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Abstract
Background: Non-coding RNAs (ncRNAs) have a multitude of roles in the cell, many of which
remain to be discovered. However, it is difficult to detect novel ncRNAs in biochemical screens.
To advance biological knowledge, computational methods that can accurately detect ncRNAs in
sequenced genomes are therefore desirable. The increasing number of genomic sequences
provides a rich dataset for computational comparative sequence analysis and detection of novel
ncRNAs.

Results: Here, Dynalign, a program for predicting secondary structures common to two RNA
sequences on the basis of minimizing folding free energy change, is utilized as a computational
ncRNA detection tool. The Dynalign-computed optimal total free energy change, which scores the
structural alignment and the free energy change of folding into a common structure for two RNA
sequences, is shown to be an effective measure for distinguishing ncRNA from randomized
sequences. To make the classification as a ncRNA, the total free energy change of an input sequence
pair can either be compared with the total free energy changes of a set of control sequence pairs,
or be used in combination with sequence length and nucleotide frequencies as input to a
classification support vector machine. The latter method is much faster, but slightly less sensitive
at a given specificity. Additionally, the classification support vector machine method is shown to be
sensitive and specific on genomic ncRNA screens of two different Escherichia coli and Salmonella
typhi genome alignments, in which many ncRNAs are known. The Dynalign computational
experiments are also compared with two other ncRNA detection programs, RNAz and QRNA.

Conclusion: The Dynalign-based support vector machine method is more sensitive for known
ncRNAs in the test genomic screens than RNAz and QRNA. Additionally, both Dynalign-based
methods are more sensitive than RNAz and QRNA at low sequence pair identities. Dynalign can
be used as a comparable or more accurate tool than RNAz or QRNA in genomic screens,
especially for low-identity regions. Dynalign provides a method for discovering ncRNAs in
sequenced genomes that other methods may not identify. Significant improvements in Dynalign
runtime have also been achieved.
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Background
RNA plays many important biological roles other than as
a transient carrier of amino acid sequence information. It
catalyzes peptide bond formation [1,2], participates in
protein localization [3], serves in immunity [4], catalyzes
intron splicing and RNA degradation [5], serves in dosage
compensation [6], is an essential subunit in telomerase
[7], guides RNA modification [8,9], controls development
[10,11], and has an abundance of other regulatory func-
tions [12-14].

Non-coding RNAs (ncRNAs) are transcripts that have
function without being translated to protein. The number
of known ncRNAs is growing quickly [15-17], and their
significance had been severely underestimated in classic
models of cellular processes [18]. It is desirable to develop
high-throughput methods for discovery of novel ncRNAs
for greater biological understanding and for discovering
candidate drug targets.

However, novel ncRNAs are difficult to detect in conven-
tional biochemical screens [19]: they are frequently short
[18,20], often not polyadenylated [19], and might only be
expressed under specific cellular conditions [20-22].
Experimental screens have found many ncRNAs [23,24],
but have demonstrated that no single screen is capable of
discovering all known ncRNAs for an organism. A more
effective approach, demonstrated in previous studies [25-
30], may be to first detect ncRNA candidates computa-
tionally, then verify them biochemically. Considering the
number of available whole genome sequences [31-37],
this approach can be applied to a large and diverse data-
set, and has massive potential for novel ncRNA discovery.

The effectiveness of a computational ncRNA detection/
classification method is determined by measuring its sen-
sitivity and specificity on a test set of known ncRNAs and
negative sequences. Sensitivity and specificity are defined
as:

where true positives are ncRNAs that are detected by the
method, true negatives are sequences that are not ncRNA
and are not classified as ncRNA by the method, false pos-
itives are sequences that are not ncRNA, but are classified
as ncRNA by the method, and false negatives are ncRNAs
that are missed by the method.

Generally, there is a tradeoff between sensitivity and spe-
cificity – tailoring a computational method to increase

one measurement may decrease the other. Throughout
this paper, receiver operating characteristic (ROC) curves
are used to visually express the quality of a ncRNA classi-
fication method by plotting sensitivity as a function of the
false positive rate (1 – specificity), providing a complete
description of all possible sensitivity/specificity tradeoffs.
It should be noted that in a whole genome screen, high
specificity is more essential than high sensitivity due to
the large ratio of non-ncRNA sequence to ncRNA
sequence. Low specificity results in an overwhelming
number of false positives, swamping the number of true
positives, and increasing the difficulty, time, and cost of a
biochemical verification screen.

It has been proposed that ncRNAs may form secondary
structures that are more stable than would be expected
from non-ncRNA sequences of the same nucleotide or
dinucleotide composition [38-41]. This hypothesis has
been controversial; it has been suggested that it is not true,
or at least that the stability difference is not statistically
significant enough to be a sensitive and specific criterion
for classifying sequences as ncRNA [19] (also claimed on
the basis of a small set of tRNA in [42]). However, the pro-
gram RNAz was recently reported [43] to use folding free
energy changes of single sequences, combined with a
structure conservation index (SCI) determined from a
fixed, multiple sequence alignment, to effectively detect
ncRNA. The SCI is the ratio of the consensus secondary
structure free energy change (which also includes terms
rewarding mutations evidencing structure conservation)
determined by RNAalifold [44] to the average folding free
energy change for each sequence determined alone. This
indicates that incorporating secondary structure conserva-
tion into a model based on folding free energy change
improves the quality of prediction.

Here, the effectiveness of the program Dynalign [45,46] as
a tool for detection of ncRNA on the basis of predicted
folding free energy change is investigated. Dynalign is a
dynamic programming algorithm for simultaneously
computing the lowest free energy common secondary
structure and the structural alignment for two sequences.
In brief, Dynalign minimizes ΔGtotal:

ΔG°total = ΔG°1 + ΔG°2 + (number of gaps in alignment) ×
ΔG°gap penalty [eq. 3]

where ΔG°1 and ΔG°2 are the predicted folding free energy
changes of secondary structures of sequence 1 and
sequence 2, respectively, and ΔG°gap penalty is a penalty
applied for each gap in the alignment. Only conserved
helices, i.e. those that appear in both sequences, are pre-
dicted. The conformational free energy changes are pre-
dicted using an empirical nearest neighbor model [47-49]
and ΔG°gap penalty was empirically determined by maximiz-

sensitivity
true positives

true positives false negatives
e=

+
[ qq  . ]1

specificity
true negatives

true negatives false positives
e=

+
[ qq  2. ]
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ing structure prediction accuracy [45]. Dynalign predicts
secondary structure with significantly greater accuracy
than single sequence structure prediction methods
because of the additional information contained in the
structural alignment [45,46]. It requires no sequence
identity between the two sequences to perform well
because there are no energy terms (equation 3) that
address sequence identity. Therefore, Dynalign is robust
for cases in which extensive covariation of base-paired
nucleotides exists as a result of sequence evolution.

Dynalign is initially implemented in this paper as a com-
putational ncRNA classifier by using it to compute the
ΔG°total of an input sequence pair, then comparing that
value to the mean of ΔG°totals of control sequence pairs
generated specifically for that input pair. If the ΔG°total of
the input sequence pair is sufficiently lower than the
mean ΔG°total of the set of controls, the input sequences
are classified as ncRNA. The z score is used to quantify this
difference, defined as:

z = (x - μ)/σ  [eq. 4]

where x is the ΔG°total of the input sequence pair, and μ
and σ are the mean and standard deviation of the ΔG°totals
of sequence pairs in the control set, respectively. There-
fore, the z score is just the number of standard deviations
that the ΔG°total of the input sequence pair is above or
below the mean of its set of controls.

It should be noted that the definition of z score implies
that the control set values follow a normal distribution,
but it has been noted that the distribution of ΔG°s for sin-
gle sequences is actually extreme value with skew towards
lower folding free energies [19]. Tests (data not shown)
suggest that the distributions of ΔG°totals of sequence
pairs in control sets are also skewed towards lower free
energies. However, the z score is an effective measure for
classification and has been used in this manner elsewhere
[19,41,43,44].

This approach is tested on a large database of known 5S
rRNA and tRNA sequences and artificially generated neg-
atives, demonstrating that the z score based on the
ΔG°total can be used as a sensitive and specific classifica-
tion measure. These results are also compared to RNAs-
tructure [49], a dynamic programming algorithm for
single sequence secondary structure prediction by free
energy minimization. Also, a support vector machine
(SVM) is implemented to speed the classification process
by training an SVM classifier that does not require a con-
trol set for an input sequence pair.

Additionally, the capability to use Dynalign as an effective
genomic ncRNA screening tool is illustrated with a whole

genome screen on a crude alignment of the Escherichia coli
and Salmonella typhi genomes [31,32], which contain a
significant number of known ncRNAs. Many methods
have been employed for genomic screens for ncRNAs of
specific families [50-58]; benchmarks and discussion in
this paper are focused on the premise of using Dynalign as
a general genomic screening tool for diverse, novel
ncRNAs.

The above tests are benchmarked against two leading
ncRNA prediction programs, QRNA [59] (version 2.0.2c)
and RNAz [43] (version 0.1.1). RNAz uses a regression
SVM to compute a z score for each sequence in a multiple
sequence alignment, then uses the mean of those z scores
and the SCI as input to a classification SVM. While struc-
ture predictions by Dynalign and RNAz are based on cal-
culating the most stable secondary structure using
experimentally determined thermodynamic parameters,
QRNA uses a fully probabilistic covariance analysis
approach that compares scores of three models – ncRNA,
open reading frame, or other (null hypothesis) – for a pair
of sequences.

Unlike Dynalign, which optimizes its own structural
alignment, both QRNA and RNAz require a fixed
sequence alignment as input. It is shown here that at low
pairwise sequence identity, the Dynalign approach out-
performs the fixed alignment approach. Additionally,
Dynalign is shown to be a more sensitive ncRNA finder on
whole genome screen tests.

