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Abstract
Background: We present 2DDB, a bioinformatics solution for storage, integration and analysis of
quantitative proteomics data. As the data complexity and the rate with which it is produced
increases in the proteomics field, the need for flexible analysis software increases.

Results: 2DDB is based on a core data model describing fundamentals such as experiment
description and identified proteins. The extended data models are built on top of the core data
model to capture more specific aspects of the data. A number of public databases and
bioinformatical tools have been integrated giving the user access to large amounts of relevant data.
A statistical and graphical package, R, is used for statistical and graphical analysis. The current
implementation handles quantitative data from 2D gel electrophoresis and multidimensional liquid
chromatography/mass spectrometry experiments.

Conclusion: The software has successfully been employed in a number of projects ranging from
quantitative liquid-chromatography-mass spectrometry based analysis of transforming growth
factor-beta stimulated fi-broblasts to 2D gel electrophoresis/mass spectrometry analysis of biopsies
from human cervix. The software is available for download at SourceForge.

Background
A typical proteomics experiment starts with separation of
the biological material of interest. Popular separation
technologies include two-dimensional gel electrophoresis
(2DE) and liquid chromatography (LC). After separation,
the proteins are commonly identified by mass spectrome-
try (MS) which identifies proteins by measuring the
weight of protein fragments (for example peptides from a
tryptic digestion) and subsequently search these fragment

weights against sequence databases. This search is carried
out by software such as SEQUEST [1] or MASCOT [2]. The
usage of sequence databases for protein identification
forces the user to choose between quality or quantity.
Highly curated databases such as Swiss-Prot [3] (the
curated protein sequence database of UniProt) ensure
high-quality protein identifications and makes subse-
quent analysis less difficult. A protein or peptide cannot
be identified unless the protein or peptide sequence is
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present in the searched database, and hence the relative
small size of Swiss-Prot (about 172000 protein sequences
as of the spring of 2005; release 46.2) limits the number
of proteins that can be identified for a given sample. Large
databases such as the NCBI's non-redundant protein
sequence database (NR) with about 2.3 million unique
sequences and is composed of a large selection of other
databases such as GenBank [4-6], Swiss-Prot [3], EMBL [7]
and DDBJ [8]. The quality of annotations is on average of
lower quality than in Swiss-Prot because of a higher
degree of automation. The subsequent analysis of the data
becomes more difficult but as the size of the database
increases the chances of identifying proteins increase.
Software has also been developed to further enhance the
quality of the data by applying advanced statistics to the
resulting protein and peptide identifications [9,10]. The
resulting data consists of thousands of MS spectra, from
various fractions of the sample, searched against one or
more sequence databases using one or more software
packages. There is a need to store this complex data and
there is a need to find information about the identified
proteins. This information can range from physical prop-
erties such as molecular weight and pI to what biological
pathways this protein is a part of or what protein family it
belongs to. Information can be extracted from on-line
databases, some mentioned above or produced by bioin-
formatical tools.

The amount of data is at times large, but the nature of the
data poses bigger challenges. The data acquisition is
sequential meaning that sample preparation comes before
sample separation, which in turn comes before identifica-
tion. Each step can be performed by a variety of tech-
niques and all steps are not performed in each
experiment. Since the data from each step is different the
software integrating the data has to either describe the
data in general terms, or be extremely complex. Many
solutions for how to disseminate, store and analyze data
have been developed. PEDRo [11] is an example of a data
schema for how to store and more importantly share pro-
teome data. PEDRo aims to be a comprehensive solution
that works for various proteomics technologies. It was
developed mainly as a data transfer protocol to aid the
information exchange between scientists. PRIDE [12]
aims primarily to disseminate and make data publicly
available.

Common to most available software solutions is that they
are based on database accession numbers (ACs), which of
course, are database specific. This is convenient when
working with a single experiment search against a single
database using one protein identification software pack-
age. The usage of database specific ACs breaks down when
comparing different experiments searched against differ-
ent databases. It can also be problematic when searching

against the same database at different points in time, since
the amino acid sequence belonging to an AC might be
updated.

