite genotype and haplotype-based analyses
Testing multiple loci simultaneously either as composite
genotypes or haplotypes is similar to that described above
with a few exceptions. For both the composite genotype
and haplotype analyses, haplotype frequencies are
entered in place of allele frequencies for the gene drop.
The gene drop proceeds as above, except haplotypes rather
than alleles are dropped through the pedigrees. PedGenie
allows the user to enter recombination rates (i.e., 0)
between markers and these values are used to determine
recombinant events for generation of the empirical null
distribution. For composite genotype testing and haplo-
type testing, user-defined population haplotype frequency
estimates are required. The difference between composite
genotype and haplotype analyses is that phase informa-
tion on the observed genotype data is required for the
haplotype analysis but is not required for the composite
genotype analysis. For haplotypes, PedGenie expects the
pedigree genotype data to be ordered. A number of pedi-
gree based haplotype methods are being developed [27-
32]. However, none of the haplotype methods that are
currently available are able to provide both haplotype fre-
quencies and individual haplotype assignment on large
pedigrees with large amounts of missing data, and linkage
disequilibrium between multiple markers (see also [33]);
hence additional work in this area is required.

Statistics

Our approach is general, such that an empirical null dis-
tribution may be computed for any statistic of interest.
PedGenie version 1.2 currently incorporates statistics for
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Table I: Comparison of PedGenie to the standard distribution using simulated data for independent individuals and nuclear families

----Odds Ratio---- --- Difference in
Means---
Chi ChiSquare HETvs HOMvs HETvs HOMvs ANOVA2 Trio Sib Comb QTDT#
Square? Trend? WT2 WT2 WT2 WT2 TDT2 TDT3 TDT3

Statistic 0.292 0.288 0.968 0.949 0.149 0.130 0.017 2.463 1.667 1.563 1.77
p-value standard 0.864 0.592 0.632 0.754 0.882 0.896 0.983 0.117 0.096 0.118 0.077
distribution
95% ClI standard - - 0.846— 0.682— - - - - - - -
distribution 1.107 1.320
Mean empirical p- 0.865 0.591 0.633 0.749 0.882 0.896 0.983 0.117 0.087 0.118 0.078
value (SD) (0.008) (0.012) (0.021) (0.021)  (0.007)  (0.007) (0.003) (0.008) (0.006) (0.007) (0.006)
P value: 0.860— 0.583— 0.619— 0.735- 0.878-  0.891- 0.981— 0.112— 0.083-— 0.113-0.123  0.074-
interquartile range  0.870 0.599 0.648 0.763 0.886 0.902 0.985 0.122 0.091 0.082
95% CI Empirical - - 0.846— 0.685— - - - - - - -
(Mean values) 1.107 1.314

'For each statistical test, PedGenie was run 1,000 times to compute the average, standard deviation, and interquartile distance (Istand 34 quartile
values). The standard distribution is the standard distribution used for the particular statistical test (e.g., the p-value reported for the Chi-square

test is from the Chi-square distribution). HOM = homozygous for minor allele, HET = heterozygous, WT = wild type.

2Test run using 2,000 independent, unrelated cases and 2000 independent, unrelated controls

3Test run using 4,000 independent nuclear families, composed of either trios (2 parents and one affected offspring), sib-pairs (one affected and one
unaffected sib), or for the combined analysis, a combination of both trios (2,000) and sib-pairs (2,000).

4QTDT analysis run using method of Monks et al.[II]