Results and discussion
Improving time and memory performance of Dynalign
Dynalign's complexity is O(N3M3) in time and O(N2M2)
in storage, where N is the length of the shorter sequence
and M is the maximum separation parameter that limits
the set of sequence alignments that are considered
[45,46]. For nucleotide i in the first sequence to align to
nucleotide k in the second sequence:

| i - k | = M  [eq. 5]

must be satisfied. The M parameter therefore reduces the
set of alignments that are considered by Dynalign and
hence the computational cost. Similar constraints have
been used by others [60-62] to provide computational
tractability.

To improve the efficiency of Dynalign, two strategies have
been employed. The first was to recast the implementa-
tion of the M parameter to a form that scales with the dif-
ference in sequence length of the two sequences, so that
for i and k to align:

| i × (N2/N1) - k | = M  [eq. 6]
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must be satisfied, where N1 is the total length of the first
sequence and N2 is the total length of the second
sequence. This constraint automatically allows the 3' ends
of the sequences (i = N1 and k = N2) to align for any M and
any difference in sequence length. With equation 5, M
had to be at least as large as the difference in lengths of the
sequences in order for the 3' ends of the sequences to
align. Now, with equation 6, significantly smaller M sizes
can be used with Dynalign. For example, tRNA sequences
can now be folded with an M = 6, where previously M =
15 was used, resulting in a significant runtime improve-
ment without affecting accuracy.

The second approach employed to accelerate Dynalign
was to determine base pairs that are unlikely to form on
the basis of single sequence folding and then not consider
those pairs in the Dynalign calculation. Pairs that would
result in secondary structures with free energy greater than
the lowest free energy structure by more than 30%, as
determined by energy dot plots [63], are excluded from
consideration in the Dynalign calculation [49]. Table 1
shows that nearly 99% of known base pairs are found
within this energy increment, hence this heuristic has little
effect on the accuracy of Dynalign calculations. This pre-
computation of structural information by single sequence
secondary structure prediction is similar to approaches
used by Hofacker et al [61] and Holmes [60] to speed the

alignment of RNA sequences using secondary structure
information.

For the benchmarks performed previously [46], using
these two methods does not lower the accuracy of Dyna-
lign secondary structure predictions (Table 2). Table 3
shows the calculation time and memory requirements for
three pairs of RNA sequences with N from 77 to 217
before and after both of the above improvements. Calcu-
lations that use the improved Dynalign are completed in
less than a twentieth of the time required for calculations
using the previous Dynalign. The calculation time is now
reduced to a level similar to FOLDALIGN [62], another
dynamic programming algorithm that determines the sec-
ondary structure common to two unaligned sequences.
The revised Dynalign is available for download from the
Mathews lab website [64] as both source code for local
compilation and as part of the RNAstructure package for
Microsoft Windows.

Tests by z score classification of single sequences
To test the effectiveness of classifying single sequences as
ncRNA on the basis of a folding free energy change, RNAs-
tructure [49] was used to compute the minimum folding
free energy change for a test set of 1,582 known 5S rRNA,
tRNA, and negative sequences. A negative sequence was
generated from each real ncRNA by the Altschul-Erikson

Table 1: Percent of known base pairs in predicted suboptimal structures for single sequences.

Maximum percent change in free energy from lowest free energy structure

RNA Type1 1% 5% 10% 20% 30% 50%

SSU (16S) rRNA 74.5 ± 21.9
(80.5 ± 16.0)2

88.1 ± 14.9
(96.8 ± 2.7)2

97.1 ± 13.6
(97.2 ± 1.4)2

99.2 ± 8.2
(97.2 ± 1.4)2

99.3 ± 7.2
(97.2 ± 1.4)2

99.3 ± 3.4
(97.2 ± 1.4)2

LSU (23S) rRNA 84.4 ± 8.9
(91.9 ± 13.4)2

96.8 ± 3.8
(97.9 ± 1.2)2

98.1 ± 1.2
(98.0 ± 0.7)2

98.1 ± 1.2
(98.0 ± 0.7)2

98.1 ± 1.2
(98.0 ± 0.7)2

98.1 ± 1.2
(98.0 ± 0.7)2

5S rRNA 74.5 ± 25.6 88.1 ± 20.1 97.1 ± 7.4 99.2 ± 1.6 99.3 ± 1.4 99.3 ± 1.4
Group I Intron 79.0 ± 12.6 93.5 ± 7.6 98.3 ± 1.4 98.4 ± 1.4 98.4 ± 1.4 98.4 ± 1.4
Group I Intron – 2 74.4 ± 13.6 92.8 ± 8.0 97.1 ± 1.7 97.1 ± 1.7 97.1 ± 1.7 97.1 ± 1.7
Group II Intron 91.9 ± 5.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
RNase P 79.8 ± 11.0 95.5 ± 2.6 98.4 ± 1.2 98.4 ± 1.2 98.4 ± 1.2 98.4 ± 1.2
RNase P – 2 75.0 ± 7.9 95.6 ± 4.9 98.3 ± 1.5 98.3 ± 1.5 98.3 ± 1.5 98.3 ± 1.5
SRP RNA 73.1 ± 25.2 90.7 ± 14.3 95.5 ± 8.2 97.1 ± 2.7 97.2 ± 2.6 97.2 ± 2.6
tRNA 87.0 ± 18.2 94.5 ± 13.3 97.9 ± 7.8 99.3 ± 4.6 99.6 ± 3.2 99.8 ± 1.0
Average3 80.5 ± 6.7 93.4 ± 4.2 97.8 ± 1.3 98.7 ± 0.9 98.8 ± 0.9 98.8 ± 1.0

1The database of structures was assembled for previous studies of secondary structure prediction [48] and is derived from a diverse set of 
databases [76, 77, 81-84].
2The large and small subunit rRNA sequences are divided into domains of less than 700 nucleotides for structure prediction. In parenthesis are the 
accuracies when the whole sequence is folded at once.
3The average is calculated excluding the second database of Group II introns and RNase P sequences as was done in [48].
The percent of known base pairs contained in at least one predicted suboptimal structure within a specified percent difference in free energy from 
the minimum free energy. For example, 99.2% of known base pairs in 5S rRNA secondary structures are found on average within the predicted 
structures with less than 20% difference in free energy from the lowest free energy structure. These numbers were calculated from an energy dot 
plot using the thermodynamic parameters of [49]. On average, 98.7% of known base pairs occur in at least one suboptimal secondary structure 
within 20% or less difference in free energy from the minimum free energy structure. This accuracy remains similar as the percent energy difference 
is increased to 30% or 50%.
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sequence shuffle that exactly preserves the nucleotide and
dinucleotide (i.e. AA, AU, AC, etc.) frequencies of the real
ncRNA [41,65]. Because the stabilities of base pairs are
predicted using a nearest neighbor model that considers
the sequence identity of two stacked pairs, negative and
control sequences must preserve the dinucleotide fre-
quencies of the original sequence, while also breaking the
nested base pair structure [41,42]. The negatives are
needed to test the rate of false positive classification to
determine specificity.

To compute the z score, each sequence in the test set had
a control set of 100 sequences generated specifically for it
using the Altschul-Erikson shuffle, and their minimum
folding free energy changes were determined by RNAs-
tructure. The z score histograms for 5S rRNA, tRNA, and
negative sequences generated from them are shown in Fig-
ure 1.

Sequences below a cutoff z score are classified as ncRNA.
However, rather than pick a single z score cutoff for classi-
fication and report those results, iterations were per-
formed over a wide range of z score cutoffs in order to
construct an ROC curve (Figure 2) expressing sensitivity as

a function of the false positive rate, thus showing the over-
all quality of the ncRNA classification method for all sen-
sitivity/specificity tradeoffs. Figure 2 shows that tRNA
sequences are classified with better sensitivity (for all spe-
cificities) than 5S rRNA sequences using either method,
which suggests that tRNA sequences have a lower pre-
dicted folding free energy than 5S rRNA sequences versus
matched controls.

Tests by z score classification of sequence pairs
To test the effectiveness of classifying pairs of sequences as
ncRNA using Dynalign on the basis of the ΔG°total-based
z score, z scores were determined for a test set of 3,302
known 5S rRNA, tRNA, and negative sequence pairs. Neg-
ative sequence pairs were generated from real sequence
pairs by shuffling the columns in the real sequence pair
gapped global alignment, then removing gaps. Three con-
trol generation methods were used for each sequence pair
to randomize the nucleotide order and remove the nested
base pair structure while preserving other sequence prop-
erties. Because Dynalign's computation time is greater
than that of RNAstructure, the number of controls per
sequence pair was limited to 20 to make the calculation
time feasible.

Table 3: Dynalign calculation time and memory requirements.

Dynalign before acceleration Dynalign after acceleration

System Sequence 1 Sequence 2 Length (nt) M Time
(hr:min)

Memory
(MB)

M Time
(hr:min)

Memory
(MB)

tRNA RD0260 RE6781 77 15 0:22 (0:24) 33 (57) 6 0:01 (0:01) 12 (24)
5S rRNA H. volcanii A. globiformis 122 15 1:11 (1:09) 76 (85) 6 0:03 (0:03) 21 (30)
R2 3' UTR RNA D. takahashii D. melanogaster 217 24 26:05 491 8 0:39 (0:35) 81 (104)

Calculation times and memory use are reported for a 3.2 GHz Intel Pentium 4 with 1 GB RAM running Red Hat Enterprise Linux using the gcc 
3.2.3-42 compiler. In parentheses are time and memory requirements on a laptop with a 3.06 GHz Pentium 4 processor and 1 GB of RAM running 
Microsoft Windows XP Professional using the Microsoft C++ .NET 2002 compiler. For Linux, CPU time is reported; for Windows, wall time is 
reported. "Length" is length of the first sequence. Sequences are obtained from [76, 77, 85, 86]. Note that this is the time requirement including 
suboptimal secondary structure prediction. Slightly less than half the computer time is required to find only the lowest free energy common 
structure.

