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Abstract

Background: Both direct and indirect interactions determine molecular recognition of ligands by
proteins. Indirect interactions can be defined as effects on recognition controlled from distant sites
in the proteins, e.g. by changes in protein conformation and mobility, whereas direct interactions
occur in close proximity of the protein's amino acids and the ligand. Molecular recognition is
traditionally studied using three-dimensional methods, but with such techniques it is difficult to
predict the effects caused by mutational changes of amino acids located far away from the ligand-
binding site. We recently developed an approach, proteochemometrics, to the study of molecular
recognition that models the chemical effects involved in the recognition of ligands by proteins using
statistical sampling and mathematical modelling.

Results: A proteochemometric model was built, based on a statistically designed protein library's
(melanocortin receptors') interaction with three peptides and used to predict which amino acids
and sequence fragments that are involved in direct and indirect ligand interactions. The model
predictions were confirmed by directed mutagenesis. The predicted presumed direct interactions
were in good agreement with previous three-dimensional studies of ligand recognition. However,
in addition the model could also correctly predict the location of indirect effects on ligand
recognition arising from distant sites in the receptors, something that three-dimensional modelling
could not afford.

Conclusion: We demonstrate experimentally that proteochemometric modelling can be used
with high accuracy to predict the site of origin of direct and indirect effects on ligand recognitions

by proteins.
Background effects arising at distant sites in the proteins. Using three-
The processes of life depend on intermolecular recogni-  dimensional (3D) structure approaches it is not straight-
tion. Molecular recognition by proteins is a complex proc-  forward to analyze long distance effects on, for example,

ess that is determined not only by direct interactions of a  protein conformation, mobility, and stability. Recently, a
protein with the interacting molecule, but also by indirect =~ new approach using statistical analysis of protein and lig-
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Table I: Affinities of multiple chimeric melanocortin receptors. Affinities (pK * standard deviation, SD) of multiple chimeric
melanocortin receptors for o-MSH, NDP-MSH and ['251]-NDP-MSH determined by radioligand binding.

Ne Name Set Parts pK
A B C 1251-NDP- NDP-MSH o-MSH
MSH
| MC, wt. MC, MC, MC, 9.962 10.342 9.682
2 MC, wt. MG, MG, MG, 9.402 9.312 7.272
3 MC, wt. MC, MC, MC, 8.64 8.732 5.692
4 MC; wt. MC; MC; MC; 8.54 8.582 5.302
5 FI34 F MC, MG, MC, 8.58 £0.17 10.37 £ 0.01 770 £0.14
6 FI53 F MC, MC; MG, 8.88 £ 0.16 10.38 £ 0.12 7.80 £ 0.56
7 F354 F MC, MC; MC, 8.80 +0.16 8.66 + 0.48 5.72 £ 0.65
8 F413 F MC, MC, MC; 862 £0.16 8.64 £0.16 6.21 +0.42
9 F435 F MC, MG, MC; 8.96 £ 0.08 8381 £0.14 6.39 £ 0.40
10 F451 F MC, MC, MC, 9.06 + 0.31 8.54 £ 0.26 6.33 +£0.43
Il F514 F MC; MC, MC, 9.19 £ 0.21 845+ 0.11 5.1 £0.14
12 F531 F MC; MG, MC, 8.67 £ 0.48 10.85 + 0.28 5.33 £0.08
13 F543 F MC, MC, MG, 9.24 £ 0.25 9.51 £0.50 6.39 £ 0.50
14 S134 S MC, MC, MC, 9.30 £ 0.26 9.98 £0.16 9.02 £ 0.22
I5 S354 S MC; MC; MC, 881 £0.18 8.62 £ 0.37 4.88 £ 0.25
16 S451 S MC, MC; MC, 9.06 + 0.31 9.35+£0.36 6.10£0.16
17 S514 S MC, MC, MC, 9.19 £ 0.21 10.04 + 0.31 7.31 £0.38
18 S531 S MC; MC; MC, 8.96 £ 0.35 9.18 £ 0.65 7.57 £0.19

2Data for MC,, MC,;, MC,, and MC; taken from [31].

and interaction space, proteochemometrics, was devel-
oped [1,2]. It was used to model protein-peptide
interactions and interactions of proteins with organic
compounds [1,3-7]. Here we show its utility in predicting
indirect effects in proteins.

