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Abstract
Background: Serial Analysis of Gene Expressions (SAGE) produces gene expression
measurements on a discrete scale, due to the finite number of molecules in the sample. This means
that part of the variance in SAGE data should be understood as the sampling error in a binomial or
Poisson distribution, whereas other variance sources, in particular biological variance, should be
modeled using a continuous distribution function, i.e. a prior on the intensity of the Poisson
distribution. One challenge is that such a model predicts a large number of genes with zero counts,
which cannot be observed.

Results: We present a hierarchical Poisson model with a gamma prior and three different
algorithms for estimating the parameters in the model. It turns out that the rate parameter in the
gamma distribution can be estimated on the basis of a single SAGE library, whereas the estimate of
the shape parameter becomes unstable. This means that the number of zero counts cannot be
estimated reliably. When a bivariate model is applied to two SAGE libraries, however, the number
of predicted zero counts becomes more stable and in approximate agreement with the number of
transcripts observed across a large number of experiments. In all the libraries we analyzed there
was a small population of very highly expressed tags, typically 1% of the tags, that could not be
accounted for by the model. To handle those tags we chose to augment our model with a non-
parametric component. We also show some results based on a log-normal distribution instead of
the gamma distribution.

Conclusion: By modeling SAGE data with a hierarchical Poisson model it is possible to separate
the sampling variance from the variance in gene expression. If expression levels are reported at the
gene level rather than at the tag level, genes mapped to multiple tags must be kept separate, since
their expression levels show a different statistical behavior. A log-normal prior provided a better
fit to our data than the gamma prior, but except for a small subpopulation of tags with very high
counts, the two priors are similar.

Background
In Serial Analysis of Gene Expression (SAGE), mRNA is
extracted from a tissue sample and converted to cDNA,
from which oligonucleotides (so-called SAGE tags) at spe-

cific locations in the cDNA fragments are extracted and
amplified using PCR. Those tags are either ten or seven-
teen bases long, depending on the experimental protocol.
Sequencing the PCR product, it is possible to establish the
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number of copies of each tag extracted. (For an elaborate
description of the technology, see Velculescu [1]). Ideally,
there would be a one-to-one relation between tags and
genes, so that the number of copies of a tag would be an
indicator of the rate of transcription of the corresponding
gene. Suppose the tissue sample contained nt copies of tag
t each of which have a probability p of being extracted. The
exact magnitude of p is unknown (and depends on exper-
imental circumstances) but is certainly much smaller than
1 (Kuznetsov [2])), which suggests modeling the number
yt of observed copies of tag t (the so-called SAGE count) as
Poisson distributed with intensity λt = pnt.

A Poisson model predicts a (large) number of zero counts,
i.e. tags with positive lambda-values that just happened not
to be counted. Those cannot be distinguished from tags
that do not exist at all or are never transcribed. The prob-
lem of estimating the total number of expressible tags (the
size of the transcriptome) was studied by Stern [3], who
found the number of tags expressed at each level to be
inversely proportional to the square of the expression
level. Stern concluded that the size of the transcriptome
could not be reliably estimated from SAGE data. Part of
the problem is that a substantial part of the low-expressed
tags may be artifactual, which is difficult to incorporate in
the model. (Some authors have developed statistical mod-
els for SAGE data that take artifactually low counts into
account, see Blades [4], Beissbarth [5] and Anisomov [6]).
Kuznetsov [7], [8] modeled the SAGE data using a discrete
Pareto-like distribution and found that his model was
able to predict the number of transcripts expressed at a
level of ≥ 1 copy per cell. Although this was a major break-
through, the discrete Pareto-like distribution models the
counts directly, which means that sample variance is not
explicitly separated from the variance in gene expression.
The model that we explore in this paper is an hierarchical
Poisson model, i.e. a Poisson distribution with some prior
distribution f of Poisson parameter λ

Yt ~ Poisson(λt), λt ~ f(·,θ)  (1)

where Yt is the observed count for tag t, λt is the "true"
expression level of tag t and θ is some parameter in the
model. For the prior f we tried a number of candidates
(gamma, mixture of two gamma's, log-normal, Pareto).
The gamma prior turned out to provide a good fit to the
distributions of the tag counts for counts lower than a cer-
tain threshold, typically the 98th or 99th percentile.
Attempts to model the tag counts above that threshold
with a second gamma-distributed component failed, not
surprisingly since the number of tags in that range was too
small to support meaningful estimates.