Table 2: Secondary structure prediction accuracy with and without speed improvements for tRNA and 5S rRNA sequences.

Without speed improvements With speed improvements

RNA type Sensitivity PPV Best sensitivity Sensitivity PPV Best sensitivity

tRNA 92.9 ± 12.6 92.7 ± 14.3 98.8 ± 4.3 93.0 ± 12.3 92.7 ± 14.1 99.1 ± 2.8
5S rRNA 91.7 ± 7.0 82.0 ± 7.1 97.9 ± 3.2 91.7 ± 6.9 81.9 ± 7.0 98.0 ± 3.0

Sensitivity is the percent of known base pairs correctly predicted. Positive predictive value (PPV) is the percent of predicted base pairs that are in 
the known structure. Best sensitivity is the sensitivity of the most sensitive structure in a set of 750 suboptimal structures, i.e. structures with 
folding free energy change similar to the lowest free energy structure. Sensitivity and positive predictive value are calculated as described previously 
[46]. The tRNA and 5S rRNA datasets are sets of randomly chosen sequences, set sizes 40 and 14, respectively, used for benchmarks previously 
[46]. Accuracies are reported as averages for all pairwise combinations of sequences, and single standard deviations are reported as errors. The 
average accuracy of secondary structure prediction by Dynalign is essentially unchanged by pre-filtering base pairs and changing the implementation 
of the M parameter. Without speed improvements, M was set to 15 for both tRNA and 5S rRNA. With speed improvements, M was 6 for tRNA 
and 7 for 5S rRNA for these benchmarks.
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The first two control generation methods focus on pre-
serving dinucleotide frequencies (i.e. frequencies of AA,
AU, AC, etc.) and are applied to each sequence in the orig-
inal pair separately, without regard for alignment. As with
prediction from single sequences, because stability contri-
butions of each base pair are dependent on the base pairs
on which it is stacked, it may be necessary to control for
the dinucleotide frequencies [41,42]. The first-order
Markov chain sampling method for control sequence gen-
eration approximately preserves the original dinucleotide
frequencies [41] (resulting in more variation in the con-
trol set), while the Altschul-Erikson shuffle method for
control generation exactly preserves both nucleotide and
dinucleotide frequencies, with the restriction that the first
and last nucleotide of the shuffled sequence are exactly
the same as the original [65].

The third control generation method is a columnwise
shuffle of a global alignment that approximately preserves
the percent identity of the original sequence alignment.
Although removing gaps and re-aligning the columnwise
shuffled sequences results in a different alignment, the
change in percent identity from the original sequence pair
is not as drastic as with the other two control methods. For
example, columnwise shuffling a sequence pair align-
ment, followed by re-alignment, results in a mean percent
identity change of 2.57, with a standard deviation of 2.74;
however, the mean and standard deviation of percent
identity change if Altschul-Erikson shuffles are used are -
11.30 and 9.28, respectively. It is reasonable that rand-
omizing sequences separately and re-aligning them results

in a greater change (in most cases, a decrease) in percent
identity of the sequence pair, compared to shuffling the
alignment in columns.

ROC curves comparing effectiveness of the three control
generation methods are plotted in Figure 3. The column-
wise shuffle control method produces the highest sensitiv-
ities for all specificities, and is therefore the best approach
of the three. The distributions of z scores for 5S rRNA,
tRNA, and negative sequence pairs for trials using this
control method are shown in Figure 4, and the separation
of real ncRNA and negative sequences is significantly
more distinct than in Figure 1 (single sequence z scores).
Additionally, the Altschul-Erikson shuffle control genera-
tion method is more effective than the first-order Markov
chain sampling method.

Each control generation method was also tried using two
different values of the M parameter, M = 6 and M = 8, for
computation of the input sequence pair and the control
set ΔG°totals (columnwise shuffle control generation
method results in Figure 5, complete results for all meth-
ods in Additional File 1 in "Additional Files"). It was
found that the higher M parameter improves the quality
of classification for all control generation methods, at the
expense of longer runtime.

The quality of the best control generation method is also
examined when 5S rRNA and tRNA are separated into dif-
ferent sets and tested independently (Figure 6). It was dis-
covered that this method is generally more sensitive at a

Distribution of single sequence z scores for 5S rRNA, tRNA, and negative sequencesFigure 1
Distribution of single sequence z scores for 5S rRNA, tRNA, and negative sequences. Distributions of RNAstruc-
ture-predicted z scores computed on the basis of folding single sequences for 5S rRNA and negatives generated from them 
(left figure) and tRNA and negatives generated from them (right figure). Real ncRNA are white, negatives are black. Controls 
were generated by the Altschul-Erikson dinucleotide shuffle of original sequence, with 100 controls for each test set sequence. 
309 5S rRNA sequences and 482 tRNA sequences, plus one negative sequence generated from each real sequence by the Alt-
schul-Erikson shuffle, were used for the test set.
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given specificity for detecting 5S rRNA than tRNA (the
opposite of the trend than observed in classification of
single sequences in Figure 2). Finally, ncRNA classifica-
tion using single sequences is compared with the
sequence pair approach in Figure 7. This shows signifi-
cantly better performance for the two sequence approach
with Dynalign as compared to single sequences.

Because RNAz outputs the probability (P value) that an
input sequence alignment is ncRNA, it is possible to con-
struct an RNAz ROC curve for the same test set as Dyna-
lign, except by varying the sensitivity/specificity tradeoff
by iterating over P value cutoffs for classification. If a
sequence alignment input to RNAz has a P value greater
than the cutoff, it is classified as ncRNA. The quality of

classification for RNAz as compared to the Dynalign z
score method is shown in Figure 8. While RNAz is more
sensitive at specificities above approximately 98.5%, the
Dynalign z score method is more sensitive at lower specif-
icities.

RNAz requires pre-aligned sequences as input, which is a
disadvantage at lower sequence identities because, for
highly divergent sequences, an optimal sequence align-
ment prepared by an algorithm that minimizes an align-
ment identity score may not necessarily be the optimal
structural alignment that takes into account the common
secondary structures of the RNA sequences [66]. Dynalign
does not suffer from this limitation because it simultane-
ously optimizes the common secondary structure and the

Quality of classification using the z score method for single sequencesFigure 2
Quality of classification using the z score method for single sequences. ROC curves showing quality of classification 
based on single sequences, using RNAstructure-predicted z scores for folding free energy change. The ncRNA sequences and 
controls are the same as in Figure 1. Red and green show results for 5S rRNA and tRNA, respectively, when tested separately; 
blue shows results when both are combined into a single test set.
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structural alignment, and thus does not need pre-align-
ment of the input sequence pair. To illustrate this advan-
tage of Dynalign over RNAz at low sequence pair
identities, Figure 9 compares the ROC curves of the Dyna-
lign z score method and RNAz only for sequences in the
test set that are below 50% identity. At this level of low
sequence identity, the Dynalign z score method is more
sensitive than RNAz at all specificities.

Tests by support vector machine (SVM) classification
Generating a large number of controls for each input
sequence pair is an accurate, but time-consuming method
for classifying sequences, making a whole genome screen
costly. To speed the calculation, a support vector machine
(SVM) can be used. SVMs are a set of machine learning
methods capable of performing non-linear regression and
classification of numerical data [67,68]. For example,

Comparison of three methods for generating 20 controls from each input sequence pairFigure 3
Comparison of three methods for generating 20 controls from each input sequence pair. ROC curves comparing 
three methods for generating a set of 20 controls from an input sequence pair to determine the z score for ncRNA classifica-
tion using the Dynalign-computed ΔG°total. The test set contains 755 5S rRNA and 896 tRNA sequence pairs, plus one negative 
sequence pair generated from each real sequence pair, yielding 3,302 trial pairs total. All tests are run with the parameter M = 
8. "dinuc controls" (green): controls are generated by sampling from a first-order Markov chain, approximately preserving 
dinucleotide frequencies of each original sequence. "AE controls" (orange): controls are generated by the Altschul-Erikson 
dinucleotide shuffle, exactly preserving dinucleotide frequencies of each original sequence. "column controls" (blue): controls 
are generated by a columnwise shuffle of a global sequence alignment, without regard for gap placement or local conservation.
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RNAz uses a regression SVM to compute single sequence z
scores and a classification SVM to determine whether a
multiple sequence alignment is ncRNA or not on the basis
of a set of input parameters.

To classify sequence pairs without performing explicit
control calculations to generate a z score, a binary SVM
classifier was employed (using the LIBSVM [69] imple-
mentation). The classifier takes as input the Dynalign-
computed ΔG°total of the input sequence pair, the length
of the shorter sequence, and A, U, and C nucleotide fre-
quencies of sequence 1 and sequence 2. This Dynalign/
LIBSVM classifier was trained on a set of 59,535 real and
negative sequence pairs in a 1:2 ratio; the real sequence
pairs were composed of two 5S rRNA or two tRNA, and
two negative sequence pairs were generated from each real
sequence pair using two different sequence shuffling
methods. The classifier was trained to output a classifica-
tion probability (P value) of the input sequence pair being
ncRNA, thus allowing for the construction of ROC curves
because the ncRNA classification cutoff could be set at any
desired P value.