both dichotomous and quantitative data outcomes. For
data involving a dichotomous variable outcome, the
implemented statistics are: basic genotype-based or allele-
based Chi-square statistics (for arbitrary number of cate-
gories that are user-specified), an odds ratio statistic both
for allele counts and genotype data (with 95% confidence
intervals determined from the empirical distribution),
and a Chi-square trend statistic with user-defined weights.
In addition to these classical tests of association, our
method is also able to test transmission disequilibrium on
large extended pedigrees, including the TDT statistic for
trios [10], sibships [34], and combined trios/sibships
[34]. For quantitative dependent variable outcomes, a
standardized difference in means statistic and an overall
analysis of variance (ANOVA) are implemented. PedGe-
nie also can test quantitative TDT statistics based on meth-
ods of Allison (TDTg;) [23], Rabinowitz [35], and Monks
[11]. Covariate data can be incorporated into these quan-
titative TDT models. The quantitative TDT statistics are
made available by interfacing PedGenie with the freely
available QTDT software [36]. In brief, the real data and
each simulated genotypic null distribution are communi-
cated to the QTDT package, and results are parsed and
summarized over all simulations within PedGenie and an
empirical p-value is calculated as defined above.

For the traditional case-control analyses (e.g., chi-square,
ANOVA, etc.) included in PedGenie, the null hypothesis
of no association only is tested. Null genotypic configura-
tions are constructed by assigning genotypes to founders
and to descendents, via the Mendelian gene-drop, inde-
pendent of disease status.

For the transmission disequilibrium statistics in PedGe-
nie, the composite null hypothesis of "no linkage and no
association" is tested. This is the mathematical 'inclusive
or' statement, such that the composite null hypothesis (3
(1 - 26) = 0) is satisfied under three scenarios: 8 = 0 and
(1-20)#0;8=0and (1-20)=0;0rd=0and (1-26)
= 0. PedGenie generates the null hypothesis from the third
of these. As above, the null hypothesis of no association is
constructed by assigning genotypes to founders and to
descendents via the Mendelian gene-drop, which assign-
ment is independent of disease status. The null hypothesis
of no linkage is satisfied as the transmission of an allele
from parent to offspring is generated independent of dis-
ease status. The adequacy of generating a null distribution
by sampling from the composite null hypothesis of 'no
linkage and no association' is illustrated by the fact that
with 2,000 simulations PedGenie estimates p-values accu-
rate to the 3™ decimal place for the TDT, combined TDT
and quantitative TDT (see Table 1).

The TDT statistics within PedGenie are constructed pre-
cisely as presented by the original authors [10,23,34,35].
PedGenie is merely used to provide valid significance lev-
els, which account for the relatedness of multiple trios or
sibships in a pedigree. Hence, the robustness to popula-
tion stratification inherent in those transmission disequi-
librium statistics remains. However, with the case-control
statistics PedGenie will not protect against population
stratification bias if heterogeneous populations are
present in the data set.
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Defining genotype, allele, and haplotype groups
PedGenie has been developed to be general with respect
to how genotypes, alleles, combinations of genotypes, or
haplotypes are grouped together for an analysis. In the
simplest case, PedGenie is able to analyze data by a single
locus at a time approach, comparing for example, in a
biallelic system, carriers of a rare allele '2' (genotype = 2/2
or 1/2 or 2/1) to individuals with the wild type genotype
(1/1). User-defined weights can be assigned to these gen-
otype groups and analyzed using any of the above listed
statistical tests. The number of separate groups compared
is user-defined. Similarly, multiple alleles may be consid-
ered as the unit for analysis and grouped together as nec-
essary. For example, in a multi-allelic system, allele 1
could be a group, allele 2 could be another group, and all
other alleles could be considered a third group. For com-
posite genotype tests (involving genotypes at multiple
loci), PedGenie allows the user to define groups based on
genotypes across multiple loci. For example, a user may
wish to analyze individuals who are carriers of a rare allele
at locus 1 and homozygous at locus 2 compared to indi-
viduals with all other genotype combinations. For haplo-
type-based tests, analogous to the allele tests, the user can
define multiple haplotypes in a single group and compare
this group to other groups of haplotypes. Similarly to the
single locus case, the number of groups to be compared
remains user-defined.

Single locus genotype, composite genotype, and haplo-
types may be tested using any of the statistics available,
including TDT, sibTDT, and the combined TDT for
dichotomous traits. However, QTDT analyses are limited
to the capabilities of the QTDT package.