For the purpose of this paper we choose the gamma distri-
bution, whose parameters were estimated with an empir-

ical Bayesian approach [9]. The choice of the Gamma
distribution was motivated by mathematical convenience
only. The Gamma distribution is the conjugate prior of
the Poisson distribution, i.e. if the parameters α and β are
known, the posterior distribution of λt given yt is distrib-
uted as Gamma(α + yt, β + 1) This is convenient because
the posterior distribution of γ represents our knowledge of
the true gene expression after the SAGE count has been
observed. Also, since 1/β is a scale parameter in the
Gamma distribution, libraries of different size can be
compared. Other things being equal, we expect the esti-
mated value of β to be inversely proportional to the
library size.

The marginal distribution of Y becomes a negative bino-
mial distribution:

and in particular

Since the zero counts are not recorded, the counts of the
recorded tags follow a zero-truncated negative binomial
distribution

The zero-truncated negative binomial distribution has
been studied by several authors, mainly for modeling
group sizes. See Johnson [10] for an overview. Schenzle
[11] studied the efficiency of various estimation methods
for the parameters and reached the conclusion that for α
< 1 heuristic methods do not work and ML estimation
should be used instead.

If such a model can provide a good fit to the data, it will
be useful for several purposes. For example, knowing the
posterior distribution of λt given Yt, one can construct a
variance-stabilizing transform for a SAGE library. Also, in
order to assess the sensitivity of the SAGE technology with
respect to genes with low expression levels, one needs to
know the distribution of λ. The idea of applying Poisson
models to SAGE data is not new. Cai [12] found a Pois-
son-based gene clustering algorithm to work better than
one based on Euclidian distances. And several authors
(Vencio [13], Ruijter [14]) have compared Poisson-based
tests for differentiation in gene expression between librar-
ies. However, those tests always look at a single SAGE tag
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at a time and tests for difference in the parameter λ across
the libraries. As noted by Baggerly [15], it is possible that
a model that incorporates all tags simultaneously, analo-
gous to the models applied to microarray data, would be
more powerful. This motivates our attempt to model the
behavior of λ across genes. In this paper, we present a
truncated Gamma-Poisson model augmented with a non-
parametric component, as well as a bivariate truncated
Gamma-Poisson model that can be used to comparing
two libraries, and we show how the parameters can be
estimated in those models.

Results
Untruncated gamma-Poisson, ML and method of moments
In the human transcriptome map, genes with zero counts
were reported, which allowed for the untruncated nega-
tive binomial model to be used. While the maximum like-

lihood (Johnson [10]) method worked quite well with
simulated data, it did not provide meaningful results with
the data from the Human Transcriptome Map, presuma-
bly because of the failure to account for a small popula-
tion of tags with extremely high counts (typically 1% of all
tags). Because those tags had high influence on the likeli-
hood function, it was necessary to take them into account.
Therefore, we assumed the expressed tags to be a mixture
of two populations: a large population of tags with expres-
sion levels below some threshold k, described by the
gamma-poisson model, and a small population of tags
with expressions at or above k, described by a non-para-
metric distribution. Because the maximum likelihood
estimator itself requires iteration, we decided to use a heu-
ristic to choose the threshold k and the start-guess for the
maximum likelihood estimator (See the Methods sec-
tion).

As for the Human Transcriptome Map, the model pro-
vided a good fit to the counts for tags of low to moderate
expression, but for all 72 libraries it was necessary to
assume a non-parametric component accounting for the
extremely strongly expressed genes. Figure 1 shows the
expected frequencies versus the observed frequencies for
HTM library N225.111k (a neuroblastoma cell line),
which was the largest library.

