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Abstract
Background: Clustering of gene expression patterns is a well-studied technique for elucidating
trends across large numbers of transcripts and for identifying likely co-regulated genes. Even the
best clustering methods, however, are unlikely to provide meaningful results if too much of the data
is unreliable. With the maturation of microarray technology, a wealth of research on statistical
analysis of gene expression data has encouraged researchers to consider error and uncertainty in
their microarray experiments, so that experiments are being performed increasingly with repeat
spots per gene per chip and with repeat experiments. One of the challenges is to incorporate the
measurement error information into downstream analyses of gene expression data, such as
traditional clustering techniques.

Results: In this study, a clustering approach is presented which incorporates both gene expression
values and error information about the expression measurements. Using repeat expression
measurements, the error of each gene expression measurement in each experiment condition is
estimated, and this measurement error information is incorporated directly into the clustering
algorithm. The algorithm, CORE (Clustering Of Repeat Expression data), is presented and its
performance is validated using statistical measures. By using error information about gene
expression measurements, the clustering approach is less sensitive to noise in the underlying data
and it is able to achieve more accurate clusterings. Results are described for both synthetic
expression data as well as real gene expression data from Escherichia coli and Saccharomyces
cerevisiae.

Conclusion: The additional information provided by replicate gene expression measurements is
a valuable asset in effective clustering. Gene expression profiles with high errors, as determined
from repeat measurements, may be unreliable and may associate with different clusters, whereas
gene expression profiles with low errors can be clustered with higher specificity. Results indicate
that including error information from repeat gene expression measurements can lead to significant
improvements in clustering accuracy.

Background
The maturation of microarray technology in recent years
has provided researchers with large amounts of gene

expression data requiring computational analysis. One
approach which has proven useful in elucidating trends in
this data is clustering, an algorithmic technique for parti-
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tioning genes into groups which evince similar expression
patterns. Since most formulations of clustering problems
are NP-hard, clustering algorithms tend to focus on
approximation methods. For example, hierarchical clus-
tering [1], k-means [2], graph-theoretic approaches [3],
and self-organizing maps [4] are examples of heuristically
motivated clustering methods which have been applied to
gene expression data. As an alternative, model-based clus-
tering methods assume that the expression data can be
modelled by a set of distributions [5,6], most commonly
as a finite mixture of multivariate Gaussian distributions
[7-10]. The abovementioned clustering methods are gen-
erally unsupervised, and they can be distinguished from
supervised classification of gene expression data, which
occurs when clusters or groups are known for some subset
of gene expression data, and the known examples can be
used as training data. Examples of supervised classifica-
tion techniques include multilayer perceptrons [11] and
support vector machines [12]. Model-based approaches
have also been applied in the context of supervised classi-
fication [13]. In this study, we focus on the problem of
unsupervised clustering, as true classes for gene expression
patterns are rarely known a priori.

The clustering approach proposed in this study is most
closely related to the k-means algorithm. In the statistics
and machine learning literature, k-means is one of the
most popular clustering methods, in part because of its
efficiency, and consequently, a wealth of research has
investigated extensions to the algorithm. For example,
semi-supervised versions of k-means which incorporate
background knowledge into the algorithm have been
studied [14,15]. Methods for choosing the initial seeds or
starting points for the algorithm have also proven success-
ful [16,17]. While k-means can be formulated as minimiz-
ing a sum-of-squares function, reformulations have been
investigated which allow more effective searches for func-
tion minima [18,19]. Also, variations of pairwise distance
measures, which are employed by the algorithm, have
been studied [20].

In the process of partitioning genes into groups, most
clustering approaches, either explicitly or implicitly, cal-
culate pairwise distances or similarities between pairs of
gene expression profiles. For researchers interested in
applying clustering techniques to gene expression data,
often the choice of pairwise distance (or similarity) meas-
ure is as important as the choice of clustering approach.
The two most common measures for gene expression data
are Euclidean distance and Pearson correlation [21].
While correlation is a similarity measure rather than a dis-
tance measure, it can be converted to a dissimilarity meas-
ure (i.e., distance measure) through a straightforward
transformation. The Euclidean distance between two gene
expression profiles reflects the magnitude of difference

between the profiles, whereas the correlation of two pro-
files reflects the similarity in shape, or pattern, between
the profiles. Consequently, the correlation measure is
invariant to linear transformations in gene expression pat-
terns. Gibbons and Roth compared these two measures
and found that correlation performed best on non-ratio
based gene expression data, whereas Euclidean distance
performed best on ratio-based gene expression data [21].
These researchers suggested that Euclidean distance out-
performs correlation on ratio-based data because ratio-
based data are generally log-transformed, thereby equaliz-
ing up and down regulation effects and compressing the
scale of variation. In the algorithm proposed in this study,
we employ a measure which, in the general case, accounts
for linear transformations in the data, analogous to corre-
lation. The proposed algorithm can also cluster based on
Euclidean distance, as a special case of the general dis-
tance measure.