Functionality of PedGenie

We illustrate the validity and functionality of PedGenie
using three different data sets. The first two data sets are
simulated data to demonstrate that the techniques
employed by PedGenie are valid and robust. In the final
data set, we illustrate PedGenie's functionality and ability
to handle large, extended pedigrees with real data for
breast cancer and two tagging-SNPs in the NBS1 gene.

Validation of statistics with simulated independent data

The purpose of this first data set was simply to illustrate
that in set of independent individuals and a set of inde-
pendent nuclear families that PedGenie computes an
empirical p-value that corresponds to those from the
appropriate standard statistical distribution. The standard
distribution is defined as the distribution that typically
would be used for a particular test (e.g., the standard dis-
tribution for the Chi-square statistical test is the Chi-
square distribution).
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In the first data set, we simulated data for a biallelic
marker with a minor allele frequency of 0.2. We generated
a set of 2,000 independent cases and 2,000 independent
controls as well as 4,000 independent nuclear families
with two offspring. For the nuclear families, we assumed
that the two parents were independent and the offspring,
one of whom was affected, inherited alleles in a Mende-
lian fashion. No association between the biallelic marker
and affected status was simulated. We also generated a
quantitative trait for all individuals that was randomly
assigned and normally distributed with a mean of 50 and
a standard deviation of 10. The 2,000 independent case
and control data were used to validate the Chi-square,
Chi-squared trend, odds ratio, the standardized difference
in means statistic and ANOVA. The 4,000 independent
nuclear family data were used to test the TDT, sib-TDT,
combined trio/sib TDT, and the combined trio/sib QTDT
method by Monks [11]. Each of these validations was run
1,000 times on PedGenie using a different initial random
number seed. For each PedGenie analysis, the empirical
null distribution and p-value were determined from a
sample size of 2,000 null configurations and the allele fre-
quency estimation method 'all'.

Validation of inheritance with simulated pedigree data

The second data set was to illustrate that PedGenie appro-
priately accounts for relationships within a pedigree struc-
ture when performing the gene drop. We used simulated
data obtained from the 12t Genetic Analysis Workshop
(GAW12) [37] and compared empirical p-values from
PedGenie to an exact pedigree-based method proposed by
Slager and Schaid [20] based on the Armitage trend asso-
ciation statistic [38].

The Slager and Schaid method based on the Armitage test
for trend [20] accounts for relatedness of individuals by
measuring a trend in proportions according to a general
measure of genetic dosage, x, where x is a vector of weights
for each genotype. The Armitage test for trend degenerates
to the standard Chi-squared test for independence assum-
ing a dominant or recessive mode of inheritance when x =
(0,1, 1)orx = (0, 0, 1), respectively, where the three indi-
ces in the vector x represent the wild type, heterozygote
and homozygote genotypes. The Slager and Schaid
method, in brief, accounts for correlations between rela-
tives by correcting the variance estimate using a correla-
tion matrix that is a function of posterior inherited by
descent (IBD) sharing probabilities, estimated by GENE-
HUNTER [39]. However, prior probabilities using kinship
coefficients may also be substituted into the correlation
matrix. In this analysis, we compared PedGenie to the
Slager and Schaid method incorporating prior probabili-
ties, as these are the probabilities that are sampled using a
Mendelian gene-drop.
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The GAW12 simulated dataset provided complete pheno-
typic and genotypic data for 23 extended pedigrees of
1,000 living individuals. Complex relationships between
covariate data (quantitative traits, a disease liability, and
age-at-onset) and gene sequence variants were also simu-
lated [37]. We selected a single replicate (Replicate 42)
and analyzed the association of all variants with a minor
allele frequency > 0.01 in the MG1 gene and Q1, a quan-
titative trait; twenty-four percent of the variance of Q1 was
attributable to MG1. The effects of other covariates,
including age, sex, and an environmental component
(EF1) were regressed out of Q1 using linear regression
prior to the analyses. Individuals in the top tertile (333
individuals) for the residual genetic component of Q1
were designated cases, and those in the bottom tertile (N
= 333) controls. For these analyses, we considered a dom-
inant and recessive mode of inheritance for each variant
studied. We compared results from PedGenie using the
Chi-Square trend statistic, with weights designed to test a
dominant and recessive model, to the Slager and Schaid
exact method using prior IBD probabilities in the correla-
tion matrix. The empirical null distribution and p-value
were determined from a sample size of 2,000 null config-
urations and the allele frequency estimation method 'all'.