The quartiles of the estimated parameters for the 72 librar-
ies are shown in table 1.

We expected the estimated parameter β to scale with the
inverse of the library size, and indeed we found a clear
negative correlation between log(β) and log(library size),
R = -0.78.

Using the estimates from N225.111k (α = 0.146, β =
0.171) as an example, variance of λ is α/β2 = 1.55.

The average sampling variance is identical to the mean, α/

β = 0.27. Those average variances, however, hide huge dif-
ferences in information content between tags with differ-
ent expression levels: The coefficient of variation of the

posterior λt given a count yt is 

Truncated gamma-Poisson, Maximum Likelihood and 
MCMC
The log-likelihood in the truncated negative binomial
model, without the non-parametric component for the
high-expressed tags, is
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Table 1: Estimated parameters in the untruncated model. For 
each of the 72 libraries from the Human Transcriptome Map, the 
parameters in the untruncated gamma-Poisson model (α, β) with 
a non-parametric component for the strongly expressed tags (yt 

> thresshold) were estimated

α β threshold

Minimum 0.05 0.17 7
1st quartile: 0.10 0.23 10
Median: 0.11 0.27 11
3rd quartile.: 0.12 0.29 13
Maximum: 0.17 1.18 22

Frequency of SAGE counts (restricted to genes mapped to a single tag) of library N225Figure 1
Frequency of SAGE counts (restricted to genes mapped to a 
single tag) of library N225.111k, versus the expected fre-
quencies on the basis of the untruncated model with non-
parametric component for high-expressed tags. Compared 
to the expected frequencies in the truncated lognorm-Pois-
son-model.
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We augmented this model with a non-parametric compo-
nent for the high-expressed genes in the same way as the
untruncated model described above.

While the estimate of the rate parameter in the truncated
model became reasonably stable, and, as expected,
approximately inversely proportional to the library size,
the shape parameter became unstable, in particular with
real data but also with simulated data.

The rate parameter (α) in most libraries converged
towards the lower bound specified in the call to the max-
imization routine (0.001). A curious exception was
GSM1130, a small library with only 17004 tags, which
gave an estimate of α of 0.77 in the censored model as
opposed to 0.05 in the uncensored model. For all the
other libraries, the estimate of β for the censored model
was in agreement with that from the uncensored model
(mean ratio = 1.06, SD= 0.10). Computations with simu-
lated data did not show a bias on the estimate of α, but
still the estimated value of α was very unstable. Presuma-
bly, this difference between real and simulated data is
related to the failure of the model to account for the
extreme high-expressed tags, which were modeled with a
non-parametric component.

When the parameters in the same model were estimated
using MCMC, the rate parameter β was stable and in
agreement with the results from the other methods, but
the shape parameter (α) was, again, unstable. The esti-
mated parameters for the HTM library N225.111k (a neu-
roblastoma cell line) are shown in table 2.

Truncated log-normal-Poisson, Maximum Likelihood
Instead of incorporating a non-parametric component for
the high-expressed genes, one may look for a different
prior that has a thicker tail. For that purpose, we used a
log-normal prior. From a biological point of view, the log-
normal distribution is an attractive model for the true
gene expression, because it is conventionally used for
analysis of microarray data. The disadvantage of that
model, however, is that the marginal distribution of the

SAGE counts cannot be written on closed form. Therefore,
the likelihood must be evaluated with numerical integra-
tion.

A simpler method would be to use the method of
moments. Since the the probability of a zero count cannot
be expressed on closed form, however, numerical integra-
tion is still required, though only for the zero counts.
Unfortunately, experiments with simulated data showed
that the parameters estimated by the method of moments
were severely biased (estimated value of σ2 typically twice
the true value). The ML-algorithm converged in 71 of the
72 libraries, the exception being GSM1130, the library
that also gave contradicting β-estimates for the truncated
and untruncated gamma-Poisson model. Figure 1 shows
the frequency plot predicted by the truncated log-normal
Poisson model, compared to the empiric frequency plot.
Notice that while the model provides a good prediction of
the number of strongly expressed tags, it gives a much
lower estimate of the number of zero counts than
recorded in the data set. That picture is typical.