We present an information platform for storage, integra-
tion and analysis of proteomic data. Data produced by
various technologies can be imported and a number of
bioinformatic tools and publicly available databases have
been integrated. We have based our software package on
primary amino acids sequence to alleviate the problems
associated with AC. The number of features and capabili-
ties of the 2DDB software is large and only a selected few
will be presented here. This software differs from PRIDE
[12] and Peptide Atlas [13] in that the main objective lies
in data integration whereas data dissemination has a
lower priority.

Implementation
The software is implemented in Perl 5.8 as an object ori-
ented library, with a CGI script that provides the user
interface to the software. The data is primarily stored in a
relational database [28], but some data is stored on the
file system (mainly to provide input data for third party
software, such as BLAST [14]. 2DDB requires a GNU/
Linux operating system.

Results and discussion
The data models are implemented in a relational database
[28] and comprise tables ranging from experimental
meta-data tables to tables holding results from statistical
and bioinformatical analysis. The fundamental unit in the
data model is the primary amino acid sequence, referred
to as sequence from here on. Each sequence has one or
more AC, such as a Swiss-Prot AC [3], associated with it.
Basing the database on amino acid sequence alleviates a
number of problems. First, the amino acid sequence is
database independent in contrast to ACs, meaning that
the same amino acid sequence have different ACs in two
different databases. Since the sequence is database inde-
pendent, it is easy to compare experiments searched
against different databases. Second, some databases will
change the sequence belonging to an AC if the sequence is
discovered to be incorrect. It is possible that such a change
will corrupt the validity of the identification since the AC
was identified by primary sequence. Some databases
assigns a single AC to sequences and annotate the poly-
morphisms or splice variants, whereas others will assign
different ACs to each sequence. In our implementation,
polymorphisms and splice variants of the same gene will
lead to multiple sequence entries. Third, by using primary
amino acid sequence is the possible of grouping
sequences of high sequence similarity.

In a typical MS experiment, the sequence coverage (the
fraction of the full length sequence that was detected in
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UML diagram of the core data modelFigure 1
UML diagram of the core data model. An UML diagram of 18 of the more important tables of the over 180 tables in the 
current implementation of 2DDB. The core data model consists of a few tables colored in green. Each box represents a table 
in the database. The lines connecting the boxes represents relations in the relational database. A relation that ends with a split 
line represents many entries in the table. A relation with one split end hence represent a one-to-many relation and a relation 
with two split ends represents a many-to-many relation. One experiment is associated with many proteins (for example the 
proteins identified in an experiment). Each protein has a single sequence, but that sequence can be present in other experi-
ments hence the one-sequence many protein-relation. Each sequence is associated with one or many accession numbers from 
different databases, such as Swiss-Prot [3]. In blue are tables that hold information about the sequences. Yellow and red 
describe the MS related data model and the Protein Explorer respectively. Some tables, such as the peptide table, are extended 
by several other tables to hold information only relevant to a subset of peptides.
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the MS) is low. This is especially true when working with
higher eukaryotic systems. This makes it in many cases
impossible to discriminate between two sequences differ-
ing only by one or a few amino acids. Depending on what
software used, different sequences might be selected for
the same set of peptides or closely related sets of peptides.
This artificially added complexity of the data creates prob-
lems when analyzing the data, especially when comparing
two independent experiments. We are using a concept we
call composite sequence, referred to as MID (multi-
sequence identifier), to address the problem. The MID is
based on a seed sequence, and sequences similar (95%
identical) to the seed sequence are added to the MID still
explaining every peptide. The process of adding sequences
to MIDs is curated to ensure highest possible accuracy.
The MID hence groups together polymorphisms and
sequence fragments. The use of MIDs reduces the com-
plexity of the data and makes the subsequent statistical
and bioinformatical analyzes more reliable. The MID is
not designed to replace the conventional use of ACs, but
instead offer a way to convert non-informative ACs to ACs
with more information. As the number of sequences
increase, so does also the computational cost of keeping
the database up to date. Since the MID definition is based
on sequence identity and not evalues, it is possible to
obtain the data needed to create the MIDs in incremental
steps, caching previous results in a lookup table. This table
is updated weekly, to ensure full coverage. This way, the
computational cost is spread out over time, and is hence
also manageable. The first sequence detected is usually the
one used as the seed sequence of the MID, but longer
sequences are preferred in the case multiple sequences
belonging to the same MID is imported at once. When
analyzing duplications of experiments, the quality of
quantification data is increased by the fact that it is more
likely that the experiments share a common MID than an
identical identification, especially if a large sequence data-
base was used.