Testing of the NBS| gene and breast cancer

The functionality and ability of PedGenie to handle large
extended pedigrees was illustrated using individuals
selected from 139 Utah high-risk breast cancer pedigrees
of Northern and Western European descent, with family
size ranging from 1 (a single individual) to 1,195 individ-
uals in a single pedigree; however, typically only individ-
uals at the bottom of each pedigree were genotyped.
Individuals were selected and considered high-risk
because they belonged to pedigrees with rates of breast
cancer exceeding the population rate. This was deter-
mined using the Utah Population Database, a database
linking genealogy data to the Utah Cancer Registry
(UCR)[40] Breast cancer cases were selected to be most
likely not attributable to a BRCA1/2 mutation, because
either the breast cancer case themselves or other family
members tested negative for a BRCA1/2 mutation, or the
family had a low probability of a BRCA1/2 mutation
based on the number of breast cancer cases present and/
or ages at diagnosis of breast cancer within the family.
Breast cancer diagnosis information was obtained from
either medical records for the subjects or the UCR. All
breast cancer cases in the state of Utah must be reported
to the UCR by law, thus the UCR is a reliable information
source.

Previously we characterized the linkage disequilibrium
(LD) structure and identified two tagging-SNPs (tSNPs)
that capture 93.8% of the intragenic variation across the
NBS1 gene [41], and these two tSNPs have been geno-
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typed on our entire study population (see [41] for geno-
typing details). The two tSNPs used for this study were
1s12680687 (minor allele frequency = 0.28) and
1s709816 (minor allele frequency = 0.45). For genotype
quality control, six individuals were duplicated across all
plates and quality control samples were required to have
matching genotype assignments. Where possible, Mende-
lian inheritance was verified; samples with inheritance
incompatibilities were either re-genotyped and/or set to
missing if they could not be resolved.

From the 139 breast cancer pedigrees, we defined two
cohorts: a Case-Control cohort and a Nuclear Family
cohort. The Case-Control cohort illustrates PedGenie's
ability to perform standard association-based tests, while
the Nuclear Family cohort shows the transmission dise-
quilibrium statistics. The Case-Control cohort was com-
posed of 236 breast cancer cases matched to 236 controls
based on birth year (within five years), female gender, and
age-at-diagnosis, such that the control was cancer free at
the age the case was diagnosed. The matched controls
were also chosen from the breast cancer pedigree resource
and were selected to be as distantly related to any other
case or control as possible to increase power, and as old as
possible, while still matching by birth-cohort, to ensure
that they were less likely to become a case. Despite select-
ing the most distantly related individuals possible, it
should be noted that the Case-Control cohort contains
related individuals, and these relationships for the pur-
pose of association testing must be taken into account. For
the Nuclear Family cohort, we selected 39 parent/affected
offspring trios, with the non-transmitted alleles from the
two parents serving as controls, and 167 female sibships
each containing at least one affected and one unaffected
sibling, with the unaffected sibling(s) serving as con-
trol(s). Blood samples were collected on all subjects and
all individuals gave informed consent. This study was
approved by the University of Utah Institutional Review
Board.

We analyzed associations of the two NBS1 tSNPs with
breast cancer status as well as for a subgroup analysis of all
breast cancer cases, age-at-diagnosis. We examined each
tSNP independently and in multi-locus combinations as
composite genotype tests and haplotype-based analyses.
The empirical null distributions and p-values were deter-
mined from a sample size of 2,000 null configurations.
For the single locus analyses, the allele frequency estima-
tion method 'GeneCounter' was used. For the composite
genotype and haplotype analyses, for which PedGenie
requires haplotype frequencies and recombination frac-
tions between loci, haplotype frequencies were deter-
mined using 94 unrelated breast cancer cases (n = 47) and
controls (n = 47) selected from the 139 breast cancer ped-
igrees using an expectation-maximization algorithm [42].
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Table 2: Results for PedGenie Chi-square statistic and Slager and Schaid Armitage test for trend using GAW12 data'