Proteochemometrics originates from chemometrics, the
mathematical methods used to analyze chemical data.
Proteochemometrics aims to describe the interactions
between a series of macromolecules (such as proteins)
and a series of ligands. Proteochemometric models are
thereby created. These models are useful for predicting the
affinities of new proteins for their ligands if the new mol-
ecules fall within the description space of the protein-lig-
and pairs of the training data set. A proteochemometric
experiment is typically described by three descriptor
blocks; the ligand descriptor (DL), protein descriptor (DF),
and ligand-protein cross-term (D) blocks. A vector of
numbers, called the ligand descriptors (DL), characterizes
each ligand L. Similarly, each protein P has its protein
descriptors (DF). If we use a linear method of regression,
the negative logarithm of ligand L's affinity (pK;) for the
protein P is expressed by:

__ N
pKip =pK+ Y. C;Df + Eq.1

1

M p N M P
2.CiDj + ¥ CiDy
j T

where pT( is the average affinity, C;, C, and C;; are the

regression coefficients for ligand descriptors, protein

descriptors, and ligand-protein cross-terms, respectively,
and N and M are the number of descriptors for ligands
and proteins, respectively.

Ligand-protein cross-terms are usually defined by a new
vector that is formed by multiplying each ligand descrip-
tor with each receptor descriptor of particular ligand-
receptor pairs. Hence,

D" = Df D} Eq. 2

and then

N
PKip :PK+2C1'D1‘L +

1

Eq. 3

M N M
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By using Eq. 3, the selectivity, S, ,5, between protein A and
protein B for some particular ligand L can be expressed as:

Y A B N L M A B
Spap = PKia — PK1p :ch(D}- -D} )+ZD,-‘ ZCij(Dj -Df ) Eq. 4
] 1 ]
If a region U of a protein is described by the set of descrip-
tors, V, then the contribution to the selectivity, SHAB ,by U
between proteins A and B for ligand L is obtained by:
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Table 2: Performance of proteochemometric models. Performance of proteochemometric models derived using wild-type and
multiple chimeric receptors interacting with melanocortins, a-MSH, NDP-MSH and ['25]-NDP-MSH. Shown are results from the
model based on binary receptor descriptors (A) and the model based on physicochemical description of amino acids of the
transmembrane regions presumed to face in a direction opposite to the membrane (B) (see Methods for further details).

Model R2 RMSE (log(M)) Q2 iR2 iQ? eQ?
A 091 0.45 0.83 0.49 -0.21 0.84
B 091 0.46 0.82 0.46 -0.25 0.85

Accordingly, we can localize regions in a protein that
afford selectivity (i.e., functionality difference between
protein pairs) for a particular ligand by applying Eq. 5. A
region can be a subsequence, a 3D molecular interaction
field, a single amino acid, or even a physicochemical
property of an individual amino acid, and is only
restricted by the way the descriptors are assigned to the
proteins [1-7]. Since Eq. 5 places no restriction how far in
space a ligand is located from a region in a protein, prote-
ochemometrics is useful to predict indirect interactions in
proteins.

Results

Design and testing of multiple chimeric melanocortin
receptor library

It is necessary to have modifications of both the proteins
and ligands, preferably both in the form of a series (i.e.,
"libraries"), in order to use Eq. 5. Here we used a library of
multiple chimeric melanocortin receptors [7]. Briefly, the
library was created from four natural melanocortin recep-
tors (MC,;, MC,_s). Each receptor was divided into five
sequence fragments (S1-S5) and multiple chimeric recep-
tors were then obtained by systematically shuffling the
fragments. In order to maximize the chemical space infor-
mation of the receptors, while keeping the number of
experiments as low as possible, statistical molecular
design was applied to properly select the sequence frag-
ments [7-10]. The entire receptor library comprised 18
receptors and was tested for its interaction with the native
melanocortin ligand, a-MSH and the synthetic MSH ana-
logues NDP-MSH and [125]]-NDP-MSH (see Table 1).

Proteochemometrics modelling

Interpretation of Eq.5 is dependent on our description of
the proteins. Here two proteochemometrics models were
created. One was based on a binary description of the pro-
teins. The other used physicochemical descriptions of
amino acids located inside transmembrane regions with
presumed proximity to possible ligand binding cleft(s)
according to the x-ray structure of bovine rhodopsin
[7,11,12]. The binary model comprised information on
the extent to which segments S1-S5 are involved in the
selective recognition of ligands by the receptors, while the
model based on physicochemical descriptions of amino
acids comprised information on the contributions of sin-
gle amino acids. Both models performed excellently in
state-of-the-art model validations (see Table 2).