Bivariate truncated gamma-Poisson, Maximum 
Likelihood, HTM data
The fact that the shape parameter in the truncated model
could not be estimated on the basis on a single SAGE
library is related to the problem of estimating the number
of zero counts. In order to solve this problem we fitted the
parameters in a bivariate model applied to two libraries.
When two libraries are compared, the tags that have posi-
tive counts in one library and zero count in the other are
reported. If the correlation between the two libraries
could be estimated, the number of tags that had zero
counts in both libraries could be estimated as well, and we
would get a stable estimate of the shape parameter. See
the Methods section for details.

We fitted the bivariate model to all pairs from the 18 larg-
est libraries. Of those 153 library pairs, the likelihood
maximization algorithm converged in 151 cases. In 127 of
those, the four-parameter-model, allowing α to be differ-
ent for the two libraries, provided a significantly better fit
(twice log-likelihood ratio higher than the 95-percentile
for the chi-square distribution with one degree of free-
dom). This is not surprising, given that there was consid-
erable dispersion across libraries of the estimated α from
the untruncated model. With this model, the median of
our estimates of the transcriptome size for the subset
selected in the HTM was median = 8030 with a quartile
range from 6368 to 13767, compared to the 8100
reported in the HTM.

Figures 2, 3 and 4 show how the model compares to the
observed data when HTM library IDC-3 (Breast Tumor) is
compared to HTM library 145 (Normal brain). Figure 2

Table 2: Estimated parameters in the truncated model, library 
N225.111. In order to assess the uncertainty of the estimated 
parameters in the truncated gamma-Poisson model with a non-
parametric component for the strongly expressed tags, MCMC 
sampling was carried out on individual libraries. The results from 
library N225.111 are shown as an example

α β

2.5-percentile(MCMC) 0.0022 0.151
Median(MCMC) 0.047 0.174
97.5-percentile(MCMC) 0.13 0.204
Untruncated model 0.146 0.171
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shows a frequency plot for IDC-3 for tags that were not
observed in libray 145, figure 3 is for tags that had count
= 1 in library 145 and figure 4 for tags that had count = 5
in library 145. Notice that the model accurately predicts
the number of tags with zero counts (figure 3 and 4),
given a positive count in the other library.

Since the bivariate model specifies the probability of (Y1,
Y2) = (y1, y2) we were able to quantify the correlation
between two libraries with the correlation coefficient. As
seen in figure 5, a low correlation implies that the two
libraries are based on different tissue types, while the con-
verse is not necessarily true.

Bivariate truncated gamma-Poisson, Maximum 
Likelihood, raw SAGE libraries
As expected, the bivariate model underestimated the
number of tags with a count of one, presumably due to
sequencing errors. Figure 6 shows a frequency plot for tag
counts in SAGE-genie library 1003, conditioned on a
count of one in library 430, compared to the predictions
from two different versions of the bivariate gamma-pois-
son-model: the first estimate is based on the assumption
that the model fits the data over the entire range, the sec-
ond is based on the assumption that tags with count one
in one library and zero in the other are unreliable and
therefore have to be ignored (technically, a non-paramet-
ric component accounting for the tags with (1,0) or (0,1)
count is assumed). As seen in figure 6, the second model
fits much better. The number of tags with a count of one,
assigned to the non-parametric component, was 31500
for library 430 and 32100 for library 1003, corresponding
to sequencing error rates of 1.0% and 0.7%. This is similar
to Beissbart's estimates (between 0.5% and 1.5%).