SNP ID MOI2 Minor Allele Freq D" r2 PedGenie Chi-Square p-value: Mean Slager & Schaid Trend Test p-value
(SD) [Interquartile distance]

5782 D 0.092 - - <0.0014 2.06E-13

5782 R 0.092 - - 0.232 (0.010) [0.225-0.239] 0.213

5007 D 0.093 .00 1.00 <0.0014 3.42E-13

5007 R 0.093 1.00 1.00 0.232 (0.010) [0.225-0.238] 0.213

4848 D 0.40 1.00 0.064 0.030 (0.004) [0.027-0.033] 0.030

4848 R 0.40 1.00 0.064 0.693 (0.010) [0.687—-0.700] 0.688

11146 D 0.029 0.84 0.003 0.219 (0.009) [0.213-0.225] 0.212

11146 R 0.029 0.84 0.003 5 -5

'PedGenie results for the Chi-Square test averaged over 1000 runs are compared to the Slager and Schaid Armitage test for trend [20] using prior
coefficient of kinship probabilities in the correlation matrix. The 'answer' in this simulated data set is SNP 5782, dominant model.

2Mode of inheritance. D = dominant R = recessive

3D' and r2 linkage disequilibrium measures, calculated between SNP 5782 and each subsequent SNP
4The significance threshold of PedGenie is limited by the number of simulations used to create the empirical null distribution (i.e., 2,000). For this
result, all statistics based on observed values were less than the statistics based on simulated values.

5Result could not be calculated due to sparse data

The recombination fraction was set to zero for the gene-
drop as the two NBS1 tSNPs are only ~16 kb apart.

For haplotype analyses, PedGenie requires phase informa-
tion. We inferred phase information for all genotyped
subjects, ignoring relationships, using an expectation
maximization (EM) algorithm [42]. Only haplotypes that
could be assigned to an individual with >80% probability
were accepted. As the EM algorithm [42] is designed for
unrelated individuals, all assigned haplotypes were
checked for segregation within a family wherever possible.
Haplotypes that were incompatible within a family were
set to zero.

Results

Validation of statistics with simulated independent data
Table 1 shows the results comparing PedGenie p-values to
those derived from the standard distributions for simu-
lated data. Using both independent case-control and
nuclear family data, the empirical p-value results from
PedGenie compared well to results from the standard dis-
tribution, illustrating that for independent samples, the
Monte Carlo simulation employed by PedGenie is valid.
Several p-values from PedGenie were estimated precisely
to 3 decimal places when compared to the standard distri-
bution, the majority were within 0.001, and none were
significantly different from that expected compared to the
standard distribution.

Validation of inheritance with simulated pedigree data

Table 2 shows the results comparing the Chi-square trend
test (weighted to provide dominant and recessive tests)
from PedGenie to the Slager and Schaid Armitage trend
method [20] using GAW12 simulated pedigree data.
Overall, PedGenie compared well. Again, a p-value to 3
decimal places matched precisely between PedGenie and

the Slager and Schaid method, and other results were not
significantly different. There was a tendency for the signif-
icance results from PedGenie to be more conservative. The
Armitage test for trend asymptotically follows a Chi-
squared distribution with one degree of freedom and
some appreciable discrepancies between the Armitage sta-
tistic significance probabilities, assuming the asymptotic
distribution, and the exact Binomial probabilities have
been noted for the lower end of the distribution [38].
Overall, these results illustrate that PedGenie accounts for
relationships between individuals in an appropriate man-
ner.

Testing of the NBS| gene and breast cancer

Table 3 shows the characteristics of the breast cancer real
data set composed of 1,034 individuals: 462 cases and
572 controls. In the Case-Control cohort, complete geno-
type data was available for 231 cases and 235 controls. For
the Nuclear Family subset, there were 39 trios including
50 breast cancer cases, as some parents were also cases,
and 167 unique female sibships containing 181 cases and
275 controls. The Case-Control cohort was diagnosed at a
slightly older age than the Nuclear family cohort.