One of the main challenges for all of the clustering tech-
niques, regardless of the pairwise distance measure, is the
substantial noise in the underlying data sets [22,23].
Expression measurements from microarray experiments
can range dramatically in their accuracy and reproducibil-
ity [24-26]. Even the best clustering methods are unlikely
to provide meaningful results if too much of the data is
unreliable. In recent years, there has been a wealth of work
done on statistical analysis of gene expression data,
including selecting sets of relevant features or genes [27-
29], modelling errors and uncertainty in array measure-
ments [30-33], and investigating the effects of repeat
experiments on accuracy and reproducibility of expres-
sion data [34,35], to name a few. With increasing empha-
sis on modelling error information in gene expression
data, researchers are designing more experiments with
repeat gene expression measurements. One of the chal-
lenges, then, is to incorporate measurement error infor-
mation into downstream analyses of gene expression
data, such as clustering.

An area related to the use of error information in cluster-
ing is the use of error information in identifying differen-
tially expressed genes. Given the expression levels for a set
of genes in two different tissues or at two different time
points, we may ask which genes in the set are differentially
expressed under the two conditions. Several studies have
incorporated error information, as derived from repli-
cated gene expression measurements, into methods for
identifying differentially expressed genes [36-40]. In gen-
eral, these approaches conduct a hypothesis test for each
gene, and then correct for multiple tests. Often, these
methods are variations of a t-test, and they differ primarily
in their estimation of the variance.
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We are concerned with a somewhat different problem in
this study, namely how error information, as determined
from repeat gene expression measurements, can improve
traditional clustering techniques. Previously, the incorpo-
ration of error information into clustering algorithms has
been investigated in the context of model-based cluster-
ing. Medvedovic and Sivaganesan [41] proposed a mix-
ture model for clustering gene expression data with error
information. While, initially, the mixture model assumed
that expression measurement errors for each gene were
homogeneous across experiments, the model has been
extended to include different error estimates across the
experiments [10,42]. One of the advantages of the mixture
model is the generality of the model, which enables its
applicability for a range of data sets [42]. However, the
model generality comes at the price of having many
parameters necessitating estimation. For instance, to esti-
mate a covariance matrix for each of k mixture compo-
nents (i.e., clusters), k*m2 parameters must be
determined, where m is the number of experiment condi-
tions. In addition, the model does not currently account
for linear transformations of gene expression profiles. In
other words, the model considers the magnitude of gene
expression profiles (analogous to Euclidean distance) but
not the pattern (or shape) of gene expression profiles
(analogous to correlation). In contrast, the approach pro-
posed in this study, CORE, is a heuristic algorithm which
performs clustering based on the pattern of gene expres-
sion profiles.

Rather than evolve a clustering algorithm to incorporate
error information, as is proposed in this study, an alterna-
tive approach for including error information is to modify
the input to standard clustering methods. Since many
clustering algorithms take as input a matrix of pairwise
similarities (or distances) between all pairs of gene expres-
sion profiles, the pairwise similarity matrix may be modi-
fied to include error information. This approach has the
advantage of utilizing traditional clustering algorithms,
such as hierarchical clustering, k-means, and self-organiz-
ing maps, without modification.

In an early study, Hughes et al. [43] estimate the errors of
gene expression measurements for their yeast compen-
dium data set using, in part, replicate assays. The authors
then incorporate these error estimates as they calculate a
weighted similarity (analogous to a correlation coeffi-
cient) of each gene's expression pattern with every other
gene's expression pattern. The correlation calculation is
weighted based on the estimated errors of the gene expres-
sion measurements. The result is an n × n similarity
matrix, where n is the number of genes to be clustered.
Each entry in the matrix corresponds to an error-weighted
similarity measure between two genes. The matrix is then
input into a hierarchical clustering algorithm. Thus, the

authors do not alter their clustering algorithm to include
the error information, but rather they modify their pair-
wise similarity measure. Other approaches [42,44], more
recently, have employed error-weighted similarity meas-
ures based on replicate expression assays in their cluster-
ing applications. Again, traditional clustering algorithms
are used, but the input to the algorithms – an n × n simi-
larity matrix for n gene expression profiles – is calculated
using an error-weighted similarity measure as opposed to
traditional Euclidean distances or correlation coefficients.

The error-weighted similarity is useful because it repre-
sents a single measure for each pair of genes, based on
both error information and gene expression values, which
can be input into existing clustering methods. However,
as we demonstrate in our results, the approach is prob-
lematic in two respects. Firstly, because expression meas-
urements and the resulting error estimates are reduced to
a pairwise similarity matrix before being input to a cluster-
ing algorithm, some error information is lost. In particu-
lar, the approach captures the relative error between
different experiment measurements when calculating sim-
ilarity of genes, but it does not capture the absolute meas-
urement errors between genes. In other words, it captures
experiment specific noise but not gene specific noise.
Gene specific errors may be the result of various biases in
microarray assays, such as sequences hybridizing with dif-
ferent affinities or mRNAs exhibiting different levels of
stability or rates of degradation. Secondly, and more
importantly, the error-weighted similarity measure is not
a true measure of gene expression correlation, i.e., it does
not necessarily capture similarity between gene expression
profiles. Rather, it represents the similarity between ratios
of expression level to estimated error. Generally, gene
expression profiles (i.e., genes with similar expression pat-
terns) are the desired targets of clustering applications,
not ratios of expression to error, which have no clear bio-
logical interpretation.