A wide array of analysis tools have been developed for the
analysis of the complicated data resource. These tools
cover functional, structural, compositional and regulatory
aspects of the data. The software package offers a conven-
ient way of importing data from a proteomics experiment,
annotate the proteins using one or more of the many tools
available and calculate various statistical parameters. It
also has the capability to compare experiments.

The core data model
The core data model consists of a few fundamental tables
and is the heart of the data model, see Figure 1. Experi-
ments, stored in the experiment table, are loosely defined
as a biological sample going through separation, identifi-
cation and database search. Two different sample prepara-
tions naturally end up in two different experiments. Less

obvious is that the same spectra search with two different
programs or against two different databases end up as dif-
ferent experiments. Each experiment has meta-data asso-
ciated with it describing the sample preparation, method
of separation, protein identification software and so on,
and each experiment is associated with one or more pro-
teins. The definition of a protein in 2DDB is the connec-
tion between an experiment and a protein sequence and
hence a protein identified in two different experiments
will have two entries in the protein table. The sequence is
stored in a separate table since the same protein can be
identified in multiple experiments and it is advantageous
to store each unique sequence only once.

Extended data models
Mass spectrometry data model
The core data model is not designed to hold experiment
specific data and a number of tables had to be added to
more accurately handle MS data. This model is capturing
the process from separation to identification and handles
data from ID and 2D gels as well liquid chromatography-
based separation methods (Figure 1). The 2DE module of
this software package was published in 2001 [15]. The
2DDB software has since been used in numerous studies,
of which a few have been published [16,17]. For example,
in one kind of experiment a sample is separated by strong
cation exchange and reverse phase chromatography and
spotted on a MALDI plate, each spot would be represented
as a locus in the database. Each spot is then subjected to
MS analysis and the spot is thus linked to one or more MS
spectra. Peaks are selected in the MS for fragmentation,
and the peptide fragments are subjected to yet another MS
analysis and the resulting spectra are assigned a peptide
sequence and a protein id by programs such as SEQUEST
[1] or MASCOT [2]. Hence each spot is also annotated
with one or more MSMS spectra and these spectra are
associated with an identified peptide sequence. The pep-
tide sequences are associated with one or more proteins.
Note the many-to-many relation between the peptide and
the protein table in Figure 1. Similarly, on an LC-MS anal-
ysis with an electrospray ionization (ESI)-based instru-
ment, typically a few peptides are eluted of the HPLC at
one given time and each data acquisition cycle is initiated
with a MS scan followed by a number of MS/MS scans.

Recently, the mzXML [18] standard has gained popularity.
It is an open XML format and conversion tools exists to
convert mzXML either to or from other popular formats.
The benefit with an instrument independent standard is
that the instrument specific files can be transformed into
the mzXML standard. The 2DDB system is currently sup-
porting this mzXML standard allowing the use of only one
set up import tools for all MS-based experiments. Data is
easily imported by pointing the system to a file system
localization. The system will find XML files, classify them,
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and imported them. Additionally, if an instrument inde-
pendent standard is used, only one set of software for fur-
ther data analysis needs to be developed. Examples of
published mzXML based tools are PeptideProphet [10],
ProteinProphet [9], ASAP ratio [19] and XPRESS [20], all
which is part of the Seattle Proteome Center software
pipeline and which are all supported by 2DDB.