Table 4 reports all of the statistics that can be run by PedG-
enie for each of the two NBS1 tSNPs tested separately. We
observed nominally significant results for 1s709816 under
a dominant model for the Chi-square (p = 0.015) and
odds ratio tests (OR = 1.61, 95% CI: (1.10, 2.35), p =
0.019). In particular, it can be seen that the majority of the
difference observed in the dominant model for breast can-
cer status was due to heterozygous individuals compared
to the homozygous wild-type individuals (odds ratio =
1.77, 95% CI: (1.16, 2.72), p = 0.006). No significant
results were observed for the age-at-diagnosis data and no
significant results were observed using the TDT based tests
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Table 3: Characteristics of Breast Cancer Cohorts selected from 139 high-risk breast cancer pedigrees

Nuclear Family Cohort! Case-Control Cohort?

Trio Cases Trio Controls Sib Cases Sib Controls Cases Controls
No. with complete genotype data 50 62 181 275 231 235
Mean age at diagnosis (SD) 50.2 (12.3) NA 51.7 (16.2) NA 58.3 (13.0) NA
Mean age (SD) of controls at time of study NA 84.5 (9.4) NA 68.8 (15.0) NA 74.8 (14.7)

IThe Nuclear Family cohort consists of 39 trios (i.e., two parents and their affected daughter) and 167 unique female sibships. Some of the parents
of the Trios were also breast cancer cases. Some sibships contained more than one female breast cancer case and more than one female control
sibling.

2The Case-Control cohort originally was composed of 236 breast cancer cases matched to 236 controls. Individuals in this cohort are also related

to one another. Genotyping could not be completed for five cases and one control.

with Nuclear Family data for either affected status or age-
at-diagnosis phenotypes.

The composite genotype results for the NBS1 tSNPs are
reported in Table 5 using the Case-Control cohort. None
of the various combinations of inheritance models across
the two loci achieved significance.

Table 6 illustrates the haplotype results from PedGenie for
NBS1, again using the Case-Control cohort. Comparing
all haplotypes to the most common haplotype (1-1) for
breast cancer status, a single haplotype (1-2) was found to
be nominally significant (p = 0.03). No haplotypes were
found to be significant for age-at-diagnosis.

Discussion

This paper presents an approach and software (PedGenie)
for association testing that incorporates family data of any
size or structure, allowing for a mixture of structures from
singletons to large extended pedigrees and genealogies to
be analyzed together. The approach can be used to gener-
ate valid tests for any statistic. It is intuitively simple to
understand and efficiently utilizes all information availa-
ble within a family resource.

Another advantage of PedGenie is that it does not require
a quantitative trait or the test statistic itself to have a
known distribution. Thus, many of the inflexibilities of
traditional tests can be avoided. For instance, the QTDT
software requires that the quantitative trait be normally
distributed. In contrast, using PedGenie to calculate the
empirical p-value for an observed QTDT statistic does not
necessitate this assumption. The traditional TDT and sib-
TDT require that a single trio or a single-sibship be
selected from each pedigree to be valid tests of both link-
age and association. In contrast, PedGenie, which is able
to test multiple nuclear families at a time within a pedi-
gree, uses all available data in the pedigree.

Here we have demonstrated PedGenie's ability to perform
valid classical tests of dichotomous outcome as well as
tests involving quantitative trait data. Multiallelic markers
can be analyzed, with user-defined groups, if desired.
Tests of composite genotype data and haplotype analyses
can all be performed, including composite genotype and
haplotype TDT statistics.