We present the clustering algorithm, CORE (Clustering of
Repeat Expression data), a clustering approach akin to k-
means clustering with measurement error information
included intrinsically. Using repeat expression measure-
ments, a single surrogate expression value is calculated for
each gene in each experiment condition, and the error is
estimated for each of these surrogate gene expression val-
ues. This error information is then incorporated into the
clustering model, enabling CORE to capture much of the
noise in the underlying data sets, both from experiment
biases and gene biases. A higher weight is placed on relia-
ble expression measurements and less weight is placed on
unreliable expression measurements when clustering. By
identifying and down-weighting noisy measurements,
more accurate clusterings are achieved. The performance
of CORE is validated using statistical measures, and clus-
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tering results are presented for synthetic expression data
sets as well as real gene expression data from Escherichia
coli and Saccharomyces cerevisiae. All data as well as supple-
mentary information is available at the website, http://
cs.wellesley.edu/~btjaden/CORE.

Results and discussion
Error models
As microarray assays increasingly are performed with rep-
licate experiments or replicate spots per gene on each
array, our ability to capture standard error information
associated with each measured expression value in each
condition is also improving [31,45,46]. Incorporating this
error information can improve the effectiveness of cluster-
ing analysis [47]. For instance, consider the expression
profiles for four genes (g1, g2, g3, and g4) where the expres-
sion measurements for two of the genes (g1 and g2) have
very low error and the expression measurements for the
other two genes (g3 and g4) have higher absolute error, as
in Fig. (1). If g1 and g3 have identical expression profiles
and g2 and g4 have identical expression profiles then most
clustering algorithms will calculate the same distance or
similarity (assuming Euclidean distance or correlation
similarity) for g1 and g2 as for g3 and g4 because most clus-
tering algorithms do not incorporate error information
about expression measurements. Even in the case of the
previously discussed error-weighted similarity measure
[42-44], the similarity between the two pairs of genes in
Fig. (1) is identical because the gene pairs have the same
relative errors across experiments.

In general, the previously proposed error-weighted simi-
larity measure is problematic because it is not a true meas-
ure of correlation between gene expression patterns. An
error-weighted similarity measure for two genes x and y
across m experiments (i.e., components) has been
described as

where gij is the estimated expression of gene i in experi-
ment j and σij is its associated error [42-44]. As Fig. (2)
illustrates, this similarity measure can be problematic
because it does not necessarily capture similarity between
gene expression patterns, i.e., correlation. Using the error-
weighted similarity measure in Eq. (1), two genes' expres-
sion values may fall along a straight line through the ori-
gin (be perfectly correlated), but they may have an error-
weighted correlation of less than 1.0 (the error-weighted
correlation is 0.79 for the gene pair in Fig. (2a)). Alterna-
tively, two genes' expression values may not fall along a
straight line (may not be perfectly correlated), yet they
may have an error-weighted correlation of 1.0, as in Fig.
(2b). This problem is due to the fact that the weighted cor-
relation formula does not compute the correlation of a
two-dimensional data distribution (which would have to
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Scatter plots of gene expression profilesFigure 1
Scatter plots of gene expression profiles. (a) A scatter plot of the expression profiles for 2 genes (with 6 components) 
with standard errors indicated, (b) A scatter plot of the expression profiles for 2 genes (with 6 components) identical to the 
expression profiles in (a), but with higher standard errors. The gene pairs in (a) and (b) have identical Euclidean distances, iden-
tical correlation coefficients, and identical error-weighted similarity. However, in the CORE clustering algorithm, genes whose 
expression measurements have higher error (g3 or g4) provide less information about which cluster the gene belongs to, and 
the gene makes less of a contribution toward the calculation of clustering parameters.
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assign a single weight to each (x, y) pair). Instead of com-
puting a weighted correlation between expression levels, it
computes a correlation between ratios of expression level
to standard error, leading to a correlation number that
does not necessarily represent similarity of expression pat-
tern, as illustrated in Fig. (2).

In order to avoid these pitfalls, we incorporate error infor-
mation into our clustering model intrinsically. Intuitively,
if a gene's expression measurements have very high error
then the gene expression profile provides little informa-
tion about which cluster it belongs to, and the gene
should make very little contribution to clustering calcula-
tions. Inversely, if a gene's expression measurements have
very low error then we may have greater confidence in the
gene's expression profile, and the gene should make a
greater contribution to the clustering. As an example, in
the limit as the error approaches infinity, a gene's expres-
sion measurement is equally likely to take any value, i.e.,
it is equally likely to belong to any cluster. In order to
account for this variability in measurements, the assign-
ment of a gene to a cluster is determined as a function not
only of the distance between the gene and cluster but also
of the standard errors of the gene's expression measure-

ments. Further, different experiments may result in differ-
ent levels of measurement error for a given gene. Since the
proposed approach considers the error for each gene in
each experiment, noisy coordinates of a gene's expression
profile can be identified and the clustering contribution of
these coordinates can be downweighted accordingly. This
approach reduces the weight of noisy expression measure-
ments so that CORE is less sensitive to the uncertainty and
error which is common in array experiments.