A two-dimensional electrophoresis (2DE) separation also
fits the data model. In this case a gel spot is a locus. One
of the problems with 2DE is that gels have to be matched
to one another in order to compare expression of proteins
between different samples. This matching is computer
intensive and can only be done for a limited number of
gels. One of the gels in a matched set is elected to be the
master gel, and normally, this is the gel with the most
number of gel spots. Corresponding gel spots in every gel
in the match set is assigned a unique identifier. 2DDB
allows for matching of master gels in different match sets,
creating a bridge between match sets. This bridge can then
be used to calculate statistics over more gels, which leads
to more accurate conclusions. A number of visualization
and selection tools make the bridging of the different

experiments seamless. Gel slices for bridged spots can be
viewed simultaneous to facilitate validation of a match,
and ttests can be performed on the fly between groups of
different treatments.

Protein structure and function prediction data model
The functional and structural analyses are implemented in
a separate data model. Again, this model is based on the
core data model, see Figure 1. The majority of protein bio-
informatic tools available depends on the amino acid
sequence alone. Thus, all results from the bioinformatic
analysis are stored in relation with the sequence table.
Each sequence is annotated by various properties. Com-
mon annotations include secondary structure prediction
[21], trans-membrane domain predictions [22], signal
sequence predictions [23] and functional annotations,
commonly in the form of gene ontology (GO) terms [24-
26]. A large number of tables contain information about
these sequences, such as domain information (experi-
mental or predicted), tertiary structure (experimental or
predicted), secondary structure (experimental or pre-
dicted). Furthermore, various technologies are utilized to
find relation between different sequences. Amongst oth-

Protein explorerFigure 2
Protein explorer. This schematic picture of the protein explorer shows a list of protein, represented as a gray box to the 
left. This list is called a project. Each protein can belong to multiple groups (only once in each group set). Groups can be gen-
erated by automatic scripts such as MID, function, regulation and experiment or by arbitrary user-defined criteria.
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ers, we look at sequence similarities, structural similarities
and functional similarities. By annotating the sequences
with GO terms using sequential and structural informa-
tion and group the identified proteins on regulation and
or co-purification we can assign putative functions to the
proteins.

Protein explorer
Data analysis is difficult when dealing with large data
bodies of diverse and complex data. Our solution, called
Protein Explorer, is similar to the core data model where
we have a few central tables that are then expanded as
needed, see Figure 1. Protein Explorer lets the user define
a subset of protein from one or more experiments. A set of
proteins is called a project. This set of proteins can then be
grouped using a number of more or less sophisticated
tools, see Figure 2. Groups can be defined on regulation
(when expression data is available from for example iso-
topic labeling or 2DE), size, function, localization and so
on. The list of grouping possibilities can potentially be
made very long. A set of algorithms to divide the proteins
into groups are available and additional algorithms are
easy to write and incorporate into the framework. The
groups and group sets reduces complexity, allowing the
user to focus further analysis of more interesting protein
for example induced/repressed proteins from a quantita-
tive data set. Each group has one or more visualization
tools in order to display major features of the group. Vis-
ualization tools are easily developed and incorporated.

Normalization and statistics
To normalize data, for example protein expression data, is
at times necessary. In 2D gel experiments for example,
spot intensities are measured as parts of optical density
within the selected group of gels. This works when com-
paring regulation within the gel set, but fails when com-
paring between sets and experiments. It is hence necessary
to normalize the sets for comparison. Protein Explorer is
capable of assigning individual normalization factors to
each group in a group set to facilitate complex needs for
normalization of expression data. A group of normaliza-
tion factors are called a normalization set, and more than
one normalization set can be defined. This addresses the
problem when studying a subset of the data that might be
enriched for example all peroxisome proteins seems to be
up-regulated when in fact, it is due to an increased
number of peroxisomes. Normalizing over just the known
peroxisomal proteins will indicate if any of the peroxiso-
mal proteins are specifically enriched.