We illustrated PedGenie's validity by examining its ability
to simulate correctly from the empirical null distribution
a p-value that corresponds well to the standard distribu-
tion for a particular statistical test. We have also shown
that PedGenie accounts for relationships within a pedi-
gree similar to an exact method. Finally, we illustrated
PedGenie's functionality and ability to assess associations
between the outcome variables breast cancer status and
breast cancer age-at-diagnosis with tSNPs in the NBSI
gene in some large Utah high-risk breast cancer families.
In this real data, we found a nominally significant associ-
ation for a common variant in the NBS1 gene (rs709816,
p = 0.019) indicating a potential role in breast cancer sta-
tus, particularly for heterozygous carriers of this tSNP (p =
0.006). The magnitude of the association results when
variants were considered separately versus in combination
(unphased multi-locus or phased haplotype data) was
strongest for the tSNP rs709816 analyzed separately. For
the two NBSI1 tSNPs analyzed, we observed moderate
linkage disequilibrium accounting for minor allele fre-
quencies (D' = 0.775) and low absolute LD (D = 0.128),
indicating that the haplotype results are likely driven by
1s709816. The decreased significance observed for the
composite genotype and haplotype analyses further cor-
roborated these results. As the tSNP rs709816 results in a
synonymous (silent) mutation in exon 7 of the NBSI
gene, the most likely causal allele for the association
observed between the NBS1 gene and breast cancer is in
linkage disequilibrium with this particular SNP.

Prior evidence for the involvement of the NBS1 gene with

breast cancer is limited. Homozygous truncating germline
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Table 4: Association of each NBS| tSNP with breast cancer status and age-at-diagnosis of breast cancer

a. Case-Control cohort

rs12680687 rs709816
Weight Statistic Statistic (Empirical 95% ClI) p Statistic (Empirical 95% ClI) p
Dominant Chi-Square! 1.42 0.26 6.35 0.015
Odds Ratio! 1.25 (0.85, 1.83) 0.25 1.61 (1.10, 2.35) 0.019
Difference in Means? 0.68 0.51 -0.11 0.91
Recessive Chi-Square! 2.48 0.13 0.076 0.78
Odds Ratio! 0.56 (0.24, 1.31) 0.18 0.93 (0.51, 1.68) 0.78
Difference in Means? -0.57 0.60 -0.47 0.62
Additive Chi-Square Trend! 0.086 0.80 2.73 0.10
Odds Ratio
HET vs. WT! 1.43 (0.95, 2.16) 0.079 1.77 (1.16, 2.72) 0.006
HOM vs. WT! 0.64 (0.27, 1.49) 0.31 1.22 (0.68, 2.19) 0.53
Means
HET vs. WT2 0.80 0.44 0.037 0.97
HOM vs. WT? -0.34 0.74 -0.42 0.66
ANOVA2 0.41 0.68 0.10 0.91
Allele tests Chi-Square! 0.09 0.79 2.99 0.084
Odds Ratio! 1.047 (0.77, 1.42) 0.78 1.27 (0.97, 1.67) 0.088
Means? -8.19 0.31 -4.05 0.61
b. Nuclear Family cohort
rs12680687 rs709816
Statistic p Statistic p
Trio TDT! 0.15 0.72 0.04 0.83
Sib TDT! 1.52 0.095 0.45 0.58
Combined TDT! -1.20 0.23 -0.41 0.70
Trio QTDT2 3 - - -
Combined QTDT? 0.92 0.37 0.69 0.51

IBreast cancer status was used as the dependent variable
2Age-at-diagnosis was used as the dependent variable

3The Trio QTDT requires a minimum of 30 trio sets that contain at least one heterozygous parent, complete genotype data on the parents, and
age-at-diagnosis of the affected offspring. We had only 25 probands that met all of these criteria; hence the test could not be run.