Clustering model
Suppose we have gene expression values for n genes over
m conditions, and each one of these n × m values has an
associated error, calculated from replicate assays. In the
most straightforward strategy, each gene expression value
may be determined as the mean over repeat measure-
ments, and the associated error may be the sample stand-
ard error over the repeat measurements. A number of
alternative strategies exist for estimating expression values
and errors which can capture various statistical properties
of the experiments [31,32,45]. The proposed clustering
algorithm is an extension of the k-means heuristic. As a
frame of reference, the k-means algorithm is a special case
of the finite mixture model where the k underlying prob-

Error-weighted similarity examplesFigure 2
Error-weighted similarity examples. The figures (A) and (B) depict examples when error-weighted similarity (Eq. (1) in 
the text) is problematic as a correlation measure. (A) A scatter plot of the expression profiles for two genes g5 and g6 (with 3 
components), g5 = (100, 300, 400) and g6 = (100, 300, 400). The plotted expression profiles fall exactly on a straight line, how-
ever the error-weighted similarity  for these genes is only 0.79 when 05 = (10, 15, 50) and σ 6 = (30, 50, 15). (B)A scatter 

plot of the expression profiles for two genes g7 and g8 (with 3 components), g7 = (100, 300, 400) and g8 = (100, 400, 300). 
The plotted expression profiles do not fall on a straight line, however the error-weighted similarity  for these genes is 1.0 

when 01 = (20, 20, 50) and σ 8 = (20, 50, 20).

�ρ5 6,

�ρ7 8,
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ability distributions are assumed to be Gaussians, all with
equal variance and uniform prior probabilities [48,49]. In
the proposed approach, each cluster is modelled by a set
of parameters describing an expression profile over m
coordinates for the cluster. The algorithm for clustering
iterates between two alternating steps. In the first step,
model parameters are estimated for each cluster condi-
tioned on the set of genes assigned to the cluster. In the
second step, cluster assignments for each gene are deter-
mined conditioned on the clusters' model parameters. In
each step, the parameter estimations are a function of
both gene expression values and their corresponding
measurement errors.

Linear transformation
The model assumes that each gene's observed expression
pattern is generated from one of the k expression profiles,
with a linear transformation that involves multiplicative
scaling and/or additive translation of an observation. In
common practice, the expression profiles for two genes
are considered to be the same (i.e., have a pairwise dis-
tance of zero) if the profiles are linear transformations of
each other. The Pearson correlation coefficient is often

used as a measure of pairwise similarity between two
expression profiles in traditional clustering approaches
precisely because it accounts for linear transformations
between profiles (i.e., two expression profiles which are
linear transformations of each other are perfectly corre-
lated). Alternatively, if Euclidean distance is used as a pair-
wise distance metric, appropriate normalization of
Euclidean pairwise distances will account for linear trans-
formations (i.e., the distance will be zero between two
expression profiles which are linear transformations of
each other). However, as described above, error informa-
tion is lost when correlation (or normalized Euclidean
distance) is calculated ab initio. Thus, the proposed algo-
rithm does not calculate pairwise similarities (or dis-
tances) between expression profiles. In order to retain
error information about each gene in each experiment,
linear transformations are accounted for within the clus-
tering algorithm so that error information is not lost. For
each gene, two parameters, β and γ, are used which explic-
itly model multiplicative scaling and additive translation
respectively. To illustrate the idea of linear transforma-
tions, Fig. (3) shows the expression profiles for four genes,
gw, gx, gy and gz, across six experiments. The expression pro-
files for gw and gz have different shapes, but they are the
closest pair in terms of Euclidean distance. In contrast, the
expression profile for gx is a translated version (β = 1, γ = -
1) of the profile for gw, and the profile for gy is a scaled ver-
sion (β = 2, γ = 0) of that for gw. Hence, the three expres-
sion profiles, gw, gx and gy, have the same shape, and all
three are perfectly correlated. For applications in which
standard (non-normalized) Euclidean distances are pre-
ferred, the linear transformation parameters can be set
appropriately (β = 1, γ = 0).

Clustering formalism
Let gij be the expression value for gene i in experiment j,
and let σij be the standard error corresponding to this
expression value as determined from repeat measure-
ments. Then the expression profile of a gene i, generated
from a cluster with profile α = (α1, ..., αm), is described as

gij = βiαj + γi + εij  (2)

where εij are independent error terms with mean 0 and

variance  Here, βi is the scaling factor and γ i is the

translation factor of gene i. The variability may be stabi-

lized by dividing by σij to obtain

Hence the error terms
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Transformed gene expression profilesFigure 3
Transformed gene expression profiles. Four gene 
expression profiles across six experiments are depicted. The 
CORE algorithm uses two parameters, βi and γi, for each 
gene to reflect linear transformations of a gene's expression 
profile. The parameter β represents multiplicative scaling and 
the parameter γ represents additive translation. In the figure, 
the expression profile for gx is a translated version (β = 1, γ = 
-1) of the profile for gw, and the profile for gy is a scaled ver-
sion (β = 2, γ = 0) of that for gw. Thus, the three expression 
profiles, gw, gx and gy, have the same shape, and all three are 
perfectly correlated, i.e., have a distance of zero from each 
other in the CORE algorithm. In contrast, the profiles for gw 
and gz have different shapes but are the closest in terms of 
Euclidean distance.
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have mean 0 and variance 1. Thus, the distance from gene
i to a profile α is given by

which is equivalent to maximum likelihood estimation
for independent εij assuming that they are normally dis-
tributed, a reasonable assumption based on previous
studies [7,45]. Similarly, given a set of genes assigned to α
cluster C, the cluster profile a for C can be determined by