Prediction of ligand recognition

The models were used to compute selectivity recognition
maps for all melanocortin receptor pairs for the a-MSH
hormone (see Tables 3 and 4). a-MSH is recognized by
MC receptors, albeit it binds with more than 1000 times
higher affinity to the MC, receptor than to the MC, recep-
tor. The recognition map derived from the binary model
predicted that segments S1, S2, and S4 play major roles for
the a-MSH MC,/MC, selectivity, while S3 and S5 contrib-
ute only a little (Fig. 1). The involvement of S1 and S2 was
expected, as these regions possess amino acids close to the
ligand recognition site according to 3D modelling [11].
However, the whole S4 region was located farther away,
and its involvement was therefore more surprising. The
model based on amino-acid physicochemical properties

Table 3: Selectivity recognition map predicted from binary model. Selectivity recognition map for wild-type MC receptor pairs for o-
MSH computed from the binary proteochemometric model. The contribution to the selectivity S¥, log(M), for indicated segments S|-
S5, was computed from the model using Eq. 5. Total selectivity represents the entire differences in affinity between receptor pairs

computed from the model (see Eq. 4).

Segment Contribution to selectivity S¥, (log(M))

MC,/MC; MC,/MC, MC,/MC; MC,/MC, MC,/MC, MC,/MC,

SI 1.14 1.07 1.04 -0.07 -0.09 -0.02

S2 0.39 0.91 1.15 0.52 0.77 0.24

S3 -0.15 0.33 0.44 0.49 0.60 0.11

S4 -0.07 0.54 0.62 0.61 0.69 0.08

S5 0.10 0.29 0.46 0.19 0.36 0.17
Total selectivity 1.40253 3.1389 3.71986 1.73638 231735 0.58095
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Table 4: Predicted amino acid selectivity recognition map. Amino acid selectivity recognition map for MC receptors for a«-MSH
computed from the proteochemometric model based on the physicochemical description of amino acids of the transmembrane
regions presumed to facing in the direction opposite to the membrane. The contributions to selectivity Sv, log(M), of the indicated
amino acid positions were computed from the model using Eq. 5. Total selectivity represents the entire difference in affinity between
receptor pairs computed from the model (see Eq. 4). TM, transmembrane regions; SG, segments.

Amino Acids ™ SG Contribution to selectivity Sv, (log(M))

MC, MG, MC, MC, MC,/MC; MC,/MC, MC,/MC; MC,y/MC, MCy/MC; MC,/MC,
Glu37 GIn74 GIn43 Asp35 | SI 0.23 0.23 0.18 0.00 -0.05 -0.05
Val38 Val75 Leu44 Met36 | Sl 0.00 0.11 0.12 0.11 0.12 0.00
Ser4| Lys78 Ser47 Ala39 | Sl 0.04 0.00 0.05 -0.04 0.01 0.05
Asp42 Pro79 Pro48 Val40 I Sl 0.21 0.21 0.21 0.00 0.00 0.00
Val60 11e97 lle66 lle58 | Sl 0.48 0.48 0.48 0.00 0.00 0.00

lle63 Vall00 lle69 lle6l | Sl 0.07 0.00 0.00 -0.07 -0.07 0.00

lle77 Leul 14 lle83 Val75 2 S2 -0.11 0.00 0.07 0.11 0.18 0.07
Ser83 Alal20 Ala89 Ala8l| 2 S2 0.14 0.14 0.14 0.00 0.00 0.00
Asn9l Asnl28 Asn97 Ser89 2 S2 0.00 0.00 0.14 0.00 0.14 0.14
Val92 Alal29 Gly98 Ala90 2 S2 0.03 0.10 0.03 0.07 0.00 -0.07
Ala%6 llel33 llel 02 lle94 2 S2 0.14 0.14 0.14 0.00 0.00 0.00
Leu99 Alal36 Thr105 Tyr97 2 S2 -0.01 0.05 0.06 0.06 0.07 0.0l
Ginl 14 GInl51 Vall 19 Argl12 3 S2 0.00 0.08 0.11 0.08 0.11 0.03
Leul 16 Met53 llel2l llel14 3 S2 -0.16 0.01 0.01 0.17 0.17 0.00
llel20 Phel57 llel25 Phel 18 3 S2 -0.03 0.00 -0.03 0.03 0.00 -0.03