Visualization
Each group and group set can be visualized in numerous
ways. One can view the forced alignment between
sequences in a group, if the group shows co-regulation or
not or what functions has been assigned to members of a
group. The protein explorer framework simplifies the
development of additional visualization and analysis
algorithms.

Group sets can be plotted against them selves or against
other group sets in a tool called the ColorGrid. The square
in the intersect between two groups can be colored in

Color GridFigure 3
Color Grid. The Color-Grid. Proteins are displayed as rows 
and group sets are displays as columns. The color in each 
square indicates the identity of the group that the protein 
belongs to in that group set. The 45 significantly regulated 
proteins from the experiment discussed in the text is 
exported into Protein Explorer. Protein Explorer divided the 
45 proteins into 7 group sets with between 1 and 45 groups 
in each group set. The experiment group-set in this case is 
uninformative as all proteins are from the same experiment. 
The same is true for both the sequence group set and the 
MID group set since there are as many groups as there are 
proteins. The prophet_ratio group set indicates whether the 
protein was up-regulated or down regulated, and the three 
go-based group sets are based on MID GO annotations. Only 
proteins in the cytoplasm (blue group set 
cellular_component_l) and nucleus (red group set 
cellular_component_l) are displayed in this image because of 
limited space).
Page 6 of 9
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:158 http://www.biomedcentral.com/1471-2105/7/158
multiple ways. In the example in Figure 3, all the proteins
in a project are listed as rows. To which group it belongs
is color-coded along each row. This gives an overview of
how similar proteins are divided into groups.

Application
In an ongoing study, human lung fibroblasts were stimu-
lated with TGF-β1 lyzed open and the proteins were
reduced, ICAT™ labeled and digested. The peptides were
separated by strong cationic exchange and one fraction
was analyzed by reversed phase LC-MS/MS by five inde-
pendent LC/MS measurements and combined. A total of
4731 spectra were assigned to 1825 unique peptides,
which in turn identified 1568 proteins all imported into
2DDB. The number of proteins was further reduced to
1518 MIDs by sequence alignment and grouping proteins
with a 95% sequence identify still explaining all peptides.
This is rather small reduction compared to previous stud-
ies [16], the reason being that the ProteinProphet removes
the majority of the redundant protein identifications. For
example, methionine adenosyltransferas II was reported
two times, even though the longer of the two sequences
can explain the two unique peptides identified by the
mass spectrometer. Both sequences are grouped together
into MID M15449.

The second benefit by MID becomes apparent when com-
paring two of more different experiments. Upon compar-
ing the MIDs present in this study with a previous
published study [16] it is possible to immediately see how

many proteins were identified in both experiments even
though different databases, different search engines and
different types of mass spectrometers were used. In this
case, when comparing the TCF-β1 induced cells with a
large scale inventory proteome analysis of the fibroblast
nucleus it is possible to draw conclusions of possible sub-
cellular localization of the proteins that were in common.

After the data has been imported and grouped into MIDs
several possibilities exits. A number of overview and sort-
ing tools exits which allow the researcher to quickly sum-
marize the data. For example is it possible to obtain an
overview of the distribution of database search score (in
this case ProteinProphet [10] score) and a histogram of
the abundance ratios (Figure 4b). In this case, 45 unique
proteins were differently regulated (p-value < 0.05). These
45 proteins, which were imported into Protein Explorer
for further analysis, (Figure 3). One can also inspect mass
spectra (Figure 4a) and scatter plots of for example reten-
tion time and molecular weight (Figure 4c).