mutations in the NBS1 gene (~90% due to 657del5 muta-
tion on exon 6) result in the Nijmegen chromosomal
breakage syndrome (NBS), a rare autosomal recessive dis-
order that includes an increased susceptibility to lym-
phoid malignancy. Heterozygous carriers of the 657del5
mutation have been suggested in a series of Polish case-
control studies to be associated with an increased risk of
breast cancer [43-45], although the NBS1 657del5 Slavic
founder mutation is relatively rare even in Poland [44,45].
Several other distinct NBST mutations of non-Slavic ori-
gin have been described [46-48] but their association with
breast cancer has not been studied in depth. A limited
number of common SNP variants across the NBS1 gene
have been studied for their association with breast cancer
[49] but no significant differences between breast cancer
cases and controls were observed. In our study, we system-
atically identified tagging-SNPs for the NBS1 gene, tested
the tSNPs in high-risk breast cancer families that are rela-
tively homogeneous, and accounted for all known rela-

tionships in our statistical tests. The NBS1 protein is
involved in variety of processes including sensing DNA
damage, DNA double strand break repair, telomere main-
tenance, and cell cycle checkpoint regulation [50,51],
hence it is a likely candidate for a breast cancer suscepti-

Table 5: Associations of NBS| with breast cancer status and age-
at-diagnosis using a composite genotype analysis in the Case-
Control cohort!.

Breast Cancer Status Age-at-Diagnosis

Model Odds ratio (Empirical 95% ClI) p Means test  p
Dom-Dom 1.23 (0.85, 1.79) 0.28 0.30 0.77
Rec-Rec 0.49 (0.18, 1.29) 0.13 0.005 0.99
Rec-Dom 0.56 (0.25, 1.27) 0.16 -0.59 0.55
Dom-Rec 0.90 (0.48, 1.71) 0.77 -0.79 0.43

IResults for this table are derived from requiring specific inheritance
models for the two tSNPs for NBS/ (rs12680687 and rs709816). Dom
= dominant, Rec = recessive.
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Table 6: Associations of NBS| with breast cancer status and age-at-diagnosis using a haplotype analysis in the Case-Control cohort

Breast Cancer Status

Age-at-Diagnosis

Haplotype Freq! Odds ratio
-1 0.63 Reference
2-2 0.21 1.25
1-2 0.12 1.73
2-1 0.037 1.13

0.25
0.03
0.74

Empirical 95% CI Means test p
- Reference -
(0.86, 1.82) 0.31 0.76
(1.04, 2.99) -1.079 0.28
(0.53, 2.39) -0.10 0.92

bility gene. It follows that replication of our results and
further studies involving other NBS1 variants are essen-
tial.

Empirical methods are often criticized for the computa-
tion time required to compute an empirical p-value; how-
ever, this does not seem to be a serious problem with
PedGenie. Analysis of all our 139 pedigrees (3,761 total
individuals) for the Case-Control cohort for two tSNPs
tested separately, 13 tests, and 2000 simulations each
using the allele frequency estimation method ‘'all'
required 4 minutes, 30 seconds using a Dell Precision 650
n 2 x 2.8 GHz Xeon workstation. The same analysis using
the allele frequency estimation of 'GeneCountAllele' took
24 minutes, 8 seconds. The majority of analysis time
required for PedGenie is spent generating the null geno-
typic configurations.

Family-based association methods have the disadvantage
of being less efficient than the traditional case-control
study. The TDT test, for example, has an efficiency of 2/3
for father-mother-child trios compared to case-control
studies [52] and this increases the cost of a family-based
design. This disadvantage argues strongly that new
resources for association should concentrate on ascertain-
ing independent individuals. However, for already ascer-
tained resources, as we have here for breast cancer,
pedigree-based methods are a reasonable choice and valid
methods, such as those described here, are required.

Conclusion

Our empirical method provides a valid approach to per-
form association and TDT testing in pedigrees of any size
for both qualitative and quantitative data. Our software,
PedGenie, which currently implements a broad range of
association-based statistics is freely available from our
website.

Availability and requirements
Project name: PedGenie version 1.2

Project home page: http://bioinformatics.med.utah.edu/
PedGenie

Operating system: Platform independent

Programming language: Java 1.4 and Java 1.5 (for Gene-
CountAllele method)

Other requirements: Java 1.5 or higher
License: none required
Any restrictions to use by non-academics: none

Abbreviations
tSNP - tagging-single nucleotide polymorphism

TDT - transmission disequilibrium test
IBD - inherited by descent

EM - expectation maximization

LD - linkage disequilibrium
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