Thri24 llel6l llel29 llel22 3 S2 0.14 0.14 0.14 0.00 0.00 0.00
Met128 Leul65 Leul33 Vall26 3 S2 0.09 0.09 0.11 0.00 0.02 0.02
Leul29 Vall 66 Leul34 Vall27 3 S2 -0.03 0.00 -0.03 0.03 0.00 -0.03
Leul32 llel69 llel37 Met!30 3 S2 0.01 0.01 0.15 0.00 0.14 0.14
Glyl36 Leul73 Leul4l Leul34 3 S2 0.14 0.14 0.14 0.00 0.00 0.00
Alal71 Cys208 Alal76 Phel69 4 S3 -0.09 0.00 0.04 0.09 0.13 0.04
Serl72 Cys209 Cysl77 Cysl70 4 S3 0.12 0.12 0.12 0.00 0.00 0.00
Phel75 Cys212 Ser|80 Cysl|73 4 S3 0.02 0.11 0.02 0.09 0.00 -0.09
Serl76 Gly213 Glyl8l Gly174 4 S3 0.12 0.12 0.12 0.00 0.00 0.00
Aspl84 Glu221 Aspl89 Glul82 5 S3 -0.07 0.00 -0.07 0.07 0.00 -0.07
Alal87 Met224 Alal92 Tyr185 5 S3 -0.08 0.00 -0.03 0.08 0.05 -0.03
Phe |95 Met232 Met200 Met!93 5 S3 0.12 0.12 0.12 0.00 0.00 0.00
Leu200 Met237 Leu205 Leul98 5 S3 -0.26 0.00 0.00 0.26 0.26 0.00
Met203 Met240 Met208 Leu201 5 S3 0.00 0.00 0.16 0.00 0.16 0.16
Leu243 lle28I Leu247 Val240 6 S4 -0.07 0.00 0.63 0.07 0.70 0.63
Leu247 Leu285 lle251 Leu244 6 S4 0.00 0.57 0.00 0.57 0.00 -0.57
lle264 lle302 Tyr268 Met261 6 S5 0.00 0.13 0.12 0.13 0.12 0.00
Val265 1le303 lle269 Leu262 6 S5 0.02 0.02 0.11 0.00 0.09 0.09
Ala285 Val323 11e289 1le282 7 S5 0.02 0.06 0.06 0.05 0.05 0.00
lle288 Met326 Met292 Met285 7 S5 0.04 0.04 0.04 0.00 0.00 0.00
Ala291 Ser329 Ser295 Ser288 7 S5 0.04 0.04 0.04 0.00 0.00 0.00
lle292 Val330 lle296 Val289 7 S5 -0.01 0.00 -0.01 0.01 0.00 -0.01
Total selectivity 1.30 3.26 3.70 1.96 2.40 0.44

in the transmembrane regions indicated that three amino
acids in S1, five in S2, one in $4, and one in S5 caused the
MC,/MC, receptor selectivity (see Table 4).

Verification of predictions using mutagenesis

In order to assess the predictions for the ten amino acid
positions predicted with by the model based on physico-
chemical properties of amino-acids located inside the
receptors transmembrane regions, they were subjected to
single, double, triple, pentuple, and heptuple mutations
in the MC, receptor, replacing them with the correspond-

ing amino acids in the MC, receptor. Measurements taken
from the mutants showed that seven positions gave the
expected increase in affinity for a-MSH (see Fig. 2, Table
5). Combining amino acid substitutions also gave higher
increases in affinity than did the single point mutations
(see Fig. 2, Table 5).

However, three of the ten positions (A89S, 1102A and
1251L) did not show the predicted increase in affinity (see
Fig. 2, Table 5). The failure of the A89S and 1102A muta-
tions to increase the affinity of the MC, receptor can be
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Increase in affinity of a-MSH predicted from the binary proteochemometric model. Shown is the increase in affin-
ity SU (log(M)) for a-MSH afforded by swapping each of segments S| — S5 in the MC, receptor with the corresponding segment
in the MC, receptor as predicted from the binary proteochemometrics model.

explained by the presence of several amino acid positions  A135 (numbered according to the MC, receptor) both
in the protein library that show the same or similar varia-  reside in the same segment and are serines in the MC,
bility (i.e., they co-vary). For example, positions A89 and  receptor and alanines in the MC;, MC,, and MC; recep-
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Predicted and experimentally determined increase in 0-MSH affinity for site-directed mutants. Predicted and
experimentally determined increase in affinity (i.e., computed SU and measured pK increase, log(M), respectively) for a-MSH
afforded by point mutations in the MC, receptor. Shown by red bars is the change in affinity predicted by the model utilizing
physicochemical descriptions of amino acids of the receptors' transmembrane regions and facing potential ligand binding clefts
to be afforded by the indicated point mutations (i.e., the predicted increase in affinity that should be gained by exchanging the
indicated amino acids in the MC, receptor with the corresponding ones in the MC, receptor). Shown in blue bars is the exper-
imentally determined change in affinity for these mutations vs. the wild-type MC, receptor. Significance (nonparametric Wil-
coxon Rank Sum statistical test [29]) denoted as follows: * p <0.05; ** p < 0.005; *** p < 0.0005.
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Table 5: Experimentally determined pK values of a-MSH for MC, receptor mutants. Shown is the average pK * SD determined in

radioligand binding competition using ['25IJNDP-MSH as radioligand. (The numbers of independent replicates are in brackets). The
significance, p, is calculated using nonparametric Wilcoxon Rank Sum test [29] (see Methods for details), when compared with the

wild-type MC, receptor.