The objective of the algorithm is to determine k clusters
such that the sum of distances from each gene to its closest
cluster profile is minimized. If δi is the distance of gene i
to its closest cluster profile, then the objective function ∆
is given by

The algorithm is a gradient descent procedure which iter-
ates two steps until a locally optimal clustering is achieved
[50]. First, parameters are estimated for each cluster (Exp.
(6)), and then each gene is assigned to its closest cluster
(minimizing Exp. (5) over all clusters). In the former step,
the model parameters of each cluster and the transforma-
tion parameters for each gene are simultaneously esti-
mated. A description of the algorithm is given in Fig. (4).
The runtime of each iteration is linear in the size of the
input (i.e., proportional to n × m), and for large data sets
(10,000 genes assayed over 100 experiments), the algo-
rithm runs in a matter of seconds on standard desktop
computers.

Measure of performance
Following the convention of Yeung et al. [7], we use the
term cluster to mean a partition of genes predicted by the
algorithm. We use the term class to denote a partition of
genes which are known to group together by some exter-
nal evaluation criteria. Under this framework, the accu-
racy of a particular clustering can be validated against
external evaluation criteria, using a metric such as the
Rand index [51], R. The Rand index also serves as a meas-
ure for the consistency of two different clusterings of the
same data set. While the expected value of the Rand index

for two random clusterings does not take a constant value,
the adjusted Rand index [52], Ra, provides a metric for
comparing two clustering results which is designed to cor-
rect for the presence of chance agreement in clusterings.
Assuming the generalized hypergeometric distribution as
the model of randomness, the expected value of Ra for two
random clusterings is 0. The adjusted Rand index is used
to assess the performance of the proposed clustering
approach. Earlier studies which compared various statisti-
cal measures to validate clustering results [7,53,54] sug-
gest that the adjusted Rand index Ra is one of the best
measures of cluster validation.

Validating clustering results
To test the effectiveness of the approach, we implemented
the algorithm and ran it on both synthetic and real data
sets. For all data sets, the clustering algorithm was applied
both with the CORE error model, where errors are esti-
mated for each gene expression value in each experiment,
as well as with a uniform error model. The uniform error
model represents the case when all expression measure-
ments are assumed to have the same error, as in the case
of traditional clustering approaches. The actual value of
the measurement error in the uniform error model is
unimportant (except for its effect on the constant cluster,
as described in Methods) as long as the value is positive
and constant, since it is effectively normalized across all
genes in all experiments. In addition to the uniform error
model, two other alternatives to the CORE model were
considered. First, the pairwise Euclidean distance, rather
than the linearly transformed pairwise distance, was
employed. To calculate the Euclidean distance between
expression profiles, the CORE algorithm sets the linear
transformation parameters, β and γ, to fixed values of 1
and 0, respectively, rather than estimating these two
parameters. Second, the error-weighted similarity meas-
ure was used. The error-weighted similarity measure
between expression profiles is calculated by the CORE
algorithm using Equation (1). For both synthetic and real
data sets, all four variations (CORE error, uniform error,
Euclidean distance, error-weighted similarity) were com-
pared.

The first synthetic data set corresponds to normally dis-
tributed repeat measurements. The number of genes, the
number of experiments, the number of replicates, and the
errors are all chosen to approximate the E. coli data set
described below. Synthetic expression data are generated
from normal distributions (as described in Methods) for
n = 1000 genes over m = 50 experiments with ω = 14
degrees of freedom (corresponding to 15 measurements
per gene in each experiment as in the E. coli gene expres-
sion data sets) and scaling parameter τ = 0.1 (as defined in
Exp. (9)). For a given number of clusters, 100 trials of gen-
erating and clustering synthetic data are conducted, and
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the average over the 100 trials is calculated. Each synthetic
data set is clustered both with the CORE error model as
well as with a uniform error model. As the receiver oper-
ating characteristic (ROC) curve shows in Fig. (5a), the
CORE error model consistently outperforms the uniform
error model as the number of clusters is varied from 20 to
200. Here, the number of clusters equals the number of
classes at each point on the curve. The ordinate in Figure
5 represents the sensitivity as the number of clusters is var-
ied and the abscissa represents the false negative rate (i.e.,
1.0 - specificity). Similarly, in Fig. (6a), synthetic data is
generated (as described in Methods) for n = 1000 genes
over m = 50 experiments with ω = 14 degrees of freedom
and scaling parameter τ = 0.1 (Exp. (9)). Here, the number
of classes is fixed at 50 and the number of clusters is varied
up to 200. In addition to the uniform error model, the
CORE model is evaluated using a Euclidean distance
measure and using an error-weighted similarity measure.
For this data set, the CORE model outperforms the other
three. The poor performance of the Euclidean distance
measure, in this example, is unsurprising since each syn-
thetic expression profile is generated as a linear transfor-
mation of a cluster profile a, and the Euclidean distance
does not account for linear transformations between pro-
files.