To benchmark the performance of the Dynalign/LIBSVM
classifier versus RNAz and QRNA, the three methods were
applied to a test set of 90,539 5S rRNA and tRNA sequence
pairs and 181,078 negative sequence pairs (generated in
the same fashion as the set used to train the model, with
two negatives for each real sequence pair). For compari-
son of the Dynalign/LIBSVM classifier and RNAz, ROC
curves are plotted for all sequence pairs in Figure 10, and
for sequence pairs below 50% identity in Figure 11.

Because QRNA compares scores for three different models
(ncRNA, open reading frame, or other) to make the classi-
fication, an ROC curve cannot be constructed for it as for
RNAz and the Dynalign/LIBSVM method, so QRNA clas-
sification benchmark results are listed in Table 4.

The benchmarks on 5S rRNA and tRNA indicate that the
Dynalign/LIBSVM classifier is more sensitive than RNAz if
the desired specificity is below approximately 98.3%.
However, for higher specificities, RNAz becomes more
sensitive. When only sequence pairs below 50% identity
are considered, the difference between the two methods in
prediction quality at high specificities narrows; RNAz is
more sensitive than Dynalign at above approximately
99.2% specificity, but less sensitive at all specificities
below that.

Table 4 illustrates the effectiveness of the three programs
broken down by percent identity of the sequence pairs.
Because the Dynalign/LIBSVM classifier and RNAz allow
selection of a P value cutoff, the cutoffs were chosen so
that the specificities of the programs on the test set match
those of QRNA, allowing sensitivities to be compared. It
should be noted that in Table 4, the QRNA-based specifi-
city maps to a point on the Dynalign/LIBSVM classifier
and RNAz ROC curves (see Figure 10) where RNAz is
more sensitive than Dynalign, which is not true for all spe-
cificities. Table 4 illustrates that the sensitivity of the
Dynalign/LIBSVM classifier remains more consistent than
RNAz or QRNA at low sequence identity. This is primarily
because Dynalign optimizes the structural alignment
based on secondary structure, rather than requiring a fixed

Distribution of sequence pair z scores for 5S rRNA, tRNA, and negative sequencesFigure 4
Distribution of sequence pair z scores for 5S rRNA, tRNA, and negative sequences. Distribution of z scores com-
puted using the Dynalign ΔG°total and the columnwise shuffle control method (M = 8) for 5S rRNA sequence pairs and nega-
tives generated from them (left figure) and tRNA sequence pairs and negatives generated from them (right figure). Real ncRNA 
are white, negatives are black. Test set is the same as for Figure 3.
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alignment as input, because the optimal sequence align-
ment may not necessarily be the optimal structural align-
ment at lower identities.

While Figure 9 clearly illustrates that Dynalign is the bet-
ter, albeit slower, tool for classifying low-identity
sequence pairs if using the z score method, this apparently
does not carry over as effectively into the Dynalign/LIB-
SVM classifier. Figure 12 illustrates the ROC curve for the
Dynalign/LIBSVM classifier plotted with ROC curves for
the z score method from Figure 3, indicating that the qual-
ity of prediction with the Dynalign/LIBSVM classifier is
worse than the best z score control generation method,

although being approximately 20 times faster because no
explicit controls have to be run.

Detection of long ncRNAs
Because the runtime complexity of Dynalign prohibits an
efficient whole genome screen using long scanning win-
dows, the hypothesis that the Dynalign/LIBSVM classifier
could pick up long ncRNAs by scanning through them
using short windows was tested. Three 16S rRNA and
three 23S rRNA sequence pairs were chosen randomly
from a database of sequences [48], and, for each pair, a
global alignment was constructed. The alignments were
scanned with windows of size 150 nucleotides, stepping

Higher M parameter improves quality of classification when using the z score methodFigure 5
Higher M parameter improves quality of classification when using the z score method. ROC curves comparing 
effectiveness of the best control generation method for sequence pairs (i.e. columnwise shuffle of a global sequence alignment) 
at parameters M = 6 (dark blue) and M = 8 (light blue). Test set is same as for Figure 3. For all other control generation meth-
ods, increasing the M parameter value likewise increases the quality of classification (see Additional File 1 in "Additional Files" 
for supporting figure).
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75 nucleotides at a time. The alignment information was
removed from each window prior to input to Dynalign
because Dynalign takes two unaligned sequences as input.
The Dynalign/LIBSVM classifier was used to compute the
probability (P value) of each window being ncRNA.

Table 5 shows the P values for all the windows, demon-
strating that each of the long ncRNAs has at least one
high-probability (P > 0.9) window that would detect it in
a whole genome screen. In most cases the number of high-
probability windows is large. This indicates that it should
be possible to discover long ncRNAs in a whole genome
screen by going through them in short windows. In fact,
given multiple short windows for most long ncRNAs, the
overall sensitivity of long ncRNA discovery should be

higher than for short sequences found in only one win-
dow. Examples of the distributions of P values by window
for representative 16S and 23S rRNA are shown in Figures
13 and 14.

Whole genome screen using the Dynalign/LIBSVM 
classifier
The capability of the Dynalign/LIBSVM classifier as a
ncRNA detection tool was tested on whole genome align-
ments of Escherichia coli K-12 MG1655 [31] and the main
chromosome of Salmonella enterica serovar Typhi (Salmo-
nella typhi) CT18 [32]. Two different methods of preparing
a whole genome alignment were used. In each case,
nucleotides known to be in open reading frames (ORFs)
were removed to speed the calculation. With the WuB-

Quality of classification using the z score method, broken down by ncRNA familyFigure 6
Quality of classification using the z score method, broken down by ncRNA family. ROC curves showing effective-
ness of the best control generation method for sequence pairs (i.e. columnwise shuffle of global alignment at parameter M = 8) 
for 5S rRNA by itself (red), tRNA by itself (green), and both combined into one test set (blue). The 5S rRNA or tRNA 
sequences in the test set are the same as those used for the test set in Figures 3, 4 and 5.
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LASTn [70] method, nucleotides in known open reading
frames (ORFs) of E. coli (but not S. typhi) were dropped
before the alignment and the screen; in the MUMmer [71]
method, nucleotides in known ORFs in both genomes
were retained for the alignment, but dropped before the
screen. This has the disadvantage that ncRNA overlapping
with or complementary to ORFs would be truncated or
dropped before the screen, but the lack of a significant
number of such ncRNAs did not render this a problem.
For example, in E. coli, only eight known ncRNAs partially
overlap coding regions and no known ncRNAs completely
exist in coding regions. Out of the known 156 E. coli
ncRNAs, the MUMmer whole genome alignment con-
tained 129 completely (the ncRNA was entirely within an

alignment block), 3 partially (the ncRNA was truncated in
the alignment block), and 24 ncRNA did not show up at
all in the alignment. The WuBLASTn alignment contained
148 completely, 7 partially, and 1 ncRNA did not show up
at all. Therefore, the maximum number of detectable E.
coli ncRNAs was 132 for the MUMmer alignment, and 155
for the WuBLASTn alignment.

For the first method of preparing whole genome screen
windows, a MUMmer [71] whole genome alignment was
performed of the entire E. coli genome with the entire S.
typhi main chromosome. Alignment columns containing
known ORF nucleotides in either genome were removed
after the alignment; ORF regions were retained for the

Comparison of the z score classification method using single sequences versus using sequence pairsFigure 7
Comparison of the z score classification method using single sequences versus using sequence pairs. ROC curves 
comparing quality of classification based on single sequences versus based on sequence pairs, using the same free energy 
parameters for both. The single sequence curve (blue) is the same as in Figure 2. Black shows the best results for the sequence 
pair approach from Figure 3 (i.e. control generation by columnwise shuffle of global sequence alignment at parameter M = 8), 
to illustrate the difference in prediction quality.
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alignment step only to serve as "anchors" to produce
greater coverage and better align intergenic regions. The
resulting alignment blocks were scanned with windows of
size 150 alignment columns, stepping 75 at a time. The
alignment information is removed from each window
prior to input to Dynalign, but retained for input to
QRNA and RNAz because they require pre-aligned
sequences. This produced 15,214 total windows (count-
ing reverse complements) containing 2,216,188 align-
ment columns. The distribution of percent identities for
these windows is reported in Figure 15. The large number
of alignment columns relative to intergenic region size is
explained by the same sequences producing multiple
alignment blocks, due to the quantity of repetitive ele-
ments in both genomes. After screening, overlapping and

contiguous windows that are classified as ncRNA are
merged and considered a single ncRNA.

Table 6 shows the results of the MUMmer whole genome
screen at various P value cutoffs, compared against RNAz
at the same cutoffs and QRNA. Given our current knowl-
edge of ncRNAs in these genomes, the Dynalign/LIBSVM
classifier is the most sensitive method for genomic screen-
ing, picking up a greater quantity of known ncRNAs. It
also appears to generate either less or a roughly equivalent
number of "other" hits – high-probability contiguous
regions that are not annotated in the sources of known
ncRNA that were used for this screen. It is currently
unknown whether this indicates that the Dynalign/LIB-
SVM classifier method is more specific, because either

Comparison of the Dynalign z score method with RNAz for sequence pairs of all identitiesFigure 8
Comparison of the Dynalign z score method with RNAz for sequence pairs of all identities. ROC curves for the 
Dynalign z score classification method (running 20 controls for each input sequence pair to determine z score, M = 8; blue) 
and RNAz (red), both tested on the same test set of sequence pairs as in Figure 3.
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fewer false positives are generated, or fewer previously
unknown ncRNAs are discovered, or a combination of
both. Considering the large number of these "other" hits,
it is likely that this indicates a lower genomic false positive
rate, but this cannot be conclusively determined. The total
number of nucleotides in these "other" regions is given in
Table 6 for a crude estimate of the number of probes that
would be required for a biochemical verification screen.