Name pK; (log(nM)) £ SD (Repeats) p

MC, 573+ 032 (22) -
Q43E/P48D 6.19+£0.14 (1) 1.3E-4
166V 5.98 £ 0.26 (12) 9.8E-3
A89S 5.69 £ 0.14 (14) 6.4E-1
1102A 5.56 + 0.30 (12) 1.8E-1
1129T 6.02 £ 0.15 (1) 4.1E-3
AI135S 6.00 + 0.15 (10) 1.0E-2
LI41G 6.08 £ 0.15 (9) 3.0E-3
1251L 5.71 £ 0.36 (10) 7.0E-1
Y268I 5.88 + 0.20 (14) 3.8E-2
Q43E/P48D/I66V 630+ 0.17 (11) 1.5E-5
166V/IL141G 6.03 £0.20 (1) 4.6E-3
1129T/A 135S 6.47 £ 0.51 (10) 2.3E-5
LI141G/Y268I 6.01 £0.27 (12) 9.8E-3
Q43E/P48D/166V/1129T/A135S 652+ 0.17 (1) 1.4E-7
QA43E/P48D/166V/1129T/A135S/L141G/Y2861  6.49 £ 0.31 (9) 1.8E-5
N240G/M241L/1245V 6.10 £ 0.10 (5) 1.1E-2
V253I1/V255F/V256L 6.19 £ 0.16 (5) 4.3E-3
IL3 6.72 £ 0.14 (5) 1.7E-5
S4 6.98 £ 0.17 (5) 1.7E-5

tors. Such co-varying sequence positions gain equal
importance in a proteochemometric model, even when
some of them are not responsible for the explained activ-
ity. In the present library, mutations A89S, 1102A, 1129T,
A135S, and L141G represent co-varying amino acid posi-
tions. The failure of the A89S and 1102A mutations to
cause the predicted increase in affinity may thus be
explained on the basis of co-variance, where the actual
effect is caused by mutations 1129T, A135S, and L141G. In
fact, the sum of the experimentally determined affinity
increase by mutations A89S, 11024, 1129T, A135S, and
L141G (pKi = 0.69) closely agrees with that predicted
from the model (SU = 0.56).

However, the failure of mutation 1251L to increase affinity
could not be explained by co-variances of amino acids
within the model. Accordingly the predicted effect must
originate from amino acids actually co-varying in the
library but excluded from the modelling in the selections
of amino acids based on 3D structure. Three such possible
excluded positions partially co-varying with 1251 are
found in the midst of TM6, three are found towards the
intracellular face of the lipid bi-layer in TM6, and several
are present in the third intracellular loop. In the 3D struc-
ture, these amino acids are obviously located very far from
any eventual binding pocket for a-MSH. To verify the pre-
diction that these positions are responsible for the 'miss-
ing' affinity they were mutated separately and in
combinations (see Fig. 3, Table 5). Although all muta-
tions afforded an increase in affinity, most of the increase

(~12 -fold) was afforded by swapping the entire third
intracellular loop (see Fig. 3, Table 5). (Mutating all of
these positions together afforded an ~20-fold increase in
affinity).

Discussion

The experimental data demonstrate the utility of proteo-
chemometrics for mapping ligand recognition. Using it
seven amino-acid positions and the third intracellular
loop were identified as accounting for most of the differ-
ence in affinity of the MC, and MC, receptor for a-MSH.
The ability to localize a distant effect in a protein distin-
guishes proteochemometrics from other approaches to
mapping molecular recognition. A general scheme for
mapping ligand recognition using proteochemometrics is
outlined in Fig. 4. The protein library might initially be
collected from wild-type proteins, or created by construct-
ing multiple chimeric proteins, as performed in this study.
Applying experimental design could, in both cases, sub-
stantially reduce the number of entities that need to be
constructed and tested without detrimentally compromis-
ing the information gained [2]. The application of prote-
ochemometric modelling to the data creates a selectivity
recognition map for the proteins and ligands. Analyzing
the map (e.g., using Eq. 5) reveals the regions in the pro-
teins involved in recognition of the ligands in a data-set.
Regions of high interest can then be identified and ana-
lyzed further by extending the library, if necessary, in
order to remove ambiguities due to co-variances (Fig. 4).
In the selection of the regions for mutations the present
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Figure 3