The second synthetic data set corresponds to periodic
time-series measurements. The number of genes, the
number of experiments, the number of replicates, and the

errors are all chosen to approximate the S. cerevisiae
(yeast) data set described below. Synthetic expression data
are generated from sine waves (as described in Methods)
for n = 200 genes over m = 20 experiments with ω = 3
degrees of freedom (corresponding to 4 measurements
per gene in each experiment as in the yeast gene expres-
sion data sets) and scaling parameter τ = 0.1 (as defined in
Exp. (9)). For a given number of clusters, 100 trials of gen-
erating and clustering synthetic data are conducted, and
the average over the 100 trials is calculated. Each synthetic
data set is clustered both with the CORE error model as
well as with a uniform error model. The ROC curve in Fig.
(5b) shows that the CORE error model outperforms the
uniform error model as the number of clusters is varied
from 2 to 20. Here, the number of clusters equals the
number of classes at each point on the curve. Similarly, in
Fig. (6b), synthetic data is generated (as described in
Methods) for n = 200 genes over m = 20 experiments with
ω = 3 degrees of freedom and scaling parameter τ = 0.1
(Exp. (9)). The number of classes is fixed at 4 and the
number of clusters is varied up to 20. Again, the CORE
model outperforms the others. The poor performance of
the Euclidean distance measure is explained by the fact
that synthetic expression profiles were generated as linear
transformations of cluster profiles, and the Euclidean dis-
tance does not account for such linear transformations.

For a set of E. coli gene expression data, the clustering
approach was validated using 904 genes which have been

ROC curve for synthetic dataFigure 5
ROC curve for synthetic data. The ROC (receiver operating characteristic) curves show the tradeoffs between sensitivity 
and specificity (i.e., 1.0 - false negative rate) as the number of clusters is varied with two synthetic data sets. At each point along 
the curve, the sensitivity and specificity values are calculated as an average over 100 trials of generating synthetic data with a 
given number of classes and clustering the data with the same number of clusters as classes. (A) For the normally distributed 
synthetic expression data, the number of clusters is varied between 20 and 200. (B) For the periodic time series synthetic 
expression data, the number of clusters is varied between 2 and 20. The top curve (CORE) uses estimated standard error 
information from repeat measurements whereas the bottom curve uses a uniform error model, as described in the text.
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experimentally verified as belonging to multi-gene oper-
ons [55,56]. The expression of each gene in each experi-
ment was measured by 15 probes. These genes belong to
275 operons and serve as a reasonable external standard
under the assumption that genes belonging to the same
operon should be co-regulated and should belong to the
same class. Admittedly, this standard is imperfect. Differ-
ent operons may be co-regulated leading to an exagger-

ated number of false positive classifications. Additionally,
genes belonging to the same operon may be co-tran-
scribed and co-regulated under some conditions and indi-
vidually regulated and transcribed under other
conditions, thereby inflating the number of false nega-
tives. Nonetheless, we find polycistronic mRNAs to be an
excellent overall indication of genes with similar expres-
sion patterns, i.e., genes which should cluster together.

Adjusted Rand index for synthetic data and real expression dataFigure 6
Adjusted Rand index for synthetic data and real expression data. Each curve reflects the average adjusted Rand index 
Ra of clustering quality as the number of clusters is varied. Each data point on a curve is an average over 100 trials of generating 
and clustering data. Four clustering variations are considered for each data set: the CORE error model, a uniform error model, 
a Euclidean distance between pairs of expression profiles, and the error-weighted similarity measure between pairs of expres-
sion profiles. (A) The figure depicts the results for normally distributed synthetic data generated from 50 classes. (B) The figure 
depicts the results from periodic time series synthetic data generated from 4 classes. (C) The figure shows the results of clus-
tering 904 E. coli genes belonging to 275 multi-gene operons based on expression data from 55 experiments. (D) Based on 
expression data from 20 experimental conditions, the figure shows the results of clustering 205 yeast genes which have each 
been annotated with one of four functional classifications.
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Fig. (6c) illustrates the results of clustering the set of E. coli
genes, varying the number of clusters up to 800. For this
data set, the CORE model has the best performance.

As a final validation, the clustering approach was applied
to a set of yeast expression data [57]. The data consists of
expression measurements for 205 genes involved in galac-
tose utilization (GAL) in Saccharomyces cerevisiae. Gene
expression was measured with 4 replicate assays across 20
experimental conditions (20 perturbations in the GAL
pathway). Each of the 205 genes has been annotated as
corresponding to one of four functional classifications in
the gene ontology [58]. These functional classifications
serve as an external standard of classification. It is worth
noting that this data set has been clustered previously
[10,42]. Fig. (6d) illustrates the results of clustering the set
of yeast genes using the CORE algorithm, varying the
number of clusters up to 20. For this data set, the Eucli-
dean distance measure outperforms the CORE model.
Indeed, these results are consistent with those obtained in
a previous study [21], namely that for particular gene
expression data sets, Euclidean distance serves as a better
measure, when clustering, than correlation or other meas-
ures which capture linear transformations in the data. The
data sets for which the Euclidean distance may be the
most appropriate measure are ratio-based gene expression
data, such as the abovementioned yeast expression data
(obtained from two-channel cDNA microarray experi-
ments). In contrast, for non-ratio based gene expression
data, such as the abovementioned E. coli expression data
(obtained from single channel microarray experiments),
linear transformation measures have been reported to
outperform Euclidean distance measures in clustering
applications [21]. In support of these findings, Fig. (6c),
which is based on non-ratio style data from Affymetrix oli-
gonucleotide array experiments, shows that the linear
transformation measure outperforms the Euclidean dis-
tance measure for the single channel data set.