Discussion
We have demonstrated that the Poisson distribution with
a conjugate gamma prior provides a good fit to real data
with the exception of a small population (typically about
1%) of SAGE tags. However, the univariate model does
not provide a stable estimate of the shape parameter. For
the interpretation of the SAGE counts, this is not so terri-
ble, since the posterior distribution of the true tag expres-
sion (λt) given count Yt is gamma(Yt + α, β + 1). With a
value of α typically between 0 and 0.5, the posterior for
distribution of λ given a positive count becomes insensi-
tive to α. However, the posterior distribution of λ given a
zero count requires a reliable estimate of α.

For the untruncated model, we assumed the total number
of expressible tags (in the subset under study) to be 8100
as recorded in the Human Transcriptome Map. One could
ask the question whether this set is (roughly) complete or
whether there is a significant number of extreme low-
expressed tags which have not been recorded in any of the
libraries. The fact that the number of expressible tags, as
estimated by the bivariate model, had a median of 8030
suggest that the number of tags recorded in the Human
Transcriptome Map is of the correct order of magnitude.

The small population of strongly expressed tags has been
noted by other authors([16], [4]) before. It is possible that

Frequencies of SAGE counts (restricted to genes mapped to a single tag) in IDC-3, given that the same tag had count one in HTM library 145Figure 3
Frequencies of SAGE counts (restricted to genes mapped to 
a single tag) in IDC-3, given that the same tag had count one 
in HTM library 145. Compared to the expected frequencies 
and 95% confidence bounds from the bivariate model, 
restricted to tags with counts lower than 15 in both libraries.
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Frequencies of SAGE counts (restricted to genes mapped to a single tag) in IDC-3, given that the same tag had count zero in HTM library 145Figure 2
Frequencies of SAGE counts (restricted to genes mapped to 
a single tag) in IDC-3, given that the same tag had count zero 
in HTM library 145. Compared to the expected frequencies 
and 95% confidence bounds from the bivariate model, 
restricted to tags with counts lower than 15 in both libraries.
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it has a biological or technological interpretation. How-
ever, Kuznetsov [7] showed that a discrete Pareto-like dis-
tribution accurately predicts the number of high-
expressed genes, which suggests that it is a modeling issue
rather than a separate group of genes. As seen in figure 1,
a Poisson distribution with a log-normal prior, which is
also a biologically appealing model, may also be able to

predict the number of high-expressed genes. Since the
majority of the genes are expressed at such low levels that
the difference between the gamma prior and the log-nor-
mal prior is small, we decided to base the bivariate model
on the gamma prior which is mathematically more con-
venient.

As a consequence of this choice, the model does not pro-
vide a posterior distribution of λ given a count above the
threshold. Fortunately, this is not so critical because for a
high count the posterior mean will be close to the
observed count.

Another issue relates to genes mapped to multiple tags. It
is reasonable to assume some correlation between two
tags representing the same gene. In the human transcrip-
tome map, the counts for those genes were reported as the
sum of the tag counts. Suppose a gene is represented by
two tags, the count of both being Poisson distributed with
intensity λ ~ Gamma(α, β) and correlation coefficient R. If
the total count for the gene is Poisson distributed with
intensity λ* ~ Gamma(α*, β*), we have

and thus

This shows that if the counts per gene, rather than the
counts per tag, are reported in a data set, genes with differ-
ent numbers of representing tags should be kept separate.
As shown in figure 7, the estimated values of α for genes
mapped to two or three tags are proportional to the esti-
mated values of α for the genes mapped to a single tag.
This suggests that the tag counts have the same distribu-
tion, whether they share the gene with other tags or not.
The proportionality constant of 2.2 for genes mapped to
two tags and 3.5 for genes mapped to three tags corre-
spond to a correlation coefficient of approximately -0.05.
This is a surprising result, since we found positive correla-
tion between tags mapping to the same gene in the data
used by Cai [12]. A possible explanation for the negative
correlation is that different splicing variants compete for
the same transcription product.
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Histograms of the correlation coefficient between two librar-ies, as estimated with the bivariate modelFigure 5
Histograms of the correlation coefficient between two librar-
ies, as estimated with the bivariate model. Library pairs of 
identical tissue type compared to libraries of different tissue 
type.
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Frequencies of SAGE counts (restricted to genes mapped to a single tag) in IDC-3, given that the same tag had count 5 in HTM library 145Figure 4
Frequencies of SAGE counts (restricted to genes mapped to 
a single tag) in IDC-3, given that the same tag had count 5 in 
HTM library 145. Compared to the expected frequencies and 
95% confidence bounds from the bivariate model, restricted 
to tags with counts lower than 15 in both libraries.
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By modeling two SAGE libraries with a bivariate truncated
negative binomial model, it was possible to achieve a
more stable estimate of α. More important, the bivariate
model has a useful interpretation: the shared gamma
process Z is the main effect (gene effect) while the inde-
pendent gamma process X is the (gene, library) interac-