Experimentally determined increase in 0-MSH affinity by mutations in segment $4. Experimentally determined
increase in affinity (pK) afforded by mutations N240G/M241L/1245V (indicated in green), and V2531/V255F/V256L (indicated in
blue) (i.e., exchanging amino acid residues in the MC, receptor with the corresponding residues in the MC, receptor), and
swapping intracellular loop 3 (IL3, indicated in dark yellow) in the MC, receptor with the corresponding in the MC, receptor.
Also shown is the increase in affinity for the whole S4 segment (54, indicated in pale yellow). Significance (nonparametric Wil-
coxon Rank Sum statistical test [29]) denoted as indicated in the legend to Fig. 2.
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Outline of the mapping of direct and indirect interactions in molecular recognition using proteochemomet-
rics. Outline of a general procedure for mapping molecular recognition by biomacromolecules. Initially, sets of wild-type mac-
romolecules are identified. Using statistical molecular design a library is then created from the wild-type macromolecules. The
library can be selected from the wild-type molecules if the initial collection contains sufficient chemical variation. Chemical var-
iation may also be introduced artificially by mutagensis. Shuffling sequence fragments can then be used to create a library,
where three or more segments and three or more macromolecules are used as the starting point. After evaluating the interac-
tion of the library with a suitable library of ligands of interest, a proteochemometric model can be created. This model may be
used to localize the regions in each macromolecule that contribute to the selectivity of each particular ligand evaluated. It may
happen that it is not possible to unambiguously localize individual amino acids within a particular region, due to co-varying
amino acid positions in the macromolecular library. In that case, an extension of the library can be made in order to resolve the
ambiguity.
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study shows that also distant effects on protein function
should be taken into account. Overall the approach
would lead to a substantial gain in information at reduced
experimental effort

Mapping molecular recognition with proteochemomet-
rics obtains different information than 3D-structure-
based methods. The latter generally reveal where one par-
ticular ligand touches one particular receptor in one of
many bound states. Proteochemometrics, by contrast,
reveals regions of biomacromolecules that influence the
selectivity of their ligand binding, and it has the capacity
to predict effects arising from distant sites in a protein. The
information obtained is only partially overlapping and,
therefore, the approaches complement each other. The
information gained in proteochemometrics relates to pro-
tein function and has direct utility for changing the func-
tion of a protein in a desired direction by mutation, in a
priori protein engineering, or by altering the structure of a
chemical entity and improving its interaction with bind-
ing sites, in a priori drug design [2].

Conclusion

In the present work we have presented a theoretical basis
for the use of proteochemometrics to assess direct and
indirect interactions in proteins, and we verified its utility
to this end experimentally. We have also outlined a gen-
eral strategy to afford cost effective mapping of molecular
recognition using proteochemometrics and indicate
important differences of proteochemometric mapping of
ligand recognitions compared to traditional three-dimen-
sional approaches. We propose that proteochemometrics
can be used as a complement to classical 3D based meth-
ods to the study of ligand recognition, or even as the
prime choice, in particular when three-dimensional pro-
tein structures are not available. Moreover, since proteo-
chemometrics can be used to map both direct and indirect
interactions, it may find a more general use in e.g. protein
engineering and mapping protein function.

Methods

Receptor clones and multichimeric receptors

The coding sequences of the MC, and MC; receptors were
cloned earlier [13,14]. The coding sequences of the MC,
and MC, receptor were gifts of Dr. Ira Gantz [15,16]. Mul-
tichimeric MC, ;_5 receptors were constructed so that each
receptor was divided into three regions, with each region
being replaced with a corresponding region from one of
the four wild-type MC, ;_5 receptors. Swapping all seg-
ments from the four receptors would have created a
library with an extensive number of combinations, but
this would have been impractical. We applied a statistical
molecular design, which combines statistical approaches
to maximize information gained from a minimal number
of experiments. We used a D-optimal design, which could

http://www.biomedcentral.com/1471-2105/7/167

approximate all combinations of the melanocortin recep-
tor regions making up 16 receptors, of which 4 were wild-
type and 12 were multiple chimeric receptors. The multi-
ple chimeric receptors were constructed in two sets, the F-
and S-sets. The divisions were made at the end of the third
and fifth transmembrane segments for the F-set (9 recep-
tors of the 12 designed could be obtained), and at the
beginning of the second and middle of the sixth trans-
membrane segments for the S-set (5 receptors were thus
obtained, completing the library according to the design).
Thus, the library came to include a total of 18 receptors:
14 that were multiple chimeric (in five segments) and four
wild-type MC, ;_5 receptors. We have previously reported
a full account of the construction of this receptor library
[7]. Moreover, full accounts of the theory and applicabil-
ity of statistical molecular design have also been reported
previously [8-10].