For the second method of preparing whole genome screen
windows, intergenic regions of E. coli (defined as the
entire genome minus known ORFs, resulting in 587,347
intergenic nucleotides) were used as WuBLASTn [70] que-

ries against the entire S. typhi main chromosome, resulting
in 90,404 total windows (counting the reverse comple-
ments) containing 10,265,161 alignment columns. The
distribution of percent identities for these windows is
reported in Figure 16. Like in the MUMmer alignment, the
large number of alignment columns is due to the same
sequences appearing in multiple alignment blocks. The
windows were created by scanning through the resulting
WuBLASTn alignment blocks in the same manner as with
the MUMmer screen, using windows of size 150 align-
ment columns, step size 75. The alignment information
was removed from each window prior to input to Dyna-
lign, but retained for input to QRNA and RNAz because

Comparison of the Dynalign z score method with RNAz for sequence pairs below 50% identityFigure 9
Comparison of the Dynalign z score method with RNAz for sequence pairs below 50% identity. ROC curves for 
the Dynalign z score classification method (running 20 controls for each input sequence pair, M = 8; blue) and RNAz (red), 
both tested only on those sequence pairs from the Figure 3 test set that have less than 50% sequence pair identity. Dynalign 
becomes more sensitive than RNAz at low sequence pair identities for all specificities.
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they require pre-aligned sequences. Once again, after
screening, contiguous or overlapping windows classified
as ncRNA were merged into single ncRNA.

The results of the WuBLASTn genomic screen listed in
Table 7 differ from the results of the MUMmer genomic
screen (Table 6). The number and coverage of "other" hits
in S. typhi is much greater than in E. coli (whereas in the
MUMmer screen they were comparable), presumably
because E. coli intergenic regions are used as queries
against the entire S. typhi chromosome that here, unlike in
the MUMmer screen, did not have any ORFs removed
prior to generating scanning windows, thus resulting in
more S. typhi sequence present. The performance of the

Dynalign/LIBSVM classifier and RNAz at the P > 0.99 cut-
off in the WuBLASTn screen is comparable to their per-
formance at the P > 0.5 cutoff in the MUMmer screen;
QRNA also seems to be more sensitive and less specific in
the WuBLASTn screen than MUMmer. This indicates that
a MUMmer whole genome alignment would be more
desirable for high-specificity whole genome screens.

The complete datasets for both genomic screens are pre-
sented in "Additional Files." Additional Files 2 and 3 give
the classification of each window in the MUMmer and
WuBLASTn genome screens, respectively. Additional Files
4 and 5 likewise provide the input data to the SVM classi-
fier for the MUMmer and WuBLASTn genome screens.

Comparison of the Dynalign/LIBSVM classifier with RNAz for sequence pairs of all identitiesFigure 10
Comparison of the Dynalign/LIBSVM classifier with RNAz for sequence pairs of all identities. ROC curves for the 
Dynalign/LIBSVM classifier (blue) and RNAz (red), both based on a test set of 38,069 5S rRNA sequence pairs, 52,470 tRNA 
sequence pairs, plus two negative sequence pairs generated from each real sequence pair – one by a columnwise shuffle of a 
global alignment, one by an Altschul-Erikson dinucleotide shuffle of each sequence in the pair separately, yielding 90,539 real 
trial sequence pairs and 181,078 negative trial sequence pairs.
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Conclusion
It has been shown that the ΔG°total calculated by Dynalign
can be used as an effective parameter for detecting
ncRNAs. Also, because Dynalign predicts a secondary
structure common to two sequences, it is possible to
incorporate additional structure-based parameters into
the classification model. A recent benchmark of various
structural alignment programs [66] reports that Dynalign
structural alignments are among the best at reflecting con-
served secondary structure, becoming the best at sequence
identities below 50%. The potential of Dynalign as a
ncRNA detection tool can be yet further explored. For
example, it would be interesting to see if methods could
be improved if strictly probabilistic or evolution-based
scores [72] were added as input to the Dynalign/LIBSVM
classifier. Additionally, considering that all testing here

was based on only two ncRNA families, it would also be
interesting to test how well the Dynalign/LIBSVM classi-
fier would perform if the training set were made more
diverse, or if the SVM was optimized further. The LIBSVM
input data set for all possible pairwise alignments of 5S
rRNA, tRNA, and negative sequences generated from them
are presented in Additional File 6 in "Additional Files" for
such purposes.

The advantages of using Dynalign over existing ncRNA
detection methods are that it is more sensitive at most spe-
cificities and that it produces higher quality predictions at
low sequence identities. The latter is important, since the
number of conserved low-identity regions in some
genomes of interest may be high. For example, Figure 17
illustrates a distribution of percent identities of a human-

Comparison of the Dynalign/LIBSVM classifier with RNAz for sequence pairs below 50% identityFigure 11
Comparison of the Dynalign/LIBSVM classifier with RNAz for sequence pairs below 50% identity. ROC curves 
for the Dynalign/LIBSVM classifier method (blue) and RNAz (red), both tested only on those sequence pairs from the Figure 10 
test set that have less than 50% sequence pair identity.
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mouse BLASTZ genome alignment [73] broken down into
50 nucleotide non-overlapping windows. 25% of the
alignment is in the below 50% identity region where the
Dynalign z score method outperforms RNAz. Addition-
ally, Table 4 seems to indicate that the Dynalign/LIBSVM
classification method is more consistent across varying
percent identities than the other two programs.

The disadvantages to Dynalign as a ncRNA detection
method are that the number of input sequences is cur-
rently limited to two, the algorithm does not allow pseu-
doknots (a common limitation for secondary structure
prediction algorithms), and that the runtime is longer
than that of many other ncRNA classification programs,
especially in the case of explicitly running controls for
each input sequence pair; however, optimizations result-
ing in significant decreases in Dynalign runtime have
been achieved as shown in Table 3. While control genera-
tion can be circumvented by using a classification SVM,
the quality of prediction of such a method (as imple-
mented and benchmarked here) appears to drop slightly.
However, this simple classification SVM approach, which
does not directly incorporate a z score into the classifica-
tion model, is still more sensitive for known ncRNAs in a
whole genome screen than RNAz or QRNA. It may be pos-
sible to improve the quality of classification by using a
regression model to determine the z score separately from
the classification SVM step, which is a strategy successfully
employed by RNAz, except that in this case the z score
would be based on the ΔG°totals of sequence pairs instead

of single sequences, increasing the complexity of the
regression model.

The FOLDALIGN program [62,74] is closely related to
Dynalign and can also be used for ncRNA detection. FOL-
DALIGN also uses a dynamic programming algorithm to
find the secondary structure common to two, unaligned
sequences and the sequence alignment that facilitates the
structure. FOLDALIGN should therefore share the same
advantages and disadvantages that Dynalign has for
ncRNA detection at low sequence identity. FOLDALIGN
maximizes a score that includes a subset of the free energy
change nearest neighbor parameters [47-49] and terms
that score sequence similarity [58]. A scanning version of
FOLDALIGN has been reported [62] that takes long
sequences as input, but limits the length of structural
motifs to a parameter, λ, and so does not require that the
sequence be broken into windows.

Because it is fast, prediction from single sequences (such
as using RNAstructure [48]) could be used as a rapid pre-
filtering step to eliminate a large number of genomic
sequence when doing a whole genome screen using these
methods. For example, Figures 2 and 7 indicate that at
36% specificity, the sensitivity of prediction is approxi-
mately 99% for 5S rRNA and tRNA tests using RNAstruc-
ture. Assuming these numbers are indicative of
performance on all ncRNA families, we could use single
sequence prediction to quickly eliminate 36% of the neg-
atives in a whole genome screen without sacrificing an

Table 4: Sensitivities of the Dynalign/LIBSVM classifier, RNAz, and QRNA broken down by percent identity.

% sensitivity % specificity

% identity 
range

N % of real set Dynalign
(P > 0.819)

RNAz
(P > 0.789)

QRNA N % of 
negative 

set

Dynalign
(P <= 0.819)

RNAz
(P <= 0.789)

QRNA

[0 10) 0 0 N/A N/A N/A 0 0 N/A N/A N/A
[10 20) 0 0 N/A N/A N/A 0 0 N/A N/A N/A
[20 30) 3 0.0033 100.0 0.0 66.6667 49 0.0271 97.9592 100.0 95.9184
[30 40) 1337 1.4767 71.4286 34.6298 48.6163 9037 4.9907 99.1922 97.0233 97.8975
[40 50) 22328 24.6612 63.6465 63.1539 46.5559 85008 46.9455 99.3612 98.8542 99.2789
[50 60) 42733 47.1984 73.0606 75.6488 56.2469 55602 30.7061 99.2320 99.5018 99.0306
[60 70) 17346 19.1586 88.4930 92.2461 86.0775 23952 13.2274 99.1566 99.3028 98.8143
[70 80) 4061 4.4854 94.5826 94.5087 94.1394 4672 2.5801 97.5813 98.4375 97.9238
[80 90) 2035 2.2477 95.5774 91.9410 93.9066 2062 1.1387 90.8341 98.1086 96.6052
[90 100) 654 0.7223 98.4709 72.6300 59.7859 654 0.3612 60.5505 96.7890 95.2599

[100 ] 42 0.0464 92.8571 61.9048 11.9048 42 0.0232 61.9048 90.4762 95.2381
totals 90539 100.0 75.3366 81.2854 62.0108 181078 100.0 98.9938 98.9927 98.990

5

A comparison of sensitivities of the three ncRNA classification/detection programs within each percent identity range. N is the number of 
sequences within each range. Probability cutoffs for RNAz and the Dynalign/LIBSVM classifier were selected such that overall specificities for the 
entire test set match the specificity of QRNA as closely as possible.
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overwhelming majority of the real ncRNA. Then, the
reduced amount of sequence could be screened with the
more time-consuming approach of prediction from
sequence pairs, thus speeding up the overall screen.