In all cases above, the performance of the CORE error
model dominates that of the uniform error model and the
error-weighed similarity measure. These results are con-
sistent with previous work which compared the effective-
ness of the error-weighted similarity measure in clustering
[42]. Further investigation of these results confirmed our
expectations about the model, namely that genes whose
expression measurements have high error could not be
assigned to clusters reliably. For these high-error genes,
the distribution of distances from the gene to each cluster
is relatively flat, i.e., a high error gene has nearly uniform
probability of being generated from each cluster. As a
result, the noisy measurements contribute less to the clus-
tering. Since the approach considers the error for each
gene in each experiment, noisy coordinates could be iden-
tified in a given gene's expression profile (i.e., for each

gene, experiments which result in higher expression meas-
urement error). As detailed in the algorithm, the less reli-
able experiments contributed less to the clustering
calculations. As shown in the results, this additional error
information leads to improvements in clustering accu-
racy.

Choosing the number of clusters
One of the challenges with many clustering applications is
determining the correct number of clusters (i.e., the
choice for the parameter k). The problem of choosing an
appropriate number of clusters for a given data set has
been reviewed by Milligan and Cooper [59] and by Gor-
don [60]. Several heuristics have been developed for vari-
ous clustering approaches, such as the gap statistic [61]
which is commonly used for heuristic clustering methods
and the BIC (Bayesian Information Criterion) [62] which
is commonly used for model-based methods [63,64]. The
gap statistic, which compares the change in within-cluster
dispersion with that expected under an appropriate refer-
ence null distribution, has been used previously with k-
means type algorithms on gene expression data sets [61],
and consequently, we demonstrate that it is a useful guide
to selecting an appropriate number of clusters in the con-
text of the CORE algorithm presented in this study.

Fig. (7) shows the results of calculating the gap statistic for
different numbers of clusters using the CORE algorithm
for each of the four data sets. The gap statistic depends on
an appropriate reference null distribution, which is gener-
ated here as described in previous work [61]. In summary,
for each experimental condition, each simulated gene
expression measurement from the reference distribution
is generated uniformly over the range of observed values
for that experimental condition. Each point along the
curves in Fig. (7) represents a comparison between the
within-cluster dispersion of the clustered data set, as
determined by the CORE algorithm, and the average
within-cluster dispersion of B = 100 samples of the clus-
tered complete reference distribution, as determined by
CORE. The error bars in the figure reflect the standard
deviation of the gap statistic across the B reference distri-
bution samples. It is important to note that the recom-
mended value for the parameter k is not the point at which
the gap statistic achieves its global maximum. Rather, it is
the smallest number of clusters at which the gap statistic
achieves a local maximum, after accounting for the error
terms. Specifically, the recommended value for k is the
smallest number of clusters, i, such that the gap statistic at
i is greater than or equal to the gap statistic at i+1, less the
estimated error of the gap statistic at i+1. The non-mono-
tone behaviour of the gap statistic often indicates smaller
sub-clusters within larger well-separated clusters. For each
of the four data sets, the gap statistic in Fig. (7) suggests a
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value for the parameter k which is close to the number of
true classes in the data set.

Conclusion
As microarray technology matures, arrays are becoming
cheaper and denser. In addition, a wealth of research on
statistical analysis of gene expression data encourages
researchers to consider error and uncertainty in their

microarray experiments, so that experiments are being
performed increasingly with repeat spots per gene per
chip and with repeat experiments. The additional infor-
mation provided by replicate gene expression measure-
ments is a valuable asset in effective clustering. Gene
expression profiles with high standard errors, as deter-
mined from repeat measurements, may be unreliable and
may fit with many clusters, whereas gene expression pro-

Gap statistic for estimating the number of clustersFigure 7
Gap statistic for estimating the number of clusters. The figure shows the results of calculating the gap statistic for dif-
ferent numbers of clusters using the CORE algorithm for each of the four data sets. Each point along the curves represents a 
comparison between the within-cluster dispersion of the clustered data set, as determined by the CORE algorithm, and the 
average within-cluster dispersion of B = 100 samples of a clustered complete reference distribution, as determined by CORE. 
Generation of the reference distribution is described in the text. The error bars in the figure reflect the standard deviation of 
the gap statistic across the B reference distribution samples. The recommended value for the parameter k is the smallest 
number of clusters, i, such that the gap statistic at i is greater than or equal to the gap statistic at i+1, less the estimated error 
of the gap statistic at i+1. (A) For normally distributed synthetic data generated from 50 classes, the gap statistic suggests a 
parameter value of k = 60. (B) For periodic time series synthetic data generated from 4 classes, the gap statistic suggests a 
parameter value of k = 4. (C) For 904 E. coli genes belonging to 275 multi-gene operons, the gap statistic suggests a parameter 
value of k = 260. (D) For 205 yeast genes which have each been annotated with one of four functional classifications, the gap 
statistic suggests a parameter value of k = 5. For each of the four data sets, the gap statistic suggests a value for the parameter 
k which is close to the number of true classes in the data set.
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files with low standard errors can be clustered with higher
specificity. A novel clustering approach (CORE) is pre-
sented which incorporates measurement error informa-
tion for gene expression data. The performance of CORE
is validated using statistical measures on both synthetic
and real gene expression data sets. The results indicate that
the inclusion of error information can lead to significant
improvements in clustering accuracy as well as decreased
sensitivity to noise in the underlying data. All results, as
well as the expression data sets are available as supple-
mental material.