Site-directed mutagenesis

Selected individual amino acids in the MC, receptor were
exchanged for the corresponding amino acids of the MC,
receptor, using mutation-inducing primers and PCR [17].
Eight single mutants (I66V, A89S, 1102A, 1129T, A135S,
L141G, 1251L, and Y268I), a double mutant (Q43E/
P48D), and two triple mutants (N240G/M241L/1245V,
V2531/V255F/V256L), were created. Some of these
mutants were then used as templates for constructing
mutants with multiple mutations, yielding 166V/L141G,
1129T/A135S, L141G/Y268I, Q43E/P48D/I66V, Q43E/
P48D/166V/1129T/A135S, and Q43E/P48D/166V/1129T/
A135S/L141G/Y2681. We also manufactured two chi-
meric receptors in which subsequences of the MC, recep-
tor were replaced by the corresponding subsequences of
the MC, receptor. First we constructed a receptor ("S4 chi-
meric receptor") in which the entire S4 segment in the
MC4 receptor was replaced with that from the MC, recep-
tor. Another receptor ("IL3 chimeric receptor") comprised
the MC, receptor with intracellular loop 3 replaced with
the corresponding loop of the MC, receptor.

Peptides and radioligand

Peptide ligands o-MSH (Ac-SYSMGHFRWGKPV-NH,)
and NDP-MSH ([Tyr?, Nle4, D-Phe’]-a-MSH) were syn-
thesized using standard solid phase peptide synthesis and
purified by HPLC; their correct molecular weights were
verified by mass spectrometry. [125]]-NDP-MSH ([125]-
Tyr2, Nle4, D-Phe’]-a-MSH) was prepared in radiochemi-
cally pure form by custom iodination at EuroDiagnostica
AB, Sweden.

Receptor expression and radioligand binding

COS-1 cells were grown in Dulbecco's modified Eagle's
medium with 10% fetal calf serum. Eighty-percent conflu-
ent cultures were transfected in 100-mm dishes with the
DNA constructs (10 pg DNA per dish, mixed with lipo-
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Table 6: Description of peptides for proteochemometric modelling. The general sequence of the peptides used herein was: Ac-Ser-
Pos2-Ser-Pos4-Gly-His-Pos7-Arg-Trp-Gly-Lys-Pro-Val-NH,. Amino acids in Pos2, Pos4, Pos7, and the corresponding description, were as

shown.
Peptides Sequence position Descriptors
Pos2 Pos4 Y F Y*F
o-MSH Tyr Met -1 -1 |
NDP-MSH Tyr Nle D-Phe -1 | -1
1251-NDP-MSH 125]-Tyr Nle D-Phe | | |

somes, as described [18]. Twelve to sixteen hours after
transfection, the serum-free medium was replaced with
growth medium and the cells were cultivated for approxi-
mately 48 hours, then scraped off, centrifuged, and used
for radioligand binding. Dissociation constants (K;) for
[1251]-NDP-MSH were estimated for all the receptors by
radioligand binding saturation as described [7,18]. Inhi-
bition constants (K;) for a-MSH and NDP-MSH were then
estimated in competition with [!2°]]-NDP-MSH using
established procedures [7,18]. Obtained pK values (i.e.,
the negative logarithms of the K; and K; values) are listed
in Tables 1 and 5.

Numerical descriptions of receptors for
proteochemometric modelling

Two types of descriptions were used for the receptors,
namely a binary description and a description based on
physicochemical descriptions of amino acids. For the
binary description, four binary numbers described each
region, with each number corresponding to one receptor
subtype. Each of these descriptors was assigned a value of
+1 if the region was taken from descriptors' corresponding
receptor subtype, otherwise it was assigned the number -1

[7].

The receptor descriptions based on physicochemical
descriptions of amino acids at 38 selected sequence posi-
tions was used as described [7]. These positions were
selected from a three-dimensional model of the trans-
membrane regions of the MC, receptor.

Using the crystal structure coordinates of rhodopsin as a
template [12], the model was derived by replacing the side
chains with the corresponding side chains of the MC,
receptor, using the alignments of the GPCRDB database
[19] and the SCWRL program [20]. Only amino acids
pointing in the direction opposite the lipid bilayer were
considered. This led to a considerable reduction in the
number of co-varying sequence positions considered in
the proteochemometric modelling, albeit with the obvi-
ous risk of excluding important positions. The selected
positions are listed in Table 4.

Each position was coded by using five principal compo-
nents derived from 26 physicochemical properties of

amino acids, so called z-scales [21]. These z-scales repre-
sent hydrophobicity, steric properties, polarizability (z1-
z3), polarity, and electronic effects (z4, z5). The data for
the 38 x 5 = 190 descriptors obtained were compressed by
applying principal component analysis (PCA) [22] to
each of the five segments of the receptor library, which
yielded in total 15 descriptors, with three descriptors for
each segment. Prior to PCA, the z-scale descriptors had
been scaled to unit variance [23]. Principal component
analysis was performed using the Simca-P program [23].