The Dynalign ncRNA detection method that we have out-
lined is computationally costly, but feasible for analysis of
long genomes. For example, we estimate that a Dynalign/
LIBSVM screen (using 150-nucleotide-long scanning win-
dows, step size 75) of the human-mouse whole genome
alignment regions below 50% sequence identity in Figure
17, which contain approximately 563 million alignment
columns (this includes the reverse complements of each
window), would require approximately 1.4 CPU years
after single sequence pre-filtering, or approximately 100

days of wall time on a reasonably sized 50-CPU computa-
tion cluster. Additionally, other pre-filtering methods
could be employed to eliminate repetitive and other
sequences prior to the Dynalign computation.

Methods
Local and global Dynalign implementations
The original Dynalign algorithm performs global align-
ments of the two sequences, i.e. gaps are penalized at the
ends of the alignments by applying the ΔG°gap penalty term
for each gap when calculating the value of ΔG°total. To
facilitate calculations for ncRNA discovery, a local align-
ment option was programmed. In the local alignment
Dynalign, the per nucleotide gap penalty (ΔG°gap penalty) is
not applied to gaps at either end of either sequence in the

Comparison of the Dynalign z score method with the Dynalign/LIBSVM classifierFigure 12
Comparison of the Dynalign z score method with the Dynalign/LIBSVM classifier. ROC curves for the Dynalign z 
score method, M = 8 (blue, column shuffle controls of the global alignments; orange, Altschul-Erickson dinucleotide shuffle 
controls; green, first-order Markov chain sampling controls) versus the Dynalign/LIBSVM classifier (pink). The z score ROC 
curves are from Figure 3; the Dynalign/LIBSVM ROC curve is from Figure 10.
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alignment. Because the energy function (equation 3) con-
tains no terms for sequence matching, this allows the local
Dynalign to find optimal structural alignments with any
portion of each sequence.

Generation of global alignments and calculation of 
percent identities
To generate global alignments of two sequences, the
EMBOSS (version 2.9.0) [75] Stretcher global alignment
tool (with default parameters) was used. All percent iden-
tities are calculated as follows:

Construction of test set for benchmark of Dynalign z score 
classification method on known ncRNA sequence pairs
The sequence pair test set was constructed by randomly
drawing and pairing real sequences from a pool of 309
known 5S rRNAs from the 5S ribosomal RNA database
[48,76] and 482 known tRNAs from the Sprinzl database
[48,77] (two tRNAs were not allowed because they con-
tained an "X" (unknown) nucleotide that did not permit
a dinucleotide shuffle to be done). This resulted in 755
real 5S rRNA and 896 real tRNA sequence pairs, whose
distribution of percent identities was consistent with the
distribution of percent identities of every possible pair-
wise alignment of the pools of all 5S rRNA and tRNA.

To test specificity, for each real sequence pair, a negative
sequence pair was created by globally aligning the real
pair, randomly shuffling the alignment columns (without
regard for gap placement or local conservation), then
removing the gaps. Prior to input to RNAz and QRNA, the
shuffled sequences were globally re-aligned. The resulting
test set contained 3,302 sequence pairs total.

It should be noted that two other methods for generating
negative sequence pairs from real sequence pairs were
additionally tried. The first was the "sre_shuffle" com-
mand line option in QRNA, which shuffles columns in an
alignment while preserving gap position. Columns in the
alignment are separated into three categories: nucleotide
aligned to nucleotide, gap in sequence 1 aligned to
nucleotide in sequence 2, and gap in sequence 2 aligned
to a nucleotide in sequence 1; each column is shuffled
only with other columns in its category. The second was
the "SHUFFLEALN.PL" program [44] by Washietl et al,
which, in the case of a pairwise sequence alignment as
input, preserves gap position in the same fashion, but also
preserves local conservation. Just as in QRNA's
"sre_shuffle," alignment columns are divided into catego-
ries and each column is only shuffled with other columns
in its category, but the nucleotide-aligned-to-nucleotide
category is further subdivided into two categories – col-
umns where the nucleotides are the same, i.e. conserved,
and columns where nucleotides are different. However,
benchmarks of the Dynalign z score classification
method, RNAz, and QRNA showed that specificity for

% identity

# of alignment columns

with matching nucleotides=
ttotal # of alignment columns

(including columns with gaps)

[[ .eq  7]

Table 5: Detection of long ncRNAs using scanning windows.

percent identity 
of entire 

alignment

total number of 
scanning 
windows

number of
scanning windows 

with P > 0.5

number of
scanning windows 

with P > 0.9

number of
scanning windows 

with P > 0.99

16S rRNA

Borrelia burgdorferi and Bacillus 
subtilis

74.5% 30 17 12 6

Homo sapiens (mitochondrial) 
and Thermotoga maritima

39.3% 30 1 1 0

Archaeoglobus fulgidus and 
Borrelia burgdorferi

61.8% 30 22 17 14

23S rRNA

Escherichia coli and 
Thermoplasma acidophilum

59.4% 57 49 41 37

Bacillus subtilis and Bos taurus 37.1% 57 35 26 21
Bacillus subtilis and 
Thermoproteus tenax

60.1% 61 3 2 1

The Dynalign/LIBSVM classifier is used to compute P values for sets of 150-nucleotide scanning windows iterating (in steps of 75 nucleotides) 
through global alignments of three 16S and three 23S rRNA pairs randomly selected from a database [48]. The quantity of windows above three P 
value cutoffs is listed, indicating that long ncRNAs can be detected with short scanning windows.
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each program was sufficiently similar regardless of the
method for generating negatives (data not shown), so for
all tests a columnwise shuffle of a global alignment (with-
out regard for gap placement or local conservation) was
used to generate negative sequence pairs from real
sequence pairs.

Generation of controls for z score determination
Three methods were used for generating control sets for
sequence pairs (only the Altschul-Erikson shuffle is used
for generating control sets for single sequences):

(1) A columnwise shuffle (without regard for gap place-
ment or local conservation) of a global alignment of the
original sequence pair.

(2) Separately generating each sequence in the control
pair by sampling from a first-order Markov chain as
described in [41] without regard for alignment; for each
sequence in the original pair, the nucleotide and dinucle-
otide frequencies are calculated, the first nucleotide in the
control sequence is selected by sampling from the nucleo-
tide frequencies of the original, then for the remainder of
the sequence, each following nucleotide is sampled from
the dinucleotide frequencies of the original, given that the
first nucleotide is known. The dinucleotide frequencies of
a sequence generated by this method would approach the
dinucleotide frequencies of the original sequence in the
limit of infinite length; however, since the lengths must be
finite, the dinucleotide frequencies of the control are only
approximately similar to the original sequence.

ncRNA probabilities (P values) of scanning windows iterating through a 16S rRNAFigure 13
ncRNA probabilities (P values) of scanning windows iterating through a 16S rRNA. Probabilities of ncRNA com-
puted by the Dynalign/LIBSVM classifier for 30 150-nucleotide-long scanning windows iterating through a global alignment of 
Borrelia burgdorferi and Bacillus subtilis 16S rRNA in steps of 75.
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(3) The Altschul-Erikson dinucleotide shuffle [65] (imple-
mented in Python by P. Clote, [78]) of each sequence in
the original pair separately, which exactly preserves their
nucleotide and dinucleotide frequencies, except that the
shuffled sequence has the same first and last nucleotide as
the original sequence.

All ΔG°totals in these trials were computed using the "glo-
bal alignment" mode of Dynalign for both the input
sequence pairs and the controls.

Construction of ROC curves
To construct ROC curves for the Dynalign z score classifi-
cation method, the z score cutoff was incremented from -
11 to 3 in steps of 0.01 to generate test set sensitivity/spe-
cificity pairs ranging from 100% specificity to 100% sen-

sitivity, then sensitivity was plotted as a function of the
false positive rate (1 – specificity). Where the SVM proba-
bility (P value) was used as the classification cutoff,
whether for RNAz or the Dynalign/LIBSVM classifier, the
same was done, except P was incremented from 0 to 1 in
steps of 0.001.

Testing of QRNA and RNAz
QRNA (version 2.0.2c) [59] and RNAz (version 0.1.1)
[43] require a pre-aligned sequence pair as input. RNAz
can take a multiple sequence alignment as input, but here
was only tested on sequence pairs. For benchmarks on test
sets of known ncRNAs and negatives, this input was pre-
pared by performing a global alignment of the two
sequences. Whenever negative sequence pairs are pro-
duced from real sequence pairs by a columnwise shuffle of

ncRNA probabilities (P values) of scanning windows iterating through a 23S rRNAFigure 14
ncRNA probabilities (P values) of scanning windows iterating through a 23S rRNA. Probabilities of ncRNA com-
puted by the Dynalign/LIBSVM classifier for 57 150-nucleotide-long scanning windows iterating through a global alignment of 
Bacillus subtilis and Bos taurus 23S rRNA in steps of 75.
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a global alignment, gaps are removed after the shuffle,
and the sequences are globally re-aligned again to mimic
the alignment that would be expected if these sequences
were to appear in an actual ncRNA screen.

For whole genome screen tests, the genomic alignment
windows used for input to the two programs were taken
directly from the MUMmer or WuBLASTn alignment.