tion effect. A further generalization of the bivariate model
will be to incorporate multiple interaction effects in a
multivariate model, for example a third gamma process
related to treatment groups.

We have made the distinction between truncated models
(only positive tags considered) untruncated model (the
set of expressible tags assumed to be known). It could be
argued, however, that even when zero counts are reported
(such as in multi-library data sets including all tags with a
positive count in at least one library), the untruncated
models should allow for a an unknown number of non-
recorded tags. Such models are called zero-deflated Pois-
son models.

By the analysis of the HTM data, we have ignored the issue
of sequencing errors. Figure 6 suggests that, augmented
with a model for the sequencing errors, the model could
be applied to raw SAGE data as well.

Conclusion
SAGE data appear, when sequencing errors are handled
properly, to follow a Poisson mixture with a log-normal
prior on the Poisson parameter. The gamma prior (lead-
ing to a negative binomial distribution for the SAGE
counts) provides a good approximation for low counts
(up to between 10 and 20, depending mainly on library
size). Using a bivariate gamma-Poisson model, the tran-
scriptome size can be estimated from the data; alterna-
tively, the list of expressible tags from the Human
Transcriptome Map can be used. Whether one prefers the
mathematically convenient gamma prior or a log-normal
prior traditionally applied to microarray data, and
whether one prefers a parametric or non-parametric
model for the high-expressed tags, we believe that the
Poisson model is useful for analyzing SAGE data because
it separates the sample variance in the Poisson process
from the biological variance. Vencio [13] and Cai [12]
both demonstrated it to be superior to alternative meth-
ods for gene expression differentiation testing and gene
clustering, respectively. Assuming a prior distribution of
the λ's across the genes could boost their methods further.

Methods
Data
We used 72 libraries from the Human Transcriptome Map
(HTM) (Caron et al. [17]), which is a compilation of
SAGE libraries from different human tissues. It contains
expressions of 19825 genes, of which 8100 are repre-
sented by a single tag. In this paper, we focus on those
genes mainly (we will motivate this choice in the discus-
sion section). The remaining genes were mapped to two
or more tags and the reported counts were the sums of the
counts of those tags. Unlike raw SAGE libraries, the
Human Transcriptome Map includes genes with zero

Estimates of α in the untruncated modelFigure 7
Estimates of α in the untruncated model. For each library, 
the estimates for genes mapped to two tags, and the esti-
mates for genes mapped to three tags, are plotted against the 
estimate for genesmapped to a single tag.
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counts, because each library contains counts for all genes
that were expressed in at least one library. Also, tag counts
considered likely to be false positives (such as sequencing
errors) had been removed. See the HTM web-site [18] for
details.

We also used two of the short-tag libraries from SAGE-
genie [19] (library no. 430 and 1003). Those are raw data,
i.e. tags likely to be false positives had not been removed.

Truncated gamma-Poisson, ML and method of moments
We assumed that for each expression level i ≥ k the
gamma-poisson-model predicts only a ratio wi ≤ 1 of the
observed number of tags with that expression level. There-
fore, tags with expression level i are assigned a weight of
wi when estimating α and β. Initially, the weights were set
to 1 and k was set to the maximum observed expression
level. Now, for each iteration step, k was decremented by
1, while α and β were estimated using the method of
moments:

For each i ≥ k the expected number of tags yi,exp was com-
puted. Now, the weights wi = yi,exp/yi,obs were computed and
used for the estimation of α and β. This was iterated until
Akaike's Information Criteria reached its optimum.