Methods
Non-differentially expressed genes
Throughout a set of gene expression experiments, a sub-
stantial number of genes may display nearly constant
expression patterns across all conditions. Often this is the
result of the genes' lack of differential expression under
the assayed conditions. In particular, at very low expres-
sion levels, the ratio of measurement error to expression
value is relatively high. However, since most clustering
approaches use expression patterns (direction and shape as
opposed to magnitude) to cluster, these non-differentially
expressed genes with proportionally high error can heav-
ily bias clustering results. To account for these genes, a
preprocessing phase is performed of removing any genes
demonstrating constant expression across the assayed
experiments. These genes are identified by calculating, for
each gene i, the distance of its expression profile from a
constant expression pattern

Thus, a distribution is obtained, for the n genes, of the dis-
tance of the expression profiles from a constant expres-
sion pattern. By comparing this distribution to a Chi-
squared distribution with m-ldegrees of freedom, any
genes whose expression patterns are sufficiently close to
constant (below some threshold) can be identified and
removed prior to clustering.

Data sets
Two types of data are used to assess the performance of the
clustering approach. Synthetic data is useful because the
classes from which each gene expression profile is gener-
ated are known exactly, and thus, the results can easily be
assessed. Real expression data sets are more relevant, yet it
is often difficult to assess these clustering results because
there are limited external evaluation criteria for true classes
of genes.

Synthetic expression data

Two methods are employed for generating synthetic
expression data which capture much of the variability and
error of real gene expression data. In the first method, an

expression profile α for each of k classes is initially gener-
ated. The expression profiles are vectors chosen uniformly
at random from the unit hypercube in m dimensional
space. For each of n genes, one of the k classes is randomly
chosen, and using the expression profile a for the chosen
class, the expression value gij for gene i in experiment j is

determined as gij = βiαj + γi + εij where βi and γi are chosen

uniformly at random. The error εij is randomly selected

from N(0, ). The standard error values σij for each

component j of gi are chosen from the following Chi-

squared distribution,

where ω indicates the degrees of freedom (corresponding
to the number of repeat expression measurements per
gene) and τ is a scaling parameter. The Chi-squared distri-
bution is an appropriate choice for independent error
terms which are normally distributed.

In the second method, an expression profile a for each of
the k classes is generated such that the expression profiles

emulate periodic time series data. For the zth class, 1 ≤ z ≤
k, an expression profile α(z) corresponding to a sine wave
for the class is generated. Each class's expression profile
(i.e., sampled sine wave) is determined uniquely accord-

ing to the following function αj(z) = sin(2n*(z/k + 3j/m)).

The z/k term determines the unique shift (along the
abscissa) of each sine function. Since j represents one of

the m experiments, 1 ≤ j ≤ m, the term 3j/m indicates that
the experimental coordinates of the expression profile are
sampled uniformly from the sine function over 3 periods.
For each of n genes, one of the k classes is randomly cho-

sen, and using the expression profile α for the chosen
class, the expression value gij for gene i in experiment j is

determined as gij = βiαj + γi + εij where βi and γ i are chosen

uniformly at random. The error εij is randomly selected

from N(0, ). The variances  for each component j

of gi are sampled from the inverse gamma distribution

which approximates the error components of the yeast
expression data set [57].
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Real expression data
Two sets of real expression data are employed, one from
Affymetrix oligonucleotide microarrays assaying expres-
sion of E. coli genes and the second from cDNA microar-
rays assaying expression of yeast genes. The first set of
expression data consists of results from 55 experiments
under a battery of different conditions [65-68]. Typically,
each E. coli gene is assayed with 15 probes. A detailed
description of the array design has been described else-
where [65], and the raw data is available from a public
repository [69]. The expression values and corresponding
standard errors are calculated using the expectation-maxi-
mization approach of Li and Wong [31] and are available
as supplemental material. This data set is appropriate for
two reasons. First, the data contains repeat measurements
for each gene, which provides standard error estimates. As
researchers are placing increasing emphasis on designing
reproducible array experiments with suitable error mod-
els, replicate measurements are becoming more common.
Second, we develop an external evaluation criterion for
this data set which allows validation of the clustering
results. Developing evaluation metrics for clustering real
expression data is often challenging because there is rarely
a gold standard indicating which genes should cluster
together and which genes should be in different clusters.
In order to validate the approach on the E. coli data, Reg-
ulonDB [55] and EcoCyc [56] were queried to identify
904 genes which have identifiable (non-constant) expres-
sion profiles and which have been experimentally verified
as belonging to multi-gene operons. These genes belong
to 275 operons and serve as a reasonable external stand-
ard under the assumption that genes expressed as part of
the same polycistronic mRNA should be co-regulated and
should belong to the same class.

The second set of data consists of expression measure-
ments from 80 experiments corresponding to 20 pertur-
bations of the galactose utilization pathway in
Saccharomyces cerevisiae, assayed in quadruplicate [57].
Each of the yeast genes has been annotated as correspond-
ing to one of four functional classifications in the gene
ontology [58]. The functional classifications serve as the
external standard of classification.
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