Training and testing of the Dynalign/LIBSVM classifier
The LIBSVM [69] implementation of a support vector
machine was employed for the Dynalign/SVM classifier
method. The binary classifier SVM with a radial basis func-
tion (RBF) kernel was used. All LIBSVM classifier models
were trained with command line parameters -b 1 -c 32 -w-
1 5 -g 6.10352e-05 (the values were empirically deter-

mined), where -b 1 indicates that the model is trained to
calculate probabilities of binary classification, -c specifies
the value (C = 25) of the penalty parameter of the error
term, -w-1 5 specifies that the penalty of misclassifying
negative sequence pairs as real sequence pair (i.e. misclas-
sifying those labelled "-1" as those labelled "1") is 5 times
the penalty specified by -c (this has the effect of reducing
false positives), and -g specifies the value of γ in the RBF (γ
= 2-14). Classification was done with the -b 1 parameter to
output probabilities (P values), allowing for variation of
the cutoff P value for classification and for construction of
ROC curves. Input to LIBSVM was the Dynalign-com-
puted ΔG°total, length of shorter sequence of the sequence
pair, A, U, and C frequencies of sequence 1, and A, U, and
C frequencies of sequence 2. Prior to input to LIBSVM, val-
ues for each parameter were scaled to the range [-1, 1]. The

Distribution of scanning window percent identities in the MUMmer whole genome ncRNA screenFigure 15
Distribution of scanning window percent identities in the MUMmer whole genome ncRNA screen. Histogram 
showing the distribution of percent identities of 15,214 genomic windows (size 150 alignment columns, scanning step size 75 
alignment columns), generated from the MUMmer whole genome alignment of E. coli and S. typhi.
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ranges for each parameter across the datasets is follows:
ΔG°total was from -1868 to 0 (units of 10*kcal/mol);
length of shorter sequence was from 50 to 150 nucleo-
tides; frequencies of A, U, and C in sequence 1 were from
0.0701754 to 0.518519, from 0.0701754 to 0.518519,
and from 0.0638298 to 0.42953, respectively; frequencies
of A, U, and C in sequence 2 were from 0.0588235 to
0.623377, from 0.0588235 to 0.623377, and from
0.0402685 to 0.436364, respectively.

To train the SVM classifier, a training set containing every
possible sequence pairing (not including pairing of
sequences to themselves) was prepared from a pool of 309
known 5S rRNAs [48,76] and 479 known tRNAs [48,77]
(two tRNAs that contained an "X" nucleotide and three
tRNAs with three-way multibranch loops instead of the
canonical four-way multibranch loops were removed
from the Sprinzl database pool prior to this). This resulted
in 47,586 5S rRNA and 114,481 tRNA sequence pairs.
Two negative sequence pairs for each real sequence pair
were generated: one by columnwise shuffle of a global
sequence alignment, one by Altschul-Erikson shuffle of
each sequence separately. This was intended to reduce the
false positive rate by training the SVM classifier on a more
diverse set of negative sequence pairs. The Dynalign
ΔG°total (using the "local alignment" Dynalign mode and
parameter M = 8) and the other SVM input data were com-
puted for every sequence pair in the resulting training set
of 486,201 data points. The free energies and sequence
characteristics for each pair in the entire set are provided

as Additional File 6 in the "Additional Files" section for
reference, formatted for input to LIBSVM.

However, this set was unnecessarily large and biased
towards tRNA, so for final SVM model training, only every
5th 5S rRNA and every 12th tRNA sequence pair were
kept, producing a training set of a more realistic size of
9,517 5S rRNA and 9,540 tRNA sequence pairs, with
19,034 and 19,080 negative sequence pairs generated
from them, for a training set size of 57,171 data points. All
of the remaining 5S rRNA and one-half (every 2nd
sequence pair, taken so that tRNA would not be over-rep-
resented) of the remaining tRNA sequence pairs were used
to construct a test set for benchmarks of the Dynalign/LIB-
SVM classifier, RNAz, and QRNA.

Moreover, an additional 2,364 data points were added to
the training set, which were calculated from alignments of
sequences in the pool of 309 5S rRNA and 479 tRNA to
themselves, with two negative sequence pairs generated
from each real sequence pair as before (i.e. all of these
2,364 data points had 100% identity). This addition to
the training set was done in order to train the Dynalign/
LIBSVM classifier to more accurately classify high-identity
genomic windows, of which there was a very large number
in the whole genome screen (e.g. 21% of the genomic
windows in the MUMmer whole genome screen method
have identity above 98%, which does not reflect the distri-
bution of percent identities in the original training set).
Thus, the final training set size was 59,535 data points.

Table 6: Comparison of three ncRNA detection programs on a whole genome screen using the MUMmer alignment.

probability cutoff for ncRNA classification

P > 0.5 P > 0.9 P > 0.99

Dynalign RNAz Dynalign RNAz Dynalign RNAz QRNA

Known ncRNAs found (percent of total known ncRNAs in parentheses)
E. coli (156 ncRNAs known) 128 (82.05) 125 (80.13) 123 (78.85) 104 (66.67) 107 (68.59) 91 (58.33) 67 (42.95)
S. typhi (110 ncRNAs known) 103 (93.64) 98 (89.09) 102 (92.73) 84 (76.36) 93 (84.55) 70 (63.64) 64 (58.18)
Number of contiguous, non-overlapping hits that are not known ncRNAs (i.e. novel ncRNA candidates)
E. coli 1,183 1,255 872 996 578 678 661
S. typhi 1,178 1,255 857 977 568 662 634
Number of nucleotides classified as ncRNA that are not in known ncRNAs (i.e. nucleotides in novel ncRNA candidates)
E. coli (each strand = 4,639,675 nt) 169,580 174,790 123,563 128,343 81,936 80,054 87,577
S. typhi (each strand = 4,809,037 nt) 163,037 174,126 117,277 126,393 76,289 79,713 88,099
Total number of nucleotides classified as ncRNA (i.e. nucleotides in both known and unknown ncRNAs)
E. coli (each strand = 4,639,675 nt) 224,051 222,817 175,174 166,676 129,086 104,428 113,090
S. typhi (each strand = 4,809,037 nt) 213,549 218,867 166,187 162,077 122,269 102,464 114,434

QRNA, RNAz, and the Dynalign/LIBSVM classifier are compared in their ability to detect known ncRNA in the E. coli and S. typhi genomes, based on 
a MUMmer whole genome alignment. For RNAz and the Dynalign/LIBSVM classifier, results are listed for three P value classification cutoffs. 
"Number of nucleotides" = number of nucleotides on the plus strand + number of nucleotides on the minus strand, not accounting for overlap of 
complementary strands.
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The result of the training is a LIBSVM model file that used
by LIBSVM for classification and probability estimation.
The model file is supplied as Additional File 7, although it
should be noted that it will only work correctly on data
scaled as described above.

Sources of genomic data
All whole genome screens were conducted using the com-
plete 4,639,675-nucleotide genome of Escherichia coli K-
12 MG1655 [RefSeq NC_000913] and the complete
4,809,037-nucleotide main chromosome of Salmonella
enterica serovar Typhi (Salmonella typhi) strain CT18 [Ref-
Seq NC_003198].

For E. coli, the lists and genomic coordinates of 4,237
known open reading frames (ORFs) and 156 known

ncRNAs were obtained from the NCBI Entrez Genome
Project database [79]. The intergenic region size is
587,347 nucleotides.

For S. typhi, the lists and genomic coordinates of 4,594
known ORFs and 110 known ncRNAs were obtained from
The Wellcome Trust Sanger Institute S. typhi database [80].
The intergenic region size is 604,213 nucleotides.

Intergenic region alignment with WuBLASTn
To prepare genomic windows for a ncRNA screen of E. coli
and S. typhi using WuBLASTn, intergenic regions of E. coli
were constructed by taking the entire genome and remov-
ing all nucleotides in the 4,237 known ORFs, resulting in
587,347 nucleotides total. Each resulting segment was
used as a WuBLASTn (version 2.0 [70], using default

Distribution of scanning window percent identities in the WuBLASTn whole genome ncRNA screenFigure 16
Distribution of scanning window percent identities in the WuBLASTn whole genome ncRNA screen. Histogram 
showing the distribution of percent identities of 90,404 genomic windows (size 150 alignment columns, scanning step size 75 
alignment columns), generated from the WuBLASTn whole genome alignment of E. coli and S. typhi.
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parameters) query against the entire S. typhi main chro-
mosome. To maximize coverage, none of the resulting
alignment blocks were filtered, except to throw out all
those where the block length was less than 50 alignment
columns. Alignment blocks length 50 to 150 (inclusive)
were used as genomic windows directly; blocks with
length greater than 150 were scanned with windows of
size 150 alignment columns, step size 75. This resulted in
45,202 total genomic windows for the WuBLASTn ncRNA
genomic screen. Reverse complements of sequences in
each window were also scanned, resulting in 90,404 win-
dows total as input to the Dynalign/LIBSVM classifier,
RNAz, and QRNA, containing 10,265,161 alignment col-
umns.

Whole genome alignment with MUMmer
To prepare genomic windows for a ncRNA screen of E. coli
and S. typhi using MUMmer, a whole genome alignment
was generated using MUMmer 3.15 [71] with parameters
-b 1600 -c 10 to increase genomic coverage (all other
parameters were left at default values). All alignment col-
umns containing nucleotides in known ORFs of either
genome were removed from the resulting alignment
blocks. The resulting alignment blocks were scanned with
windows of size 150 alignment columns, step size 75, to
generate windows for the genomic screen; because unlike
WuBLASTn, the MUMmer whole genome alignment con-
tains long stretches of gaps in some regions, some win-
dows had to be dropped because one sequence in the
window was aligned to only gaps for the other sequence.
Additionally, windows containing a sequence less than 50
nucleotides in length were also dropped. After taking the

reverse complement of each window, a total of 15,214
windows were input to the Dynalign/LIBSVM classifier,
RNAz, and QRNA, containing 2,216,188 alignment col-
umns.