Once a smaller set of more interesting proteins is selected,
more time consuming analysis can be applied. Thus, the
2DDB software enables the user to import a set of experi-
ments, store the data and to quickly overview the data. By
the use of the MID this newly imported set of experiments
can be compared to older experiments in the database. A
set of proteins can then be specifically exported to the Pro-
tein Explorer, in this case 45 differentially expressed pro-
teins, for further in depth analysis. In this particular case,

Visualization of dataFigure 4
Visualization of data. Visualization of data. All these plots are from the experiment discussed in the text. This Figure illus-
trates four simple graphs designed to give a quick overview of the data, a) is a scatter plot of the theoretical molecular weight 
of each identified protein over a certain prophet probability (user-settable) against the scan number. The scan number is the 
sequential number online MS assigns to each spectra it acquires, and since these spectra are acquired with a given time interval, 
the scan number can be utilized as a pseudo retention time, b) is a histogram of proteins that are significantly regulated (p < 
0.05), and a ProteinProphet probability over 0.6. c) is a mass spectra from one of the peptides used to identify 
HSP72_HUMAN heat shock-related 70 kDA protein 2. These graphs are generated on the fly and enables the user to assess 
the quality of the dataset.
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GO have been assigned to the proteins allowing the user
to group the proteins based on molecular function, bio-
logical process or cellular component to allow functional
grouping of the induced/repressed proteins. The GO tool
has a graphical component that highlights the found GO
assignments in a hierarchical structure. In this way 2DDB
facilitates the analysis of complex proteomics data by
allowing the researcher to combine, store and overview
the data. Typically this is followed by various data reduc-
tion steps which enables more in depth analysis of more
interesting proteins and in this way functional informa-
tion of the proteins of interest is provided, which is
important when interpreting the results.

Another study involved comparing protein regulation in
the cervix between non-pregnant (NP), term-pregnant
(TP) and post-partum (PP) women using 2D gels is in its
final phase. Three experiment replicates of triplicate gels
for each condition was performed. Each experiment was
separately matched using PDQuest (BioRad). The master
gels from each experiment were matched using the same
software and the data from all four match sets were
imported into 2DDB. The three first as separate 2DE
experiments and the master gel match as a SUPER2DE
experiment. PDQuest assigns a unique number, called
SSP, to each matched spot and corresponding spots in the
three member experiments were linked using the SSPs
from the master match set. The software normalizes the
individual member experiment allowing to compare
them. The statistics becomes more reliable since each
treatment has 27 gels instead of 9. One of the significantly
regulated spots, Annexin V (Swiss-Prot:P40261), was
identified using MS.

Conclusion
We have developed a software tool that enables fast and
accurate analysis of quantitative proteomics data. As more
technologies were incorporated it became clear that cer-
tain features are universal whereas others are not. The uni-
versal features became the core data model and the other
features ended up in complementary, technology-specific
tables. As a result of this development, the software con-
tains large number of features that are beyond the scope
of this article. We have high-lighted some of the more
used features most which we think is of interest to the sci-
entific community. We also have tried to display the ver-
satility of the code by illustrating the process of going
from raw data to Protein Explorer, checking the quality of
the data and enabling conclusions to be drawn. Effort is
currently made to extend the display modes in protein
explorer.

Availability and requirements
Project name: 2ddb (twoddb)

Project homepage: http://2ddb.org and http://www.source
forge.net/projects/twoddb

Operating system: LINUX

Other requirements: MySQL [28] 4.0 or higher.

License: GNU General Public License

Demo site: http://www.2ddb.org

Abbreviations
2DE two-dimensional gel electrophoresis

AC Accession Number

BLAST Basic Local Alignment Search Tool

ESI electrospray ionization

GO Gene Ontology

LC Liquid chromatography

MALDI Matrix Assisted Laser Desorption Ionization

MID Multi-sequence identifier

MS Mass Spectrometry

NR NCBI's non-redundant protein database
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