Truncated gamma-Poisson, Maximum Likelihood and 
MCMC
The log-likelihood in the truncated negative binomial
model, without the non-parametric component for the
high-expressed tags, is

We augmented this model with a non-parametric compo-
nent for the high-expressed genes in the same way as the
untruncated model described above. We maximized the
log-likelihood using a quasi-Newton-Raphson method
(S-PLUS function nlmin), and made use of the S-PLUS
option of computing the gradient and Hessian using the
double dogleg step(Venables [20]). As a start guess for the
iteration, we used the method of moments (see above).
Note that although the sum over all tags is in principle a
sum over several thousands indices, in practice it is only a
sum over all observed levels of tag expression (counts),
due to the discrete nature of the data.

For the threshold k for the non-parametric component,
the value found by the method of moments (described
above) was used (alternatively k can be handled as
another parameter, but it turned out to be difficult to
identify). For the prior distribution of the parameters, we
used α ~ exp(1) and β ~ gamma(0.1, 1). In order to quan-
tify the uncertainty on the parameter estimates, we also
computed the Bayesian a posteriori distribution of the
parameters in the truncated model with non-parametric
component using a Markov Chain Monte Carlo (MCMC)
algorithm. The MCMC simulations were carried out with
WinBugs [21].

Bivariate Truncated gamma-Poisson, Maximum 
Likelihood
As a model for the true gene expressions (λ) in two librar-
ies (1 and 2), we assumed the trivariate reduction model
(Mathal and Moschopoulos [22]):

(λ1, λ2) = (µ1 + τ, µ2 + τ), µ1, µ2 ~ Gamma(α, β), τ ~
Gamma(ρ, β)  (13)

In this model the observed counts Yt1,Yt2 with intensities
λt1 and λt2 are assumed to arise as sums of a shared com-
ponent Z with intensity τ and non-shared components X1
and X2 with intensities µ1 and µ2.

Assuming that the rate is inversely proportional to the
library sizes n1, n2, we get

Y1 = X1 +Z1, Y2 = X2 + Z2  (14)

X1 ~ negbinom(α, β/n1), X2 ~ negbinom(α, β/n2)  (15)

The correlation between lambda1 and lambda2 is

VAR(λ.) = VAR(µ.) + VAR(τ)  (20)

where the variances of µ1, µ2 and τ are derived from the
gamma distribution. For each pair of libraries from the 19
largest libraries from the Human Transcriptome Map, we
estimated the parameters in this model. Anticipating that
the model would not fit to the frequencies of counts
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above the threshold found in the univariate model, which
varied between 9 and 22, we restricted the analysis to tags
with counts below 15 in both libraries. We also fitted an
augmented model in which X1 and X2 were allowed to
have different values of α. In that model, the marginal dis-
tributions of Y1 and Y2 are negative binomial with param-
eters (α1 + ρ, β/n1) and (α2 + ρ, β/n2), respectively. Note
that it is not expected that α1 is characteristic for library 1
when library 1 is modeled together with different librar-
ies: if library 1 and 2 show a high degree of correlation, ρ
will be larger at the expense of α1 and α2

Accounting for sequencing errors in raw SAGE data
Raw SAGE data contain a high number of tags with a
count of one, many of which, presumably, are artifacts
such as sequencing errors. Beissbarth [5] estimated the fre-
quency of such artificial counts to be between 5% and
15% of the total number of tags, corresponding to an error
rate of 0.5% to 1.5% per nucleotide. When analyzing the
HTM data we assumed that the data had been thoroughly
cleaned. But in order to apply our model to raw SAGE
data, one needs to account for sequencing errors. We
chose to incorporate sequencing errors in the bivariate
model by assigning tags with counts one in one library
and zero in the other library to a non-parametric compo-
nent.
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