Availability and requirements
• Project name: Dynalign

• Project home page: http://rna.urmc.rochester.edu/
dynalign.html

• Operating system(s): Platform independent

• Programming language: C++

• Other requirements: none

• License: GNU GPL

• Any restrictions to use by non-academics: none

Abbreviations
5S rRNA – 5S subunit ribosomal RNA

AE – the Altschul-Erikson dinucleotide sequence shuffle
method

columnwise – the columnwise sequence pair shuffle
method

dinuc – the sampling from first-order Markov chain
sequence shuffle method

Table 7: Comparison of three ncRNA detection programs on a whole genome screen using WuBLASTn genomic windows. 

probability cutoff for ncRNA classification

P > 0.5 P > 0.9 P > 0.99

Dynalign RNAz Dynalign RNAz Dynalign RNAz QRNA

Known ncRNAs found (percent of total known ncRNAs in parentheses)
E. coli (156 ncRNAs known) 147 (94.23) 148 (94.87) 141 (90.38) 140 (89.74) 128 (82.05) 124 (79.49) 121 (77.56)
S. typhi (110 ncRNAs known) 109 (99.09) 108 (98.18) 107 (97.27) 106 (96.36) 103 (93.64) 95 (86.36) 100 (90.91)
Number of contiguous, non-overlapping hits that are not known ncRNAs (i.e. novel ncRNA candidates)
E. coli 2,569 1,898 1,828 1,568 1,211 1,257 1,403
S. typhi 3,936 2,503 2,440 1,986 1,520 1,520 1,611
Number of nucleotides classified as ncRNA that are not in known ncRNAs (i.e. nucleotides in novel ncRNA candidates)
E. coli (each strand = 4,639,675 nt) 324,033 275,704 235,227 221,802 167,157 174,682 206,840
S. typhi (each strand = 4,809,037 nt) 514,650 387,099 352,039 296,608 235,018 220,485 248,724
Total number of nucleotides classified as ncRNA (i.e. nucleotides in both known and unknown ncRNAs)
E. coli (each strand = 4,639,675 nt) 385,611 332,000 292,940 270,267 220,352 209,807 242,534
S. typhi (each strand = 4,809,037 nt) 570,994 436,137 405,022 338,254 283,999 250,610 283,508

QRNA, RNAz, and the Dynalign/LIBSVM classifier are compared in their ability to detect known ncRNA in the E. coli and S. typhi genomes, based on 
genomic scanning windows prepared using WuBLASTn. For RNAz and the Dynalign/LIBSVM classifier, results are listed for three P value 
classification cutoffs. "Number of nucleotides" = number of nucleotides on the plus strand + number of nucleotides on the minus strand, not 
accounting for overlap of complementary strands.
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ncRNA – non-coding RNA

ORF – open reading frame

PPV – positive predictive value

RBF – radial basis function

ROC – receiver operating characteristic

SCI – structure conservation index

SVM – support vector machine

tRNA – transport RNA
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Distribution of percent identities of 50-nucleotide windows in the human-mouse genome alignmentFigure 17
Distribution of percent identities of 50-nucleotide windows in the human-mouse genome alignment. The 
BLASTZ pairwise alignment of the human and mouse genomes [73] is broken down into 50-nucleotide-long non-overlapping 
windows and the percent identity for each is calculated, then plotted in this histogram. There are 22,456,315 windows total.
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Additional material

Additional File 1
Complete ROC curves for classification of sequence pairs by the Dynalign 
z score method. Adobe Acrobat PDF (version 4.0 or above) file showing 
complete ROC curves comparing effectiveness of Dynalign z score classi-
fication of sequence pairs using three control generation methods and two 
M parameter values (M = 6 and M = 8). This is the same sequence test 
set that Figures 3, 4 and 5 are based on. In all cases, increasing the value 
of the M parameter improves prediction quality. Dark and light green: 
controls generated by first-order Markov chain sampling, tests run using 
M = 6 and M = 8, respectively. Brown and orange: controls generated by 
Altschul-Erikson dinucleotide shuffle, tests run using M = 6 and M = 8, 
respectively. Dark and light blue: controls generated by the columnwise 
shuffle, tests run using M = 6 and M = 8, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S1.pdf]

Additional File 2
Side-by-side comparison of Dynalign, RNAz, and QRNA classifications 
for each window in the MUMmer whole genome screen. Plain text, 
whitespace-delimited tabular data file. Each row is a window in the 
MUMmer whole genome alignment (15,214 windows total) of E. coli 
and S. typhi. Columns 1, 2, and 3: E. coli start and end nucleotide indi-
ces and strand (plus or minus) for that window. Columns 4, 5, and 6: S. 
typhi start and end nucleotide indices and strand (plus or minus) for that 
window. Column 7: Dynalign/LIBSVM probability that the window is 
ncRNA. Column 8: RNAz probability that the window is ncRNA. Column 
9: QRNA classification of the window (ncRNA, ORF, or other).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S2.txt]

Additional File 3
Side-by-side comparison of Dynalign, RNAz, and QRNA classifications 
for each window in the WuBLASTn whole genome screen. Plain text, 
whitespace-delimited tabular data file. Each row is a window in the WuB-
LASTn whole genome alignment (90,404 windows total) of E. coli and 
S. typhi. Columns 1, 2, and 3: E. coli start and end nucleotide indices 
and strand (plus or minus) for that window. Columns 4, 5, and 6: S. 
typhi start and end nucleotide indices and strand (plus or minus) for that 
window. Column 7: Dynalign/LIBSVM probability that the window is 
ncRNA. Column 8: RNAz probability that the window is ncRNA. Column 
9: QRNA classification of the window (ncRNA, ORF, or other).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S3.txt]

Additional File 4
MUMmer whole genome screen input data to the Dynalign/LIBSVM clas-
sifier. Plain text data file formatted for input to LIBSVM (not scaled). 
This is the MUMmer whole genome screen dataset input to the Dynalign/
LIBSVM classifier (before scaling). There is a one-to-one correspondence 
between rows of this file and rows of Additional File 2 – that is, row N in 
this file corresponds to the window described in row N in Additional File 
2. Column 1 is the data label (all windows are initially assumed negatives 
and labelled "-1," but this is irrelevant for these purposes as this is essen-
tially just a placeholder column for LIBSVM). Column 2 is the Dynalign-
computed ΔG°total; column 3 is the length of shorter sequence; columns 4, 
5, and 6 are A, U, and C frequencies of sequence 1 (E. coli); columns 7, 
8, and 9 are A, U, and C frequencies of sequence 2 (S. typhi).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S4.txt]

Additional File 5
WuBLASTn whole genome screen input data to the Dynalign/LIBSVM 
classifier. Plain text data file formatted for input to LIBSVM (not scaled). 
This is the WuBLASTn whole genome screen dataset input to the Dyna-
lign/LIBSVM classifier (before scaling). There is a one-to-one correspond-
ence between rows of this file and rows of Additional File 3 – that is, row 
N in this file corresponds to the window described in row N in Additional 
File 3. Column 1 is the data label (all windows are initially assumed neg-
atives and labelled "-1," but this is irrelevant for these purposes as this is 
essentially just a placeholder column for LIBSVM). Column 2 is the 
Dynalign-computed ΔG°total; column 3 is the length of shorter sequence; 
columns 4, 5, and 6 are A, U, and C frequencies of sequence 1 (E. coli); 
columns 7, 8, and 9 are A, U, and C frequencies of sequence 2 (S. typhi).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S5.txt]
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Additional File 6
LIBSVM datasets for every possible sequence pair of 5S rRNA, tRNA, and 
negative sequences. Nine plain text data files formatted for input to LIB-
SVM (not scaled) and three plain text files containing sequence codes for 
the LIBSVM files, all archived with GNU 'tar' and compressed with GNU 
'gzip'. Our training and testing sets for the Dynalign/LIBSVM classifier 
were prepared from this dataset as described in "Methods." The file 'LIB-
SVM-set.5s-real' is every possible pairing of known 309 5S rRNA 
sequences in our database, not counting sequences paired with themselves. 
The file 'LIBSVM-set.trna-real' is every possible pairing of known 479 
tRNA sequences in our database, not counting sequences paired with 
themselves. The file 'LIBSVM-set.100ident-real' is the 309 5S rRNA and 
479 tRNA sequences paired with themselves (i.e. real sequence pairs of 
100% identity). The files denoted 'neg-column' are columnwise-shuffled 
negatives generated from the corresponding real sequences; the files 
denoted 'neg-AE' are negatives generated from the corresponding real 
sequences by the Altschul-Erikson shuffle (see "Methods" for description 
of both shuffles). The files denoted 'seqlist' contain the codes for sequence 
pairs (or for sequences aligned with themselves) with lines in a one-to-one 
correspondence with the appropriate LIBSVM files – for example, line 42 
of file 'seqlist.5s-pairs' contains the codes of the two 5S rRNA sequences 
which were used to generate the data on lines 42 in files 'LIBSVM-set.5s-
real', 'LIBSVM-set.5s-neg-column', and 'LIBSVM-set.5s-neg-AE'. For 
LIBSVM files, column 1 the data label (1 for real, -1 for negative); col-
umn 2 is the Dynalign-computed ΔG°total; column 3 is the length of 
shorter sequence; columns 4, 5, and 6 are A, U, and C frequencies of 
sequence 1; columns 7, 8, and 9 are A, U, and C frequencies of sequence 
2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S6.gz]

Additional File 7
LIBSVM model file for the Dynalign/LIBSVM classifier. The model file 
for a LIBSVM classifier, trained as described in "Methods." LIBSVM clas-
sifications with this model file also outputs a probability of prediction (P 
value), in addition to the prediction itself. Use this with LIBSVM on data-
sets that have been scaled as described in "Methods" and note that data-
sets scaled differently will be incorrectly classified. The input dataset 
should be a plain text, whitespace-delimited tabular file formatted as 
described in Additional File 6 and in the LIBSVM documentation [69].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-173-S7.model]
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