Numerical description of peptides for proteochemometric
modelling

The three peptide ligands used showed limited structural
variation and were assigned two binary descriptors termed
Y and F, using the Free-Wilson approach [24]. Y was set to
+1 if the Tyr? residue of the peptides was iodinated; other-
wise it was set to -1. Thus, ligand descriptor Y distin-
guished between [125[]-NDP-MSH and the other two
peptides. The descriptor F was set to +1 if Phe” was in the
D-conformation and there was an Nle at position 4; oth-
erwise it was set to -1. Thus, ligand descriptor F distin-
guished between a-MSH and the other two ligands. We
also included the cross-term formed between the peptide
descriptors Y and F (termed Y*F). This cross-term distin-
guishes NDP-MSH from a-MSH and [125]]-NDP-MSH.
The peptide ligand description is summarized in Table 6.

Numerical description of binding experiments and
proteochemometric modelling

In each binding experiment, the receptor-peptide combi-
nation was described using the above receptor and pep-
tide descriptors, and by computing receptor-ligand cross-
terms using Eq. 2, each cross-term being calculated as the
product of one peptide and one receptor descriptor. Prior
to calculating cross-terms, all descriptors were mean-cen-
tred and scaled to unit variance [23]. In order to account
for differences in the number and mutual correlation of
each descriptor type, the peptide descriptors, receptor
descriptors, and cross-terms, block scaling was applied.
All descriptors and cross-terms were mean centred and
scaled to unit variance prior to block scaling [23]. Descrip-
tors were finally correlated to the pK values using partial
least squares projection to latent structures (PLS) regres-
sion [22]. PLS modelling was done using Simca-P [23].
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Validation of modelling

The goodness-of-fit was estimated by the correlation coef-
ficient R? and root mean square error (RMSE) [23]. Mod-
els were further validated using cross-validation (CV)
[25,26], validation by response permutations [27], and
validation by external prediction.

In cross-validation, one divides the data into several frac-
tions. Seven were used in this study. Each fraction is
repeatedly excluded once and then predicted from the
model developed on the remaining data. The goodness of
prediction of the CV is assessed by the Q2 measure [23].

In response permutation validation, many models are cre-
ated using randomly permuted response data. Twenty per-
mutations were used here. For each permuted model, the
R2, 2, and correlation coefficients between the original
and permuted response values are estimated. The correla-
tion coefficients are plotted against the R? and Q2 values.
The two corresponding linear correlation lines are esti-
mated, one for R2 and one for Q2, and the intercepts iR?
and iQ2 of the two regression lines with the zero correla-
tion coefficient line are calculated [5,23]. These intercept
values indicate the R? and Q2 of random response data.
For example, a negative Q2 intercept shows that it is not
possible to obtain predictive models with random data,
and indicates that a high Q2 value of the original model is
not obtained by pure chance.

External prediction assesses a model's stability when a
substantial fraction of the data is excluded (e.g., more
than one-third). External prediction may aim to predict
the properties of new entities, in other words, entities that
are entirely excluded from the data set. In the present case
we predicted pKs for the S-set receptors using only data for
F-set receptors. The goodness of external prediction was
assessed by the external Q2 (eQ2) value [5]. Further details
on these model validation approaches and how to inter-
pret their results have been previously reported [28].

Computation of the selectivity contribution of amino acids
The contributions of individual amino acids to the selec-
tivity of peptide binding between pairs of receptors were
computed using Eq. 5. In order to apply Eq. 5, the regres-
sion coefficients for the individual z-scales of the recep-
tor's amino acids were computed from the corresponding
PLS and PCA models. Nine amino acids (Q43, P48, 166,
A89,1102,1129, L141, 1251, Y268, according to the num-
bering in the MC, receptor) contributed most to the selec-
tivity of a-MSH (see Table 4) and were selected for site-
directed mutagenesis. Moreover, upon analyzing the 3D
model of the MC, receptor it was deemed that S83 (corre-
sponding to A89 in the MC, receptor) had a strong H-
bond interaction with §130 (A135 in the MC, receptor).
Since the amino acid positions A89/A135 (MC, receptor
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numbering) showed identical co-variance in the receptor
library, A135 was also selected for site-directed mutagen-
esis.

Statistical tests

The distribution of measured affinity for MC, receptor
and mutant receptors presented here as well as its loga-
rithm values (pK) did not correspond to normal distribu-
tion. Therefore we decided to use nonparametric
Wilcoxon Rank Sum statistical test [29] to verify the
hypothesis that affinity for corresponding mutant recep-
tor differs from wild-type MC, receptor. The test was per-
formed using R program [30].
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